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Abstract. Analogy making from examples is a central task in intelligent system behavior. A lot of
real world problems involve analogy making and generalization. Research investigates these ques-
tions by building computer models of human thinking concepts. These concepts can be divided into
high level approaches as used in cognitive science and low level models as used in neural networks.
Applications range over the spectrum of recognition, categorization and analogy reasoning. A major
part of legal reasoning could be formally interpreted as an analogy making process. Because it is
not the same as reasoning in mathematics or the physical sciences, it is necessary to use a method,
which incorporates first the ability to specify likelihood and second the opportunity of including
known court decisions. We use for modelling the analogy making process in legal reasoning neural
networks and fuzzy systems. In the first part of the paper a neural network is described to identify pre-
cedents of immaterial damages. The second application presents a fuzzy system for determining the
required waiting period after traffic accidents. Both examples demonstrate how to model reasoning
in legal applications analogous to recent decisions: first, by learning a system with court decisions,
and second, by analyzing, modelling and testing the decision making with a fuzzy system.

1. Legal Reasoning with Neural Networks

In legal reasoning, the judge follows rules defined by the written law, but also
includes precedents in his decision process. Often the interpretation of the law
varies to a large extent among judges and it is difficult to find a common ground.

In this paper, a problem was chosen where it is not possible to directly apply
the written law at all and judges have to rely to a large extent on precedents. This
legal methodology of analyzing prototype decisions is very similar to the neural
network philosophy: The neural network learns to make a prediction on a new case
given these prototypical cases.

In general, there are two difficulties: (1) representing the law in rule-like sen-
tences (“if . . . then . . . ”) which could be entered in a computer, and (2) describing
the circumstances in parametric form. Both require the expert’s experience. For
a more general treatment of this question see Philipps (1989). In the problem
described here, we had the advantage that data (precedents) were available in
tabulated, parametric form, and we had a set of rules defined by a legal expert.

The algorithm described provides the ability to translate legal decision making
into a computational form containing the following steps: Select the most essential
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features for the problem as inputs for the network. Enter the prototypical cases into
the network and learn by adopting the parameters. Afterwards the network will be
able to produce a reasonable output for a new constellation that is not prototypical.
Due to its receptive field properties the network effectively compares a certain input
to the most analogous cases.

The neural network provides also the possibility of pruning the inputs and rules.
The networks architecture is variable. In principle, after training the rules can be
extracted again from the network, but we have to make sure that the set of rules
is as concise as possible, otherwise the value of the extracted rules is limited. We
would like to find the smallest number of rules that can still describe the knowledge
sufficiently. Also the network should be encouraged to find the smallest number of
conjuncts, which in this case means that a basis function (rule) is only dependent
on a minimal amount of inputs. Both constraints can be implemented through ad-
ditional penalty terms to the quadratic cost function. For this technique see Hollatz
(1992). For the legal example, this pruning procedure produced a quite optimal set
of rules and conjuncts.

In this particular application we examine the identification of precedents in the
area of the law of immaterial damages (see also Philipps et al. 1989). As input,
several circumstances (type, seriousness and duration of injury, seriousness and
duration of consequences, sex, impairment of occupation, particular severity, med-
ical malpractice) are used. The amount of compensation of immaterial damages in
German Marks is given as output. Our data base consisted of 200 court decisions.
These cases including the factual circumstances and the legal consequences are
available in tabulated format from the German automobile club (ADAC 1991). Our
system was required to learn to predict the magnitude of expected compensation of
immaterial damages. Because of the relatively large and consistent data base, this
problem is well-suited to being solved with a neural approach.

1.1. THE NEURAL NETWORK

In the following the neural network and its mathematical description is given. For
a more detailed description of neural networks see Hertz et al. (1991), for example.
We consider networks that describe a mapping from an input spacex ∈ Rn (the
facts of the case in legal reasoning) to an output spacey ∈ R (the final decision). In
the widest sense, we consider a fuzzy rule to be domain-specific knowledge about
the same input/output mapping, which can be quantified in simple expressions of
the form: if (premise)then (conclusion), where the premise makes a statement
about the input space and the conclusion makes a statement about the output space.
In this section, we first describe the network architecture and then show how to
initialize the network with fuzzy rules.

Let {Rulei , i:1 . . .M} be a set of fuzzy rules. For every rule we introduce a
basis functionbi(x) which is equal to one wherever the premise of the rule is valid,
and equal to zero otherwise. Alternatively, we define a number (typically but not
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necessarily between 0 and 1) which we call the validity of the rule and which
indicates the certainty with which a particular rule can be applied, given the input
x. We assume that a basis function can be described by a multivariate Gaussian

bi(x) = κi exp

[
−1

2
(x− ci)t6

−1
i (x− ci )

]
, (1)

where we assume that the covariance matrix6i is diagonal and whereσij is the
j th diagonal element in6i. In the following, we further assume thatκi = 1. The
parametercij defines the position in thej th dimension of the input space where
Rulei has the largest validity. The parameterrangeij = σij indicates approximately
the range in whichRulei is valid in thej th input dimension. We say that each
hidden unit has its ownreceptive fieldin the input space, a region centered oncij .
The width of this receptive field is proportional toσj . A basis function approxim-
ately corresponds to a fuzzy logic membership function. We assign a parameter or
weightwi to every basis function which is equal to the (expected) value ofy, given
thatRulei is valid. We define the network output to be

yN(x) =
∑

i wibi(x)∑
i bi(x)

. (2)

In regions where only one rule demonstrates significant validity, the output is equal
to wi . In regions where more than one rule has a significant validity, the equation
forms a weighted average of the outputs of those rules. Note that the resulting
architecture described by Equation (2) is identical to the neural network architec-
tures used by Moody and Darken (1989). When training data arrive, the network
architecture can be modified, and the network parameters (centers, widths, and
weights) can be adapted using backpropagation. The topology of the network is
shown in Figure 1.

Given the state of the input the network makes a prediction. If we can meas-
ure the actual state of output we can adjust the network such that the prediction
improves. If we use the quadratic cost function

ED = 1/2
∑
k

(yk − yN(xk))2 = 1/2
∑

(ek)2, (3)

with pattern numberk, network outputyN(xk) and the desired outputyk , the net-
work can be adjusted by gradient descent, where

∂ED/∂qi = −
∑
k

ek
bi(xk)∑
j bj (x

k)
,

if qi is parameterwi and

∂ED/∂qi = −
∑
k

ek
wi − yN(xk)∑

j bj (xk)
∂

∂qi
bi(xk),
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Figure 1. Two typical rules extracted from the network after learning.

if qi is a parameter inbi (centercij , rangeσij ). These gradients could be inser-
ted into the formula to adjust the parameters with a certain learning rateη. The
parameter change is given by:

1qi = −η · ∂ED
∂qi

. (4)

The functional equality between radial basis function networks and fuzzy infer-
ence systems is given, if the number of the radial basis function nodes (receptive
fields) is equal the number of if-then-rules. The output of every fuzzy if-then rule
is either a constant or a function dependent on the input vector. The membership
functions of every single rule were chosen as gaussian functions and the t-norm
operator is the multiplication. The radial basis function network as well as the
fuzzy inference system use the same method to compute the output: the weighted
sum. As explained above, fuzzy rules can be expressed as neural networks. The
transformation method is demonstrated in the following example. If the linguistic
variable is represented as the center of the corresponding membership function, a
rule could be expressed as follows:

IF [((x1 = A) AND (x4 = B)]OR (x2 = C)
THENy = d × x2.

In this exampleA,B andC are linguistic variables, which represent fuzzy sets with
gaussian membership functions and the centersa, b andc. The fuzzy rule is coded
in the network as:
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Figure 2. Mean error of the network with and without prior knowledge in the generalization
phase.

premisei : bi(x) =
exp

[
−1

2
(x1−a)2+(x4−b)2

σ2

]
+exp

[
−1

2
(x2−c)2
σ2

]
conclusioni : wi(x) = d × x2.

This formulation is related to the fuzzy logic approach of Takagi et al. (1985). The
connection between fuzzy membership functions and Gaussian basis functions is
examined by Wang and Mendel (1992).

1.2. RESULTS

We tried two different experiments. First, the network learns without prestructur-
ing, and after the learning phase rules were extracted and analyzed. In the second
experiment, the improvement in generalization ability due to the prestructuring of
the network was measured as a function of the number of rules (hidden units) which
were used to prestructure the network. During network training, rule refinement
takes place and after the training phase, it is possible to extract rules as explanation
components for decision processes.

In the first experiment, we want to find rules extracted from the given data set,
in this case the 200 court decisions. As described in Section 2, we used a two-layer
feed-forward network with gaussian radial basis units and with normalized network
output (Equation (2)). The architecture used consisted of 9 input, 15 hidden, and 1
output unit. The parametersAij andBi were updated by a gradient descent learning
rule. After 1000 cycles, the rules were extracted and presented as shown in Figure
1.

The premises are connected with AND-operators and its valuesAij are normal-
ized to the interval[0;1]. All rangesrij are fixed to 0.25 and not updated. The
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Figure 3. Architecture of the fuzzy expert system.

conclusionBi is the real unnormalized value given in German Marks. Most rules
could be interpreted as easily as the ones shown in Figure 2:Rule11 is an example
of a rule which covers cases with low compensation andRule14 is an example for a
rule with high compensation. After rule extraction we could conclude, for example,
the following: (1) not the number, but the severity of the injury is important for
the decision finding process, and also (2) that reduction of earning capacity is an
important factor. But we could also conclude (3) that the decision is independent
of sex (0 = female, 0.5 not mentioned in decision, 1 = male). For some rules the
interpretation is more difficult, which can be partially attributed to the fact that
court decisions are often somewhat contradictory.

Figure 3 compares the generalization ability of networks with and without pre-
structuring as a function of the number of hidden units (rules). The same network
structure as in the previous experiment was used. 180 patterns were given in the
training set and 20 patterns were used for testing the generalization ability. Pre-
structuring the network consisted of presetting the values ofAij andBi . It can
be seen that prestructured networks learn faster and generalize better due to the
additional knowledge used in network training.
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2. Legal Reasoning Using Fuzzy Systems

According to classical logic an object either is or is not a member of a class. In
fuzzy logic the either-or classification does not exist because fuzzy logic is based
on the idea that an element can also be part of a class to a certain degree. The mem-
bership degree takes values in the range of [0, 1]. This approach offers the ability
to process imprecise concepts and uncertain information of human reasoning. As
vague legal concepts are often used in German law, fuzzy logic has a really great
future in jurisprudence, which will be shown by the example of ‘determining the
required waiting period after traffic accidents’.

The purpose of a fuzzy logic application in legal science is to assist lawyers
and judges in forming a judgement on facts given by the computer. Examples
of assistance systems already exist in road traffic law in the form of quota tables
which contain the level of responsibility and the distribution of damage between the
parties involved in a traffic accident (Krumbholz et al. 1988). Additionally, there
is a fuzzy expert system to define the legal animal owner (§833 BGB (civil code))
who is liable for bodily injury, death or property damage caused by the animal
(Heithecker 1993).

According to German law (§142 I StGB (criminal code)leaving the scene of
an accident) a person involved in a traffic accident must not leave the place of
an accident. We should distinguish between two completely different situations of
accident: In the first case, there are other people at the scene of an accident who
are interested in clearing up the facts of the accident. In the second case, nobody
else is present at the scene of an accident because the car driver caused an accident
without involving other road users. For instance, the car driver damaged another
parking car while he was leaving the parked place (Poeck 1994).

In this case the behaviour of the person involved in a traffic accident will only be
correct if the person waits for an‘amount of time adequate under the cirumstances’
until someone arrives who is willing to take down his name and details concerning
the car and the accident. The person is allowed to leave the scene of the accident
when the required waiting period has expired and nobody has arrived (Dreher and
Tröndle 1995).

Neither the statute nor commentaries nor court decisions nor publications tell
us what amount of time is adequate under what circumstances (Haft 1991; Philipps
1993).

The fuzzy logic expert system is able to treat the above mentioned second case.

3. The Fuzzy System

Vague legal concepts like ‘short’, ‘medium’ or ‘long’ waiting periods can be rep-
resented by fuzzy sets, because the terms merge with one another without clear
boundaries. Fuzzy logic offers the ability to analyse the linguistic usage of legal
terms and to incorporate them into a fuzzy expert system (Philipps 1993).
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Figure 4. Variables and membership functions.

The development of the fuzzy system for determining the required waiting
period is part of a master thesis (Schretter 1995) and was previously discussed in
Schretter and Hollatz (1995). A prototype was created with the fuzzy tool SieFuzzy
– a windows-based tool for analysis and design of fuzzy systems (SieFuzzy 1993).

The duration of the required wait is determined by the following factors
(Gerathewohl 1987; Philipps 1993; Poeck 1994)

– Amount of damage
– Expectation level of someone’s arrival
– Site of accident
– Time of accident
– Traffic density

According to juridical thinking the architecture of the fuzzy expert system shown
in Figure 4 is structured in two stages.

The components of the expert system are described in Figure 4 and will be
explained in the following:
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3.1. AMOUNT OF DAMAGE

The amount of damage only includes property damage, because discussion about
personal injuries would be too complex. The amount of damage is divided into the
following fuzzy sets (Poeck 1994):

− Damage less than under 50 DM (German marks) is not important (Dreher
and Tröndle 1995).

− Damage isslight between 50 and 500 DM.
− The area ofmediumdamage contains values between 50 and 2000 DM.
− Damage issevereover 500 DM andvery severeover 2000 DM.

3.2. EXPECTATION LEVEL OF SOMEONE’ S ARRIVAL

The level of expectation means that there is a prognosis, whether someone will
arrive at the scene who is willing to clear up the facts and circumstances of the
accident and to inform the party whose property was damaged, or other people
involved in the accident (Poeck 1994). The passer-by, who is interested in noting
the facts, can be the police, the person whose property was destroyed, as well as
pedestrians, cyclists or car drivers (Dreher and Tröndle 1995).

The level of expectation can only be described linguistically by the terms‘neg-
ative’, ‘neutral’ or ‘positive’. Therefore we took a fictitious numerical scale from 1
to 100 as a basis for the level of expectation. The expectation level of someone’s ar-
rival is not something that could be directly recognized, but there are various factors
determining the level of expectation. We used the site, the time of an accident and
the traffic density (Gerathewohl 1987; Philipps 1993):

3.2.1. Scene of accident

The scene of an accident influences the level of expectation. The expectation of
someone’s arrival will attain a higher level if the car accident happens in a town
centre rather than on a highway. Pedestrians in the town centre are usually more
interested in taking down the facts of an accident than car drivers on the road who
often carelessly pass the place of an accident. We propose the following categories
of places (Poeck 1994):

− Highwaysincluding motorways, highways and roads where traffic is heavy.
− In residential districtsthere are a lot of pedestrians and car drivers.
− In towncentreswe generally find only pedestrians.

As there is only a linguistic and not a numerical description for the site of accident,
we took a fictitious numerical scale from 1 to 100 as a basis.
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3.2.2. Time of accident

At night the expectation level of a passer-by arriving is very unlikely. The time of
accident is divided in the following way (Philipps 1993):

− The term‘early in the morning’is defined from 0.00 am to 8.00 am.
− The area of the term‘day’ contains values between 4.00 am and 7.00 pm.
− The term‘evening’covers the area from 5.00 pm to 12.00 pm.
− Thenight is defined from 10.00 pm to 12.00 pm.

Time is represented by decimal industrial time.

3.2.3. Traffic density

If the traffic density is high on a highway, more car drivers are likely to observe the
accident. The expectation level of someone’s arrival will consequently increase.
We suggest the following classes of traffic density (Philipps 1993):

− Low density is defined from 0 to 5.
− Mediumdensity contains values from 2 to 8.
− ‘High density’ covers the range from 5 to 10.

As the traffic density is only represented linguistically and has no numerical scale,
we took a fictitious numerical scale from 1 to 10 as a basis.

3.3. THE REQUIRED WAITING PERIOD

The duration of the required wait is determined by the amount of damage and the
expectation level of someone’s arrival. The intervals of waiting time are defined in
the following way (Poeck 1994):

− A very shortperiod from 0 to 10 minutes is not a period of waiting at all.
− A shortwaiting period is a space of time from 5 to 20 minutes.
− A lower mediumwaiting period is defined from 10 to 30 minutes.
− An upper mediumwaiting period covers a range from 20 to 45 minutes.
− A longwaiting period is described by a space of time from 30 to 60 minutes.
− A waiting period isvery longover 45 minutes.

3.4. RULEBASE 1

Rules for determining the duration of wait, shown in Figure 4, depend on the
amount of damage and the expectation level of someone’s arrival. The rules have
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Table I. Matrix of rulebase 1: damage (columns) versus expectation (rows).

Waiting period Slight Medium Severe Very severe

Negative very short short lower medium upper medium

Neutral short lower medium upper medium long

Positive lower medium upper medium long very long

Table II. Matrix of rulebase 2, if the traffic density is LOW:
site of accident (columns) versus time of accident (rows).

Expectation Highway Resid. district Centre

Early morning negative negative negative

Day negative neutral negative

Evening negative neutral negative

night negative negative negative

no weight, because the effect of rule weight increasing or decreasing the activation
of a rule, offers us no possibility of a reasonable interpretation.

3.5. RULEBASE 2

Rules for evaluating the level of expectation are represented in the tables. Because
of the reason above mentioned none of the rules carries weight. In the premises
of rulebase 1 and rulebase 2, we used the minimum operator. As defuzzification
strategy we chose the well-known centre of area method.

As a basis for evaluating the fuzzy system we took about 100 court decisions
(Poeck 1994). Nevertheless these decisions were reduced to 22 because in most
cases the judges did not give any details for the real required waiting period. The

Table III. Matrix of rulebase 2, if the traffic density is ME-
DIUM: site of accident (columns) versus time of accident
(rows).

Expectation Highway Resid. district Centre

Early morning negative neutral negative

Day neutral positive neutral

Evening negative neutral neutral

Night negative neutral negative
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Table IV. Matrix of rulebase 2, if the traffic density is HIGH:
scene of accident (columns) versus time of accident (rows).

Expectation Highway Resid. district Centre

Early morning neutral neutral neutral

Day positive positive positive

Evening neutral positive neutral

Night neutral neutral neutral

judges simply said that the duration of wait was sufficient or was not sufficient. As
an approximate basis for adjusting the system we consequently took only the facts
of a sufficient waiting period.

4. Outlook

As an extension of the fuzzy system we can use further factors like the weather,
conspicuousness of an accident or activities by the person involved in an accident
e.g. leaving a message or informing the police immediately (Gerathewohl 1987).
Depending on those circumstances the required wait can be reduced or extended.
Actually, there are only a few legal applications like the fuzzy expert system for
determining the required waiting period after traffic accidents. In France assistance
systems at law-courts or at insurance companies, like the before mentioned quota
tables for damage distribution, have already been established and have become
increasingly important in Germany.

In the first part of the paper an easy way of combining fuzzy rules with the
inductive learning capability is presented. The practicability of analogy reasoning
is shown in two legal applications.

I would like to thank Nikola Schretter for her support in preparing the second
part of the paper and implementing the fuzzy rule base.

References

Dreher, E. and Tröndle, H. 1995.Strafgesetzbuch und Nebengesetze, Commentary, 47th edition,
Munich: C.H. Beck.

Duda, R.O. and Hart, P.E. 1973.Pattern Classification and Scene Analysis. New York: Wiley.
Gerathewohl, P. 1987.Erschließung unbestimmter Rechtsbegriffe mit Hilfe des Computers. Ein Ver-

such am Beispiel der “angemessenen Wartezeit” bei§ 142 StGB, doctoral thesis, University of
Tübingen.

Haft, F. 1991.Strafrecht, Besonderer Teil, 4th edition, Munich: C.H. Beck.
Heithecker, J. 1993.Fuzzy-Logik und der “Tierhalter”, KI 3, pp. 7–10.
Hertz, J., Krogh, A. and Palmer, R.G. 1991.Introduction to the Theory of Neural Computation,

Addison Wesley.



ANALOGY MAKING IN LEGAL REASONING WITH NEURAL NETWORKS AND FUZZY LOGIC 301

Hollatz, J. and Tresp, V. 1992. A rule-based network architecture,Proc. of the International
Conference on Artificial Neural Networks, Brighton: ICANN 92, pp. 757–761.

Hollatz, J. 1992. Supplementing neural network learning with rule-based knowledge,Proc. of the
IEEE International Conference on Neural Networks, Vol. III, Beijing: IJCNN-92, pp. 595–600.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J., and Hinton, G.E. 1991. Adaptive mixtures of local experts,
Neural Computation3, 79–87, 1991.

Krumbholz, H., Paul, H., and Brüseken, W. 1988,Haftungsquoten bei typischen Verkehrsunfällen,
NZV, pp. 168–172.

MacKay, D. 1991.Bayesian Modeling. Ph.D. Thesis, Caltech.
Moody, J. and Darken, Ch. 1989. Fast learning in networks of locally-tuned processing units,Neural

Computation, Vol. 1, Massachussetts Institute of Technology, pp. 281–294.
Philipps, L. 1989. in A. Martino (ed.), Are legal decisions based on the application of rules or

prototype recognition? Legal science on the way to neural networks. In A. Martino (ed.),
Pre-Proceedings of the 3rd Intern. Conf. on Logica, Informatica, Florence, Diritto.

Philipps, L., Brass, H. and Emmerich, Q.A Neural Network to Identify Legal Precedents, 9th
Symposium on Legal Data Processing in Europe, (CJ-IJ Symp.).

Philipps, L. 1993.Vague Legal Concepts an Fuzzy Logic. An Attempt to Determine the Required
Period of Waiting after Traffic Accidents, informatica e diritto, Vol. 2, pp. 37–51.

Poeck, T. 1994.Wartepflicht und Wartedauer des§142 Abs.1 Nr.2 StGB. Ein Vorschlag zur Bestim-
mung der Wartelänge anhand rechtsprechungsanalytischer und empirischer Überlegungen, Volk,
Klaus and Lang, Peter (eds), Criminalia, Vol. 2, Frankfurt a.M., 1994, doctoral thesis, Munich:
Ludwig-Maximilians-University.

Schretter, N. 1995.Konsistenz und Vollständigkeit in Fuzzy-Regelbasen, master thesis, Prof. Dr. W.
Brauer, Munich: Institute of Computer Science, University of Technology.

Schretter, N., and Hollatz, J.:Ein Fuzzy-Logik-Expertensystem zur Bestimmung der Wartezeit nach
Verkehrsunfällen, Fuzzy-Neuro-Systeme ’95, 3rd workshop, Darmstadt, pp. 73-80.

SieFuzzy. 1993.User’s Manual Version 1.0, Siemens AG.
Takagi, T. and Sugeno, M. 1985. Fuzzy identification of systems and its applications to modeling and

control,IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116–132.
Towell, G.G., Shavlik, J.W., and Noordewier, M.O. 1990. Refinement of approximately correct

domain theories by knowledge-based neural networks. InProceedings of the Eights National
Conference on Artificial Intelligence, MA, pp. 861–866.

Tresp, V., Hollatz, J., and Ahmad, S. 1993. Network structuring and training using rule-based
knowledge, to be published inAdvances in Neural Information Processing Systems5. Über
1100 Urteile zur Höhe des Schmerzensgeldes mit den neuesten Entscheidungen deutscher und
ausländischer Gerichte(German), München: ADAC-Verlag.




