
Artificial Intelligence and Law7: 81–96, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

81

Hohfeld in cyberspace and other applications of
normative reasoning in agent technology

CHRISTEN KROGH1 and HENNING HERRESTAD2
1SINTEF Telecom and Informatics, Department of Distributed Information Systems, P.O. Box 124
Blindern, 0314 Oslo, Norway
2Department of Philosophy, University of Oslo

Abstract. Two areas of importance for agents and multiagent systems are investigated: design of
agent programming languages, and design of agent communication languages. The paper contributes
in the above mentioned areas by demonstrating improved or novel applications for deontic logic and
normative reasoning. Examples are taken from computer-supported cooperative work, and electronic
commerce.

Key words: agents, user interface metaphors, agent programming languages, agent communication
languages, agent protocols, Hohfeld, formal theories of rights, normative structures, deontic logic,
groupware, CSCW, electronic commerce.

1. Preamble

This paper has two main purposes. First, through discussing various possible appli-
cations of agent technology, it will answer what uses there are for agents. Second,
it will discuss the role of deontic logic with respect to the following two important
issues in agent technology:

• The design of agent programming languages.
• The design of agent communication languages.

2. Uses of agents

The [agent] metaphor has become so pervasive that we’re waiting for some enterprising com-

pany to advertise its computer switches as empowerment agents.

– Wayner and Joch, [36, page 95]

For some time, critical voices have been raised against agents, agent technology
and what passes for it in the popular media. It is hard not to agree with their
criticism: it is no exaggeration to state that agents, agent technology and multiagent
systems have been oversold.



82 CHRISTEN KROGH AND HENNING HERRESTAD

To take one example, it has recently become quite popular to refer to the use
of any odd search engine on the internet (such as Lycos, Altavista, or Excite) as
using an agent. There is nothing wrong in calling a search engine (or a computer
switch!) an agent. In Webster’s dictionary [37, page 31]: one of many uses of the
word ‘agent’ is as “An active power or cause; that which has the power to produce
an effect; as, a physical, chemical, or medicinal agent; as, heat is a powerful agent.”
If heat is an agent, then any computer program can be an agent. But even though
there is nothing wrong in calling any computer program an agent, there is nothing
right in it, either. The label ‘agent’ should be used for a purpose. It should yield
some interesting insight into the subject of discussion to call something an agent.
Calling search engines agents is perhaps an example of a case where using agents
as a metaphor confuses the user rather than helps him. This consideration holds for
basic applications of so-called push-technologies as well. It is easy to agree with
Pattie Maes in her stating that [24] “[. . . ] current commercially available agents
barely justify the name”.

In the same manner, care should be taken when ascribing terms such as beliefs,
obligations, actions, etc, to agents. Such ascription should be done only if it is
useful in determining, understanding, or analyzing the behaviour of agents.

Therefore, there is reason to ask – and keep asking – what possible uses there
are:

• for agents, and
• for calling something an agent.

First when these questions are answered satisfactorily should other matters be
addressed (such as ‘how can normative reasoning be applied to artificial agents?’).

Two interesting uses of agents and their technology can be identified among the
multitudes of recent writings and discussions on the topics:

1. agent technology as a programming methodology, and
2. agents as user interface metaphors.

Other uses of agents, e.g., such as employing them as vehicles for investigating
human terms or relationships, will not be discussed here.

2.1. AGENT TECHNOLOGY AS A PROGRAMMING METHODOLOGY

Agent technology1 as a programming methodology refers to the use of agent tech-
nology as a means of developing computer systems. Most considerations offer-
ing arguments in favour of agents as a programming methodology bears on ana-
logues with object-orientation and distributed object systems. From this perspec-
tive, agents are special objects used as program components. The main advantages
for treating them as such seem to be:

1 ‘Technology’ may be considered as a collection of methods to reach certain related goals.



HOHFELD IN CYBERSPACE 83

• increased flexibility resulting from employing agents as a novel programming
abstraction,

• increased portability of applications resulting from employing mobile code,
and

• more efficient systems resulting from computation being performed local to
large information sources.

Employing agents as a programming methodology presupposes both languages for
programming the agents, and architectures for executing them.

Agents are constructed by means of particular programming languages.2 As is
usual within the agent technology community, there are high expectations attached
to the coming of such languages; caused by, e.g., Marc Andreessen proclaiming
the next big thing to be [1]. . .

A secure, truly mobile agent language – way beyond Java – [that] will eliminate
the Tower of Babel that prevents us from harvesting more of the benefits of
computing and communications today.

The nature of an agent programming language will to some extent depend on the
application areas. Programming agents to support group collaboration, for instance,
presupposes particular capacities in the programming languages.

Let agent architecturedenote a system which supports execution of particu-
lar programs called agents. An agent architecture where one or more agents are
currently executing is referred to as amultiagent system. The following are all
examples of multiagent systems:

• A manufacturing shop-floor populated by robots, e.g. as presented in [31].
• A groupware system enhanced by small programs called ‘agents’, e.g. as

mentioned in [35].
• The internet, e.g. as implied by the considerations in [9].3

The success of an architecture depends on such factors as support for mobil-
ity, ease of implementing agents, support for basic protocols, efficiency of agent
communication languages, etc. There are many contending technologies for such
architectures. The standardization communities are slowly moving to enhance dis-
tributed object architectures to become agent architectures. According to ‘The
Agents Society’, [10], there are activities at FIPA (Foundation of Intelligent Phys-
ical Agents), OMG (Object Management Group),4 W3C (World-Wide-Web Con-

2 In principle any general purpose programming language would do. In practice some special
support is needed.

3 I.e., [9]: “Even as the world struggles to move to client/server computing, a new model
has emerged: network centric computing. In this model, computing, communication, and content
converge, and the network becomes the computer.”

4 See [35] for a note on OMG’s approach.



84 CHRISTEN KROGH AND HENNING HERRESTAD

sortium), and others (e.g. the KQML community). Agent architectures will not be
explicitly discussed in this paper.

2.2. AGENTS AS USER INTERFACE METAPHORS

Agents as a user interface metaphor refers to human-computer interfaces (HCI)
constructed in such a way that the user is invited to think of himself as interacting
with an agent. The main reason for constructing such interfaces is what may be
termed ‘cognitive economy’: confronted with a computer system, it is sometimes
easier (or advantageous) for a user to consider that he is interacting with an agent,
than e.g. parts of a complex information system. Some studies have been under-
taken which support this view. An interesting result due to Nass et al [28] concludes
that users are more positive towards systems which mimics their own personal
characteristics. Bates’ research in believable agents may also be seen to fall into
this category (cf. [3]). It should be noted that ‘agents’ employed in this mode does
not necessarily correspond to an identifiable object. Systems where users think of
their interaction as interacting with an agent need not be multiagent systems.

A business object is an object which has a relevant presence in an organization
using the information system containing the object.5 In [7, section 2.1], typical ex-
amples of business objects are given as: employee, product, invoice, and payment.
Examples of non-business objects are time-table-property and report-transaction-
log. Employing this as an analogy to agents, business agents are particular objects
called agents which has a relevant presence – as agents – in the organization
which employs them. Examples of business agents are: meeting-planners, project-
deadline-reminders and personal organizers. An examples of a non-business agent
is a request-re-router. In lieu of (1) and (2) above, business agents can be un-
derstood as agents which are useful as a user interface metaphor, and has been
developed by an agent-oriented programming methodology. Business agents seem
to be among the most interesting candidate subjects for normative reasoning.

Groupies are business agents residing in groupware systems. Investigating the
use of agents in groupware systems is not new. In particular, automating tasks such
as meeting scheduling has been a topic for some time. According to Baecker [2,
page 458], meeting scheduling is: ‘[a] classic process that seems ripe for automa-
tion through structured messages, agents and/or workflows [. . . ]’. According to
Virdhagriswaran [35, page 97], groupware vendors soon went past merely meeting
scheduling, and started exploring ‘[. . . ] the use of agents to automate organiza-
tional roles and encapsulate organizational knowledge’. Also other applications
has been investigated (cf. [9]).

Group collaboration is dominated by complex relationships between the col-
laborators – relationships which often are of a normative character. Collaboration
and coordination of collaboration often centers around who does what and who

5 Cf. [7, section 2]: “[. . . ] business objects represent things, processes or events that are
meaningful to the conduct of the business”.



HOHFELD IN CYBERSPACE 85

ought to do what. In [21, (section 2)] Lai et al presents an approach to group work
support where semi-autonomous agents assist in managing relationships between
objects representing ‘who requested what’ and ‘who did what’. Expressing nor-
mative relations and (speech) actions are also an important topic in the approach
developed by Flores et al. [8].6 Thus, two requirements for agent programming
languages suited to develop support for group collaboration can be formulated:
1. adequate treatment of normative relations, and
2. the capacity for reasoning about actions.

These two requirements can be extended to also include the ‘actions’ and ‘norma-
tive’ relationship local to agents (i.e., not involving their owners).7

3. Designing agent programming languages

In this section an approach to designing agent-oriented programming languages
will be investigated. A problem with how it treats normative relations and actions
will be pointed out, and a fix will be proposed. It is argued that the fix both makes
the approach more suitable for constructing agents in general, as well as agents to
support group collaboration.

3.1. AGENT-ORIENTED PROGRAMMING

In the papers [29–31] and [34], Shoham proposes a framework for multiagent
systems. This paper follows the presentation in [31]. Shoham calls his approach
Agent Oriented Programming (AOP). He motivates his investigations by describing
a scenario from a shop-floor where robots are collaborating between themselves in
order to construct vehicles. We consider it likely that the framework (or something
similar) is also applicable for designing agents that support human collaboration
(e.g. softbots arranging meetings rather than robots painting cars).

A multimodal logic is constructed in order to design the agent language. This
logic contains three basic operators: a belief operator, an obligation operator8, and
a capability operator. The operators, as well as facts, are relativised to points in
time. Two other notions are defined by means of the basic operators: decision and
ability. A separate operator for action is not available in the logic, but is added in
the programming language as a kind of ‘syntactic sugar’.

This vocabulary of operators would seem like good candidates for specifying
languages to implement support for many interesting group tasks (assuming the

6 Even though they have not focussed on agents in particular.
7 Artificial agents does of course not bear obligations in a traditional sense. But it might be

advantageous to consider it that way.
8 The obligation operator is sometimes referred to as a commitment operator, even though there

is arguably a difference between obligations and commitments. However, as Shoham describes no
such differences, it will be assumed that he denotes one notion rather than two, and that this notion
is one of obligation.



86 CHRISTEN KROGH AND HENNING HERRESTAD

operators have reasonable counterparts in the programming language). However,
a critical point is whether the weak support for reasoning about action suffices.
Below, a discussion of the obligation operator will shed light on this.

According to Shoham, an agent comes under an obligation that something on
condition of a mental state (a belief) and a message state (a request): if an agent
i requestj that it doA, and doingA ‘conforms’ to agentj ’s belief state, thenj
comes under an obligation towardsi to doA.

Obligations are expressed by means of sentences of the formOBLti,jA. The
sentenceOBLti,jmeetingArranged(owner(i), owner(j)) is read as ‘at timet ,
agenti is under an obligation towards agentj that there is a meeting arranged
between the owner ofi and the owner ofj ’. It seems prudent to consideri to be
the bearer, andj to be the counterparty, of the obligation. Thati should arrange the
meeting at a specific timet + 1 is expressed as follows:

OBLti,j (meetingArranged(owner(i), owner(j)))t+1.

Literally, this expression should be read as ‘at timet , agenti is under an obligation
towards agentj that, at timet + 1, there is a meeting arranged between the owner
of agenti and agentj ’. Here, the obligation isat time t , butabouttime t + 1.

Shoham imposes the following constraint on the obligation operator:

for anyt, i : {A : OBLti,jA for somej}is consistent (1)

The following principle may be validated from this constraint:

∀x.∀y.¬(OBLti,xA ∧OBLti,y¬A) (2)

(2) states that the obligation-set for any one individual (in this casei) is consistent
in the sense that there is no obligation ofi that conflicts with another obligation ofi.
Arguments may be constructed in favour of such a requirement. The reader should
note that due to the rather misleading placement of the existential quantification
for somej in the constraint (1) there are also other, weaker, possibilities. These
weaker interpretations do not seem viable, however, as they do not correspond
well to either the concept ofinternal consistencysupported by Shoham [31, page
64], or the motivating examples he gives (e.g. [31, 12:15, page 58]).

If (2) conveys the strongest notion of consistency requirement for the obligation
operator, then two agents may bear conflicting obligations to a common third in-
dividual, or conflicting obligations to different (third) individuals. In other words,
the following sentences appear to be satisfiable within the system:

OBLti,jA ∧ ∀x 6= i.OBLtx,j¬A (3)

OBLti,jA ∧ ∀x 6= i.∀y 6= j.OBLtx,y¬A (4)

However, it shall be argued otherwise.



HOHFELD IN CYBERSPACE 87

When considering the way agents are updated and allowed to interact with the
environment in AOP, it is seen that when the time-point an obligation is about is
reached, the obligation is ‘executed’ [31, page 68]. This ‘execution’ of the obliga-
tion at the timepoint it obtains means that if there is an obligation of the following
sortOBtti,j (A)

t , and timet obtains, thenA obtains. This consideration validates a
version of the T-schema9.

Having a version of the T-schema makes all obligations very close to regimenta-
tions. If Shoham intended to formulate obligations, the conclusion is that he failed.
As a principle of action, however, the T-schema is less controversial. Which leads
to the conclusion that it is less problematic to view Shoham’s system as without an
explicit representation of obligation than as without an explicit representation of
action.

There is, however, a more serious problem just around the corner: because
what is obligatory obtains,no two conflicting obligations between any pairs of
individuals may exist at the time the obligations are about. This problem is a rather
serious shortcoming, not because it is counter-intuitive (and it is!), but because
it assumes strict coordination in settings where lack of such coordination seems
particularly prone.10 In Shoham’s framework, for instance, we would want to allow
a representation of the fact that; at timet , both Ian is under an obligation to arrange
a meeting between Ian and Jim, and Karl is under an obligation not to arrange a
meeting between Ian and Jim. This would be an accurate description of differences
in responsibility that may allow us to distinguishing Ian and Karl’s organizational
roles. Strict coordination would obliterate such distinctions.

3.2. THE FIX

The problems are diagnosed as that (i) there is no explicit representation of action,
and (ii) obligations between individuals are not allowed to conflict with obliga-
tions between other individuals. Without fixing the problems, AOP does not seem
suitable for developing agents for groupware support. For other application areas,
however, it may be suited. Note that even robots painting cars would suffer from
the problems above.

Solving Shoham’s problem can be done by appealing to formalisms described
elsewhere (cf. [11, 18, 19]). A short summary of them will suffice here: A classical
modal operator of type ET,iS, is introduced as a new representation of action.
Expressions of the typeiSA is read: ‘The agenti sees to it thatA’. Expressions
of the typeOBLi,jA are substituted with expressions of the typeiOj (A). The
operatoriOj is defined employing two operatorsiO andOj as follows:

iOj (A)
def= i O(iSA) ∧ Oj (iSA) (5)

9 I.e., a version of2A ⊃ A.
10 Note, however, that no normative conflict occurs in Shoham’s own examples.



88 CHRISTEN KROGH AND HENNING HERRESTAD

The operatoriO expresses an obligation personal to agenti. It follows an individ-
ualized normal modal logic of type KD. A sentenceiOA is read as ‘i is under an
obligation thatA’.

The operatorOj expresses a notion of something beingideal for j in the eyes
of an implicit normative system. The sentenceOjA is read as ‘it is ideal forj that
A’. The operatorOj follows an individualized classical modal logic of type END.

Neither of the operatorsiO or Oi has the generalized D-schema; i.e.:

6` ¬(iOA) ∧ (iO¬A) (6)

6` ¬(OjA) ∧ (Oj¬A). (7)

It is easy to see that the troublesome principle of strong consistency does not
hold for the directed obligation operator, since the following expression is satisfi-
able (wherei 6= k andj 6= l):11

iOj (A) ∧k Ol(¬A) (8)

Note that (8) correspond to (4). The following expression, which corresponds to
(3), is also satisfiable (wherei 6= k):

iOj (A) ∧k Oj (¬A) (9)

The reason for this being satisfiable is that the operatorOj is not closed under
consequence.

In summary, introducing an explicit notion of action, and an improved notion
of directed obligation, solves AOP’s problems. This will make it easier to design
a better agent language. In addition, if support for the operators described above
is implemented in the programming language, it seems that the language would be
better suited to develop agents to support group work (cf. the requirements in the
previous section). Therefore the following suggestion is proposed:

SUGGESTION 1 Formal deontic notions are useful when designing agent pro-
gramming languages to be used in group work environments, because they make
it easier to specify normative relationships between agents, as well as between
agents and their users. Care should be taken to match the formal operators with
the program concepts.12

11 To see this, it is sufficient to appreciate that neitheriO norOi has the generalized D schema.
12 We shall not go on to specifyhow care can be taken to match the formal operators with the

program concepts. The present concern is only with the design, not with the implementation of agent
programming languages. Our attempt to give an exact specification of distinctions that ought to be
modeled in the actual programming language is only a necessary first step on the way to making an
adequate language for programming business agents.



HOHFELD IN CYBERSPACE 89

4. Designing agent communication languages

Assuming an established means for programming agents as well as an architecture
to execute them on, there arises a problem of how to ensure that the agents behave
properly in relation to each other. One of the first prerequisites for proper agent
behaviour is their (or their developers) ability to agree upon conducts of behaviour
before entering into complex interactions. This is an issue in the design of agent
communication languages.

The importance of proper behaviour varies with the application area, and elec-
tronic commerce is perhaps one of the most critical. It is also an area that re-
ceives increasing attention: a recent study done by Nielsen [27] argues that active
web-shoppers have more than doubled in the past 18 months.13

There have been several experiments with proto-agents for searching out the
best offers described in a set of distributed, heterogeneous information sources on
the internet. The Bargainfinder agent from Andersen [20] is an example of such
an agent: it checks a number of predetermined internet-accessible music stores for
prices and availability of a given CD, and returns the best bargain.

More interesting examples can be conceived, in particular if one assumes an
electronic currency and adequate mechanisms for performing micro-transactions.
Consider the following scenario:

A piece of news transmitted over the internet costs only a micro-Euro (one
thousandth of one Euro). Peter has a news-agent executing on his personal
computer. At regular intervals, the news-agent checks a number of sites around
the world for news updates. If it finds something matching Peters profile, it
buys it. Once a newly bought piece of news is stored locally, the news-agent
notifies Peter. Peter indicates whether he likes it or not, and the news agent
updates Peters profile.

Buying the news amounts to going through a particular predetermined protocol.
The structure of such a protocol as well as the internal structure of each step must
be preprogrammed in both the selling and the buying agent. Below, an outline of
a naive version of such a protocol is given, where the news-agent is denoted the
buyer and the sales-agent is denoted the seller:
1. The buyer commits to buying the goods at a determined price.
2. The seller commits to selling the goods at the determined price.
3. The buyer transfers the money.
4. The seller makes available the goods (in this case, the news).

During the first two protocol steps (1) and (2), the agents agree upon what they
shall ‘do’ in the next two protocol steps (transfer money, and make available the
goods, respectively). An important observation is that the sequence of the first two
protocol steps (1) and (2) is analogous to entering into a contract.

13 cf. [27]: “[. . . ] 39 percent of all Web users have searched for product information online prior
to making a purchase, compared to 19 percent in Fall 95”.



90 CHRISTEN KROGH AND HENNING HERRESTAD

Another important observation is that the above transaction involves money,
even though arguably very little of it. Since there is real value in the transaction, real
rights (of the agents’ owners) are involved, and may thus be violated if something
goes wrong.

For these reasons such a protocol will usually include the use of methods for
digital signatures to obtain so-called non-repudiation14. Unfortunately, this does
not solve all problems. Consider the following extension to the above scenario:

The news bought by the news-agent turned out to be rather large (containing
several high-quality video-clips and a complex 3D model). The news-agent
does not discover that this is a problem before the sales-agent is mid-way in
transferring the data. The news-agent attempts to call off the sale, but to no
avail. The sales-agent continues to transfer the data (perhaps a way of halting
the transfer has yet to be implemented). By continuing the transfer, the sales-
agent forces the news-agents server to shut down its internet connection, and
thus induces damage on the news-agent’s owner.

When confronted with the damage induced on the owner of the news-agent, the
owner of the sales-agent could defend himself in the following way: ‘Your agent
bought the news, therefore my agent was permitted to transfer it. It is not my
problem that your agent orders more than you can consume’.

The problem in the news-/sales-agents scenario may be diagnosed to be a dif-
ference of ‘understanding’ between the agents concerning who is permitted to do
what: is the sales-agent permitted to go on transferring the goods after news-agent
have requested to cancel the transfer, or is it not?

Regardless of the seeming ease with which the problem may be resolved now,
it would be preferable to have a systematic means of analyzing and structuring
candidate normative relationships for regulating interaction between agents, prior
to them entering into (the analogue) of a contract. This is important because it gives
cues for how agents ought to behave during and after the sale. In the next section,
such a systematic means will be described.

4.1. FROM HOHFELD’ S RIGHTS TO NORMATIVE POSITIONS

At the beginning of this century, Wesley Newcomb Hohfeld outlined a theory of
rights describing what he called the fundamental legal conceptions [12]: Right
(called ‘claim’, below), Duty, NoRight, Privilege (called ‘liberty’, below), Power,
Liability, Disability, and Immunity. The rights can be classified into two groups:
purely deontic (claim, liberty, no-right, duty), and capacitive (power, immunity,
disability, liability). A scheme for how the rights were interrelated was proposed
along with the rights.

14 Non-repudiation is defined as the impossibility of an agent to (reasonably) deny having
participated in all or part of a communication [6, page 11].



HOHFELD IN CYBERSPACE 91

Hohfeld’s rights were intended to serve as the smallest common denominators
in jurisprudential reasoning. Hohfeld’s contribution was important as an attempt to
make jurisprudential reasoning more subtle and therefore presumably more accu-
rate and precise. According to, e.g., James B. Brady [5, page 247], Hohfeld was
after clarity, not for its own sake, but for the definite solution of legal problems.

Hohfeld did not have access to the methods available to modern logicians, and
even though highly acclaimed for his analytic talents (cf. [4]), he does not offer a
logical tool applicable for studying rights.

Stig Kanger (see [14–17]) was probably the first to give a formal account of
Hohfeld’s theory. One of Kanger’s ideas was that the obligation-operator of a
deontic logic, together with an action operator, would enable the expression of
all of Hohfeld’s fundamental legal concepts. In [14], Kanger gives the following
explication of Hohfeld’s theory (here, the symbolO is used for the obligation
operator, andiO for the action operator):

Claim(i, j, A) ≡ O(jSA) (10)

Liberty(i, j, A) ≡ ¬O(iS¬A) (11)

Power(i, j, A) ≡ ¬O¬(iSA) (12)

Immunity(i, j, A) ≡ O¬(jS¬A) (13)

By employing the interrelationships between the rights suggested by Hohfeld,
the explications of the rest of Hohfeld’s rights follow (cf. [14, page 17]):

NoRight(i, j, A) ≡ ¬O(jS¬A) (14)

Duty(i, j, A) ≡ O(iSA) (15)

Disability(i, j, A) ≡ O¬(iS¬A) (16)

Liability (i, j, A) ≡ ¬O¬(jSA) (17)

In [5, page 258], James B. Brady argues that Hohfeld’s fundamental legal con-
cepts may be employed in combination with each other. He uses this argument
to overcome a critique of Stone [32] concerning the incompleteness of Hohfeld’s
analysis. In [17], some years before Brady, Stig Kanger and Helle Kanger started to
investigate how their explications might be combined. This investigation resulted
in what the Kangers called theatomic types of rights.

By employing a few notational constructs, slightly modified by those proposed
by Makinson in [25], Kanger’s investigation of combinations of rights can be
formulated quite easily. Achoice set, (X){Y }, is defined as the following lexi-
cographic operation:15

15 Note that the curly brackets will be dropped when no problem of ambiguity arises.



92 CHRISTEN KROGH AND HENNING HERRESTAD

DEFINITION 4.1 (X){Y } def= {UV : U ∈ X & V ∈ Y }.
A maxiconjunction is defined as follows:

DEFINITION 4.2 A maxiconjunction is a set resulting from forming all possi-
ble conjunctions from a set of sentences, and removing internally inconsistent and
redundant members.[[M]] expresses the maxiconjunction obtained fromM.

Theatomic types of rightscan now be expressed as follows:

[[(+−)O(+−)(jSjs)(+−)A]] (18)

The atomic rights presumed to give a complete specification of the possible nor-
mative relationships relative to two persons and a state of affairs.

Kanger has been criticised for explicating Hohfeld’scapacitiverights by means
of thedeonticnotions of obligation and permission (cf. Nils Kristian Sundby’s cri-
tique in [33, p. 413]). This critique seems justified. Instead of considering Kanger’s
‘rights’ as pure explications of Hohfeld’s rights, they will be considered as norma-
tive expressions ‘in their own rights’; – inspired by Hohfeld.

Lars Lindahl [23] made the observation that some notions, both meaningful and
logically possible, were missing from Kanger’s set of atomic positions (cf. [25,
page 406]). In order to express Lindahl’s positions, a further piece of notation must
be introduced. Let

∧
be defined as an operation on two sets of sentences as follows:

DEFINITION 4.3 Let X and Y be sets of sentences.X
∧
Y

def= {Z : (Z =
A ∧ B) & (A ∈ X) & (B ∈ Y ) & (Z 6`⊥)}.

Lindahl’s set of positions regulating the actions of two persons can now be

expressed as follows (where permission is defined asP (iSA)
def= ¬O¬(iSA)):

[[(+−)P [[(+−)iS(+−)A]]]]
∧
[[(+−)P [[(+−)jS(+−)A]]]] (19)

Lindahl calls the set specified by the above expression the set oftwo-person, indi-
vidualistic, normative positions. This set is composed of 35 statements concerning
the normative status of each of the two agents’ acts.16 They number 9 more than
Kanger’s atomic rights, simply because expressions such asO(¬iSA∧¬iS¬A)∧
O(¬jSA ∧ ¬jS¬A) are satisfiable. In [13] Jones and Sergot proposes a more
logic-independent way of formulating Lindahl’s positions:17

[[(+−)O(+−)[[(+−)iS(+−)A]] ]]
∧
[[(+−)O(+−)[[(+−)jS(+−)A]] ]] (20)

16 See [18, Appendix B.1] for a complete list of Lindahl’s positions.
17 Note their method is not completely logic independent. Because the maxiconjunction operation

removes internally inconsistent members, it does not work correctly for operators which do not have
the N-schema, cf. [18, pp. 66–68].



HOHFELD IN CYBERSPACE 93

Expressing normative positions for personal rather than impersonal deontic opera-
tors is rather trivial. Employing the personal deontic operator described in [19], the
set of normative positions can be expressed as follows:

[[(+−)iOi(+−)[[(+−)iS(+−)A]]]]
∧
[[(+−)jO(+−)[[(+−)jS(+−)A]]]] (21)

4.2. HOHFELD IN CYBERSPACE

Let us return to the scenario, and see whether the above position is appropriate
for specifying an acceptable normative relationship between the news-agent and
the sales-agent. Letn stand for the news-agent,s stand for the sales-agent, andA
stand for ‘the goods is delivered’. One of the normative positions obtained from
the generation scheme (21) is the following:

nP (nSA) ∧ nP (nS¬A) ∧ nP (n
∏

A) ∧ sO(s
∏

A) (22)

The formulas
∏
A is shorthand for¬sSA ∧ ¬sS¬A. It is read as ‘the agents is

passive wrtA’. (22) can now be read as follows: ‘n is permitted to see to it thatA,
andn is permitted to see to it that not-A, andn is permitted to be passive wrtA, and
s is under an obligation to be passive wrtA’. It seems like a plausible candidate for
formulating the normative relationship between the two agents in question.

The second and the fourth of these clauses are particularly interesting. The
second clause permits the news-agent to decline to receive the goods. The fourth
clause forbids the sales-agent to be active wrt delivering the goods. In practice
this means that the goods should be transferred by means ofpull, rather thanpush
mechanisms.18

The above considerations may be used to refine the four-pass protocol described
earlier in the following way:
1. The buyer commits to buying the goods at a determined price,and a normative

position to regulate the transaction.
2. The seller commits to selling the goods at the determined price,and the nor-

mative position.
3. The buyer transfers the money.
4. The seller makes available the goods.

As was noted earlier: during the first two protocol steps (1) and (2), the agents
agree upon what they shall ‘do’ in the next two protocol steps (transfer money,
and make available the goods, respectively). Adding a clause about a normative
position enables a more fine-grained specification of what the agents should ‘do’
(and not ‘do’). For instance, above, it was argued that the sales-agent should not
‘do’ anything concerning transfer of the goods. As this ‘doing’ was shown to be

18 See [26] for a hyped-up presentation of push/pull-technologies.



94 CHRISTEN KROGH AND HENNING HERRESTAD

a problem with the first protocol, the more fine-grained specification increased the
quality of the protocol. This leads to the following suggestion:

SUGGESTION 2 The theory of normative positions is useful when designing
domain-specific agent communication languages, because it enables faster recov-
ery from fraud or mistakes. Domain-specific protocols should be enhanced by
making the agents agree upon which normative position should regulate their in-
teraction before entering into (the analogue) of a contract.

Not all normative positions are applicable for use in commercial protocols as
the one discussed above. A possible direction for future work would be to single
out particularly interesting categories of protocols and investigate what normative
positions are most likely to be needed in order to regulate the behaviour of the
participating agents.

5. Conclusion

[. . . ] so he went to the inventor and asked to be shown an artificial friend.

– Stanislaw Lem, [22, page 79]

In spite of its heritage in AI and other disciplines, agent technology is a rather
new research field. Most papers specifically addressing the topic have been pub-
lished during the last 5 years. During its relatively short life-span, agent technology
has attracted a lot of public attention, due to the promised coming of success-
ful, mass-market, internet-based agent-applications. Such applications have been
oversold, endangering the more serious uses and results.

In this paper we have addressed a few of the serious and important problems
in agent technology while retaining some of the flare which has made the field so
popular. The following suggestions have been made:

SUGGESTION 1 Formal deontic notions are useful when designing agent pro-
gramming languages to be used in group work environments, because they make
it easier to specify normative relationships between agents, as well as between
agents and their users. Care should be taken to match the formal operators with
the program concepts.

SUGGESTION 2 The theory of normative positions is useful when designing
domain-specific agent communication languages, because it enables faster recov-
ery from fraud or mistakes. Domain-specific protocols should be enhanced by
making the agents agree upon which normative position should regulate their in-
teraction before entering into (the analogue) of a contract.



HOHFELD IN CYBERSPACE 95

Acknowledgments

Andrew Jones has as usual given valuable comments on previous formulations
of many of the ideas presented here. Also thanks to Odd-Wiking Rahlff and Jan
Øyvind Aagedal for reading and commenting on the current paper.

References

1. Marc Andreessen 1996. The future of microcomputers,Byte.
2. Ronald M. Baecker (ed.) 1993.Readings in Groupware and Computer-Supported Cooperative

Work, Morgan Kaufmann Publishers Inc..
3. Joseph Bates 1994. The role of emotion in believable agents. Technical Report CMU-CS-94-

136, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.
4. Nuel Belnap 1991. Backwards and forwards in the modal logic of agency,Philosophical and

Phenomenological Research, LI.
5. James B. Brady 1972. Law, language and logic: The legal philosophy of Wesley Newcomb

Hohfeld,Transactions of the Charles S. Peirce Society, 8, 246–263.
6. Ulf Carlsen 1994.Formal Specification and Analysis of Cryptographic Protocols, PhD thesis,

l’Université Paris XI – Orsay.
7. Cory Casanave 1996. Business-object architectures and standards. Technical Report, Business

Object Domain Task Force, OMG.
8. Fernando Flores, Michael Graves, Brad Hartfield, & Terry Winograd 1988. Computer systems

and the design of organizational interaction,Transactions of Office Information Systems6(2),
153–172.

9. Don Gilbert, Manny Aparicio, Betty Atkinson, Steve Brady, Joe Ciccarino, Benjamin Grosof,
Pat O’Connor, Damian Osisek, Steve Pritko, Rick Spagna, & Les Wilson 1995. Ibm intelligent
agent strategy. White paper.

10. Agent Interop Working Group 1997. Draft report of ‘design workshop on open intelli-
gent agent platforms and protocols’ – first meeting of the agent interop working group.
http://www.agent.org/society/meetings/workshop9702/report.html

11. Henning Herrestad & Christen Krogh 1995. Obligations directed from bearers to counterpar-
ties. InProceedings from ICAIL’95, ACM Press, Washington, pp. 210–218.

12. Wesley Newcomb Hohfeld 1966.Fundamental Legal Conceptions as Applied in Judicial
Reasoning and Other Legal Essays, Yale University Press, New Haven, Connecticut.

13. Andrew J.I. Jones & M. Sergot 1993. On the characterization of law and computer systems:
The normative systems perspective. In J.-J. Meyer & R.J. Wieringa (eds.),Deontic Logic in
Computer Science – Normative System Specification, John Wiley, Chichester.

14. Stig Kanger 1957. New foundations for ethical theory. Technical Report, Stockholm University,
Stockholm.

15. Stig Kanger 1972. Law and logic,Theoria38,105–132.
16. Stig Kanger 1985. On realization of human rights. In G. Holmström & A.J.I. Jones (eds.),

Action, Logic, and Social Theory, Acta Philosophica Fennica, Vol. 38, Helsinki, pp. 71–78.
17. Stig Kanger & Helle Kanger 1966. Rights and parliamentarism,Theoria6(2), 85–115.
18. Christen Krogh 1997.Normative Structures in Natural and Artificial Systems, PhD thesis,

Department of Philosophy, University of Oslo.
19. Christen Krogh & Henning Herrestad 1996. Getting personal. In Mark A. Brown & José Carmo

(eds.),Deontic Logic, Agency and Normative Systems, Workshops in Computing, Springer,
Berlin, pp. 134–153.

20. Bruce T. Krulwich 1996. The bargainfinder agent: Comparing price shopping on the internet. In
Joseph Williams (ed.),Bots and other internet beasties, SAMS.NET, Macmillan, pp. 258–263.



96 CHRISTEN KROGH AND HENNING HERRESTAD

21. Kum-Yew Lai, Thomas W. Malone & Keh-Chiang Yu 1977. Object lens: A “spreadsheet” for
cooperative work.Transactions of office information systems6(4), 332–353.

22. Stanislaw Lem 1977.Mortal Engines, Avon Bookes, New York.
23. Lars Lindahl.Position and Change, D. Reidel Publishing Company, Dordrecht, Holland.
24. P. Maes 1995. Intelligent software,Scientific American273(3).
25. David Makinson 1986. On the formal representation of rights relations.Journal of Philosophi-

cal Logic15, 403–425.
26. Lee Marshall 1997. Kill your browser,Wired Magazine5(3).

http://www.wired.com/wired/5.03/features/ff-push.html
27. Nilsen Media 1997. Press release, march.

http://www.commerce.net/nielsen/press-97.html
28. Clifford Nass, Moon Youngme, B.J. Fogg, Byron Reeves, and D. Christopher Dryer 1995. Can

computer personalities be human personalities,int. J. Human–Computer Studies43, 223–239.
29. Yoav Shoham 1990. Agent-oriented programming (revised). Technical Report STAN-CS-1335-

90, Computer Science Department, Stanford University.
30. Yoav Shoham 1991. Implementing the intentional stance. In R. Cummins & J. Pollock (eds.),

Philosophy and AI: Essays at the Interface, MIT Press, Cambridge, Massachusets, pp. 261–
277.

31. Yoav Shoham 1993. Agent-oriented programming,Artificial Intelligence60, 51–92.
32. Roy Stone 1963. An analysis of Hohfeld,Minnesota Law Review48, 312–337.
33. Nils Kristian Sundby 1974.Om Normer, Universitetsforlaget.
34. Mark C. Torrance & Paul A. Viola 1991. The Agent0 manual. User manual, Computer Science

Department, Stanford University.
35. S. Virdhagriswaran, D. Osisek & P. O’Connor. Standardizing agent technology,Standard View

3(3), 96–101.
36. P. Wayner & A. Joch. Agents of change.Byte.
37. Webster 1913.Webster Dictionary.


