
Data Semantics Revisited

Alexander Borgida1 and John Mylopoulos2

Abstract. The problem of data semantics is establishing and maintaining the
correspondence between a data source and its intended subject matter. We review
the long history of the problem in Databases, and contrast it with recent research
on the Semantic Web. We then propose two new directions for research on the
problem and sketch some open research questions.

1 Introduction

“ . . . It struck me that it would be good to take one thing in life and regard it
from many viewpoints, as a focus for my being, and perhaps as a penance for
alternatives missed. . . . ”

[1]

Two panels, held at SIGMOD’98 (Seattle, June 4) and CAiSE’98 (Pisa, June 11),
discussed the topic of data semantics and its place in Databases research in the next
millennium. The first, titled “Next Generation Database Systems Won’t Work With-
out Semantics” included as panelists Philip Bernstein, Umesh Dayal, John Mylopoulos
(chair), Sham Navathe and Marek Rusinkiewicz. The second one, titled “Data Seman-
tics Can’t Fail This Time!” included as panelists Michael Brodie, Stefano Ceri, John
Mylopoulos (chair), and Arne Solvberg.

Atypically for panels, participants to both discussions generally agreed that data
semantics will bethe problem for Databases researchers to tackle in the near future.
Stefano Ceri summed up well the sentiments of the discussions by declaring that

“. . . The three most important research problems in Databases used to be ‘Per-
formance’, ‘Performance’, and ‘Performance’; in years to come, the three most
important and challenging problems will be ‘Semantics’, ‘Semantics’, and ‘Se-
mantics’ . . . ”

What is the data semantic problem? In what sense did it “fail” in the past? . . . “And why
did the experts agree – unanimously – that the situation was about to change?

We review the data semantics problem and its long history in Databases research,
noting the reasons why solutions of the past won’t work in the future. We then review
recent work on the Semantic Web and the directions it is taking. Finally, we sketch two
new directions for research on data semantics.

1 Author.s address: Dept. of Computer Science, Rutgers University, NJ, USA; email address:
borgida@cs.rutgers.edu

2 Author.s address: Dept. of Computer Science, University of Toronto, Toronto, Canada; email
address: jm@cs.toronto.edu

2 The Problem and Its History

A data source is useful because it models some part of the real world, itssubject(or
application, or domain of discourse). The problem ofdata semanticsis establishing
and maintaining the correspondence between a data source, hereafter amodel, and its
intended subject. The model may be a database storing data about employees in a com-
pany, a database schema describing parts, projects and suppliers, a website presenting
information about a university, or a plain text file describing the battle of Waterloo.

2.1 Semantic Data Models

The problem has been with us since the very early days of the Relational Model. Indeed,
within four years from the publication of Ted Codd’s classic paper [2], there were pro-
posals for semantic data models that were more expressive than the Relational Model
and were – therefore – capable of capturing more “world knowledge”. Specifically,
in 1974 Jean-Raymond Abrial proposed a semantic model that was, in fact, an early
object-oriented data model [3]. At the very first Very Large Data Bases conference in
1975, there was a whole session on semantic data models, where Peter Chen presented
the Entity-Relationship (hereafter ER) model [4]. Dozens of other proposals followed,
and the race was on for ever-more expressive semantic data models that would slay the
data semantics dragon.

But how was database practice to be influenced by these proposals? Three basic
options were considered:

– Offer semantic data models through DBMS technology; this option implies build-
ing DBMSs based on a semantic data model, e.g., an Entity-Relationship DBMS;

– Use semantic data models only during design-time – i.e., while the database is
being designed – and factor them out completely during run-time;

– Use semantic models as part of the user interface to make the contents of a database
more understandable to the end user.

For performance reasons, option two prevailed. This means that the semantics of the
data in a database were factored out from the running database system and were dis-
tributed to its operational environment, i.e., its database administrator and its applica-
tions programs. If you wanted to know what the data really meant, youd have to talk to
the administrator of these data and/or check out carefully the applications that accessed
and updated these data.

Data Semantics Solution 1Data semantics is managed by the operational environ-
ment of a database system, i.e., its database administrator(s) and applications pro-
grams.

This is a practical solution that has worked well as long as the operational environ-
ment of a database remains closed and relatively stable. In such a setting, the meaning
of the data can indeed be factored out from the database proper, and entrusted to the
small group of regular users and/or application programs.

Unfortunately, there is a well-known drawback to this solution:legacy data. After
years of use, organizations have found themselves time-after-time in a situation where
no one knows any more what a particular database and its applications really mean.
It has been estimated that legacy data cost organizations around the world billions of
euros to maintain and reengineer.

When it comes to building database technology, Solution 1 leaves semantic issues
and semantic data models out in the cold. In this respect, research on data semantics
has largely been sidelined in database conferences since the early ’80s. Instead, seman-
tic data models found a place in database design methodologies. They also influenced
in a substantial way software modeling languages proposed more than a decade later,
including UML.

As noted, Solution 1 assumes that the environment of a database system remains
closed and stable. Throughout the ’90s, there was steady progress in making software
systems ever-more distributed, open, and dynamically reconfigurable. With the advent
of web technologies and standards, e-Business, peer-to-peer systems, Grid computing
and more, that trend promised to usher in a new era of computing where computer sys-
tems were universally connected, open, dynamic and autonomic.Thatwas the change
panelists at SIGMOD’98 and CAiSE’98 saw forthcoming. Andthat was the reason for
predicting renewed interest in and growing importance for the problem of data seman-
tics.

2.2 The Semantic Web

Unlike database-resident data, Web data have until recently only been intended for hu-
man consumption. Rightly so, Tim Berners-Lee realized that Web data cant be made
machine-processable unless they come with a formal account of their meaning. Hence
his call for the Semantic Web, which has enjoyed world-wide interest since it was made
in the Spring of 1999 [5].

This call, supplemented by several other publications (e.g., [6]), envisions technolo-
gies and methodologies for attaching semantic annotations to web data, so that they can
be interpreted and reasoned about by applications. These annotations can be based on
formal ontologies of concepts and relationships that provide a formal – and hopefully
widely accepted – vocabulary for a particular domain, be it general (e.g., social actions
and interactions), or specific (e.g., manufacturing, genomic biology, or cardiology).

Although there are no generally-accepted detailed proposals of how specifically
data semantics should be represented on the semantic web, one approach might be to
have an XML document, with annotations to ontologies, as in the following example
text, where the word “seminar” is disambiguated by pointing to the conceptCourse
in some ontology, which is further qualified to be offered at UniTN.

“. . . The<concept subClassOf= x:Course, hasValue = [x:offeredAt
, UniTN], ...> seminar </ concept> covers a lot of material about
the Greek philosophers in a short time . . . ”

Note that this makes it clear that “seminar” does not refer in this case to a one-time
lecture presented by a visitor, which is one of its other possible meanings.

There has been considerable effort and progress on formal languages for describing
metadata/ontologies. For example, the specification of theCourse concept might look
as follows in the OWL ontology language [7].

<owl:Class rdf:ID="Course"> ...
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#offeredAt" />
<owl:allValuesFrom rdf:resource="#School" />

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource=" #Student"/>

...
</owl:Class>

The above then provides a second vision of what constitutes a data semantics solution:

Data Semantics Solution 2Annotate data with terms defined in a formal ontology.

There has been much less effort on the use of ontologies, and serious questions re-
main concerning the scalability of the approach, i.e., can we build scalable technolo-
gies for it? Equally questionable are our technologies/methodologies for aligning and
interoperating data sources in the presence of multiple ontologies. As well, it remains
an open issue whether “mere mortals” (i.e., your average practitioner) can use expres-
sive formal languages. Indeed, experience with formal, logic-based languages such as
SQL, Datalog andZ in other areas of Computer Science suggests otherwise. Mak-
ing Semantic Web languages widely usable will definitely require tools far beyond the
state-of-the-art.

We propose to look next at a more precise variant of Solution 2, taking a careful
look at the notions of model and modeling.

3 Models and Mappings

What happens if we take to heart the notion that the data we have is amodelof some
application domain? To do so, let us first take a more general look at the notion of
model. In an insightful philosophical analysis, Ladkin [8] argues, among others, that

“ . . . ‘model of ’ is a ternary relationship, relating the subjectS, the modelM ,
and the purposeP for which the model is built . . . ”

Consider, for example, the case of a geopolitical globe as a model of the Earth. Such
a globe shows countries, borders, cities, major rivers and mountains, but not climatic
regions. In turn, a model of the Earth for the purpose of studying the motion of planets
in the solar system, would likely not be a globe, but instead would reduce our world to
a single point, corresponding to its center of gravity.

In the large majority of cases,the purpose of a model is to answering certain kinds
of questions about the subject. This means that in some ways the model is able to answer
these questions more precisely/easily/quickly than the subject itself. In such cases, in
order to describe a modeling situation we need at least the following:

– A setQS of questionsabout the subject world that we would like to have answered
using the model.

– Themodel, which is an information source, capable of answering certain questions
QM , after it has been built/evolved.

– A mapping from questionsin QS to one (or more) questions inQM , andan inverse
mapping from the answersin M to answers about the subjectS.

In the example above, the (informal) questions to be asked have to do with the
existence and (relative) position of features on the Earth’s surface, but not its interior
composition. The questions about the model are answered by direct observation of the
model by a human, aided perhaps by a string/ruler/compass (something which is not
possible for the life-size subject). The mapping of questions and answers is based on
the scale reduction of the Earth’s spherical surface to that of the globe.

We can now apply the above framework to information systems, such as databases.
Suppose we have a relational database with a table indicating when courses meet. This
can be viewed as a model of the (real-world) university, for purposes of answering
(natural language) questions such as “When does a course meet?”, “When is a room
free?”, but not “Is there a projector in the room?”. The questions for the model are
likely expressed in SQL, and the answers are tables of tuples. The mapping between
subject questions and model questions is informal, in the mind of the programmer or
database user. On the other hand, if there is a natural language interface to the database,
then the mapping is in fact computed (heuristically) by the natural language processing
system.

Looking at information systems, one recognizes the additional need for explicit
operators that construct and update the model itself, as the subject evolves or more
information is discovered about it. For example, in the case of the above database,
these are SQL DDL statements for defining the database schema, as well as SQL DML
statements for inserting/updating appropriate tuples. Of course, the usefulness of the
answers depends on the accuracy of this model-building activity.

To summarize, we have identified the need for the following in the case of informa-
tion models:

– a subject world, for whicha set of questionsQS is of interest, with answers of the
form AS .

– a model, equipped with (i)Declareoperations for describing generic/schema-like
aspects of the model; (ii)Tell operations for providing detailed information about
the current state of the model; (iii)Askoperations which take queries in language(s)
QM and provide answers in language(s)AM ; (iv) a specification of how query an-
swering depends on the told information, and for practical systems, an implemen-
tation thereof3.

– a mapping f from a question inQS to one ore more questions inQM ;
– a mapping∂ from answers inAM to AS .

3 The core of such a functional view of information sources was first offered by Hector
Levesque [9].

Data Semantics Solution 3The semantics of the data in a model resides in its abil-
ity to answer questions about the subject, and is hence captured by Declare/Tell/Ask
operations, associated languages, and mappings.

In order to better understand this approach, let us take a brief look at each of the
above components.

3.1 Models

We have found it useful to categorize models according to the way in which query
answering is specified. In this paper we considerintensional models, consisting of col-
lections of sentences in some formal languageL. L is assumed to be equipped with
an entailment relationship|=, on which question-answering is based: the answer to a
query q is True if the collection of told sentences KB entailsq. Information models
based on logical theories, such as Description Logics [10], and Reiter’s reconstruction
of the Relational Model in First Order Logic [11] are examples of such models.

Models can also be categorized in regards to their support of partial information
(nulls, disjunction, closed/open world assumption), inconsistency, inaccuracy (errors
and bounds). Moreover, information models can be distinguished on the basis of effi-
cacy of query answering (formal complexity as well as practical implementation), and
how this varies depending on the languages supported by theTell andAskoperators.
These have been key concerns of Databases and Knowledge Representation research
over the past decades.

3.2 Subjects

To begin with, the subject domain is often partitioned intogeneric, usually time-invariant
aspects (so-calleddefinitionalor terminologicalcomponent) dealing with human con-
ceptualizations of the domain, and specific facts, describing individuals and their inter-
relationships in the current state of the world (assertionalcomponent). These often give
rise to distinct components of information models (schemas vs. tuples/documents/...).

When discussing data semantics, one often hears talk about the information system
modeling “the real world”. Although in some situations data may be obtained from
sensors, in most cases the view of the world is mediated by some human being(s), so
that the subject is more appropriately viewed ashuman beliefs about the world. Finally,
recent developments in information processing have made not uncommon situations
such as an XML document representing data from a database, or conversely, a database
storing an XML document. In this case, the subject is itself a formal system, which
allows us to describe the mapping in a formal fashion.

For example, in a database schema designed from an ER diagram, we can think
of the entities as unary predicates, relationships as n-ary predicates, and attributes as
binary relations, and then express the mapping between the ER and relational model
using predicate logic:

db:enrolment (sname, crsId , ...) ↔ ∃X, Y.er:Students (X) ∧ er:Course (Y)∧
er:hasName (X, sname) ∧ er:hasId (X, crsId) ∧ er:EnrolledIn (X, Y) ∧ . . .

3.3 Mappings

The sets of questionsQS andQM are usually infinite, and we require some finite means
for specifying the mapping from the former to the latter. This can be achieved by making
both query languagescompositional, and then reducing the problem of mapping from
QS to QM to the problem of (i) relating the primitive (non-logical) terms of the two
languages, such as their predicate symbols/schemas and constants; and (ii) providing
some kind of a homomorphic extension of this mapping to composite formulas.

There are several ways of expressing the base relationships. One approach is an
informal/graphical specification of correspondences between components of schemas,
as used in the Clio system [12] or in model management [13].

A more formal approach, based on logic, is illustrated in the above example in-
volving the student database and ER schema, where each predicate in the model had
associated with it an expression over the subject predicates. This can be seen as an ana-
logue of the Local-as-View (LAV) approach to information integration [14, 15], where
the so-called mediated schema is the subject domain. An advantage of this approach is
that it provides a way to obtain simple atomic facts that can be told to the system in
order to build up the model. Alternatively, in analogy with the Global-as-View (GAV)
approach, each predicate ofQS can be associated with an expression inQM e.g.,

er:Students (X) ↔ ∃sname.db:enrolment (sname, . . .) ∧X = f(sname)
er:hasName (Y,N) ↔ ∃sname.db:enrolment (sname, . . .) ∧ Y = f(sname) ∧N = sname

wheref is some injective function, guaranteed to return a different value for each ar-
gument, thereby ensuring a different student individual for each student name in the
enrolment database relation. An advantage of this approach is that it facilitates transla-
tion of queries from the ER subject world to the database model, in marked contrast to
the LAV approach discussed above. The – more general – GLAV approach introduced
in [16] and used in [17] among others, provides for collections of arbitrary query pairs
qS(x) andqM (y), each of which returns sets of (tuples of) substitutions, and these can
then be related in quite general ways (e.g., by set theoretic containment, membership,
or numeric comparison). In fact, [18] suggest that a mapping is an arbitrary formula in
some logical language, involving elements of the two models.

Note that in view of such options, the expression “mapping from modelM to sub-
jectS”, implying a directionality, is somewhat misleading since there are different ways
of expressing the mapping, some of which seem to be fromS to M . Moreover, the map-
ping fromM to S is used to translate queries fromS to M . Note also that in cases other
than the GAV approach, there may be no precise query translation, and one may be
reduced to approximations, as with query answering using views. The formal (query)
languages used in specifying mappings can be based on standard First Order Logic,
or subsets thereof (e.g., Datalog, SQL, Description Logics) or more complex variants
involving structure (e.g., XQuery) or higher-order aspects (e.g., Hylog, Infinitary or
Second Order Logics).

For example, suppose that part of the contents of relational tables

db:class(cId,cTitle,term)
db:enrolment(cId,sname),

concerning course enrolments, is to be published in an XML document with schema
described by the DTD

<!ELEMENT catalog (course*) >
<!ELEMENT course (title, students) >
<!ELEMENT students (student*) >
<!ELEMENT student #PCDATA >
<!ELEMENT title #PCDATA >

A standard two-step approach is to first map the relations to simple XML trees, where
the first level corresponds to relation names, and the second level to tuples

<!ELEMENT class (ctuple*)>
<!ELEMENT ctuple (cId,cTitle)>
<!ELEMENT enrolment (etuple*)>
<!ELEMENT etuple (cId,sname)>
<!ELEMENT cId #PCDATA >
<!ELEMENT sname #PCDATA >

and then use XQuery to describe the construction of the final desired document:

<catalog>
{for $c in $db/class/ctuple
return <course>
<title> $c/cTitle </title>
<students>

{for $e in $db/enrolment/etuple where $e/cId = $c/cId
return $e/sname }

</students>
</course>

}
</catalog>

This XML document is a model of the relational database for purposes of answering
questions unrelated to the semester when the course is offered. Hencethe meaning of
the XML model is (should be) defined in terms of the meaning of its predecessor, the
relational database, using the mapping and the queries to be supported. This is in line
with our third take on data semantics, based on the notion of model introduced at the
beginning of this section.

A final note concerning mappings: while normally these are concerned with the in-
tensional/schema aspects of the models, it is useful to also look at the extensional/individual
aspects. In particular, mappings between ontologies, for example, tend to assume that
the individuals in the subject and model world are identical. However, we have seen
that this is more complex in the case of mappings between object-centered models such
as ER, and “flat” data models – such as relational databases – where we have to in-
troduce Skolem functions. In general, things can be even more complex, as in the case
of a census database about households that is used as a model for information about

individuals. Here, we need to keep a binary relation between each household and the
individuals living in it [19].

Of course, the above framework for data semantics, based on the notions of model
and mapping, is just a recasting of voluminous previous work in databases and knowl-
edge representation. In particular, research ondata integration(e.g., [14], [15], [20])
has developed a rich framework where a mediated schema is inserted between users
and the heterogeneous information sources they are trying to access, with the users is-
suing queries against the mediated schema. These are translated into queries about the
original data sources, using mappings.

RelSchema1
for ECE Students

Subject ERSchema
for students

RelSchema2
for CS Students

RelSchema3
for CS Grad

Students

XML DTD
for CS-ECE

Students

XMLSchema2
for CS Grad

Students

Fig. 1.The mapping continuum.

4 The Mapping Continuum

Consider the following examples of modeling:

– A photo of a landscape is a model of the landscape (its subject matter).
– A photocopy of the photo is a model of a model of the landscape.
– A digitization of the photocopy is a model of the model of the model of the land-

scape
– etc.

This kind of situation, first considered by Brian Cantwell Smith [21], shows that
meaning is rarely a simple mapping from symbol to object; instead, it often involves
a continuum of (semantic) correspondencesfrom symbol to (symbol to)* object. Suc-
ceeding sections discuss how this paradigm can be applied to information systems. This
paradigm constitutes our first attempt at a novel approach to data semantics.

4.1 The Mapping Continuum Hypothesis

Consider the chain of information models illustrated in Figure 1. In this case we have a
series of models and mappings supporting the modeling relationship:

– The ER schema is a (conceptual) model of the university domain, or at least the
part of it dealing with students. (There can be no formal mapping between the ER
schema and the (informal) domain of discourse.)

– RelationalSchema1 is a model of the ER conceptual schema, for the purpose of
queries concerning computer science students. (We have illustrated this kind of
mapping in Section 3.2)

– RelationalSchema2 is a model of the conceptual schema, for the purpose of queries
concerning electrical and computer engineering students.

– XML DTD1 supports queries about either CS or ECE students, and is hence a
model of both the previous relational schemas. Therefore we show arrows to both,
representing the existence of mappings. (We have given an example of this kind of
mapping at the end of Section 3.3)

– RelationalSchema3 is a restricted model, dealing with graduate students.
– XMLSchema2 is an XML version of RelationalSchema3, but it can also be used

to answer some questions directed to XML DTD1 (those relating to graduate stu-
dents). This means that there are mappings relating XMLSchema2 to both of them.

Some mappings arelineal, connecting a schema to the predecessor subject for which it
is intended to be a model. All mappings in Figure 1, except the one from XML Schema2
to XML DTD1, are lineal. Lineal mappings capture the semantics of the schema in the
third sense of data semantics, introduced in Section 3 above, and will therefore be called
semantic mappings. Note that both of the mappings for XML DTD1 are lineal, as would
be the case for data warehouses in general, and hence the semantics of such models is
more complex.

A situation described by a mapping continuum can be represented by a graph, whose
nodes are models/schemas, and whose edges are mappings. In order to avoid circular-
ity, the semantic mappings must form an acyclic subgraph, ending at so-calledground
nodes. Ground nodes will likely be closer to a conceptual/ontological view of the do-
main of discourse, and in some sense anchor the semantics of other models. Ideally,
there would in fact be a single ground node, corresponding to an ontology of the appli-
cation domain. However, as with the semantic web, we acknowledge that agreeing on
a single, universal ontology is likely to be infeasible. We are now in position to offer a
fourth version of a solution to the data semantics problem:

Data Semantics Solution 4Every (non-leaf) model in the semantic continuum comes
with an explicit semantic mapping to some other model, and its meaning is the compo-
sition of the mappings relating it to the ground node(s) reachable from it.

This solution leads to a research program that includes issues such as:

Mapping composition.Since we are proposing to define the meaning of an information
source in terms of the composition of the semantic mappings emanating from it, we
must of course clarify the notion of “composition” itself. Fagin et al [18] point to at least
two possible interpretations: their own, which is query-independent, and that of [17],
which is parameterized by a query language. In our case, this parameter would naturally
be determined by the set of queries that the model is intended to answer. Interestingly,
these queries may be about the “opposite” end of the composition than in [17]. Once

this issue has been settled, there are several questions, such as the language required
to express the composition of two mappings (it may be some variant of infinitary or
second order logic), and the computability of the mapping itself, if we are trying to use
it to “populate” one model using instance data from another model.

Consistency of semantics.In the case of graphs where nodes have multiple predeces-
sors, we need to consider the problem of how meaning is defined in the case when there
are multiple lineal predecessors. For example, do we want all paths to ground models or
just the individual mappings? And in general, we need to consider the issue of consis-
tency when there are multiple paths from a model to some other node in the continuum.
In such cases, it isnt clear how consistency is to be defined.

Although we started from an analysis of the notion of modeling, and the correspon-
dence continuum, others have proposed similar frameworks. Research onpeer-to-peer
data management[22, 23, 19] has proposed a framework where queries to each peer
may be translated, using mappings, into queries of neighboring peers (“acquaintances”),
and this process may be repeated. The connection of peers to each other corresponds
to the mapping graph of our mapping continuum, although without a requirement for
acyclicity.

Likewise, research ondata provenance[24] considers the situation where one data
source is partially populated with information from one or more antecedents, but there
are updates that need to be propagated (both backwards and forwards). Moreover, for
an answer to a given query, one wants to know the source(s) of each element of the
answer. There is an obvious mapping from a data source to its antecedents, although
it is not clear that this mapping is semantic – i.e., to what extent the latest information
source’s semantics are capturedentirelyby that of its antecedents.

The above areas have tended to study the problem at the same level of “semantic
abstraction” (e.g., integrating two ontologies or two relational databases). Our research
program is distinguished primarily by an emphasis on (directed) semantic mappings,
and their path to ground nodes.

4.2 A Detour on Mapping Discovery

The above framework can be interpreted as suggesting that rather than having to re-
construct the semantics of a data source every time it is needed, it might be better to
maintain/discover mappings between that data source and others. To make this scenario
work, we need some evidence that mapping discovery might be easier than semantic
reconstruction (e.g., ontology building and alignment), which we have argued is hard.

As intimated above, we believe thatlineal mappingsought to be codified and pre-
served during the development of a new information source. So the ER conceptual
model, and the mapping from the relational schema designed from it, ought to be for-
malized and maintained, so that it can support later data warehousing, for example
(e.g., [25]). But what if this did not happen, or if we want to find non-lineal mappings?
Experience indicates that most end-users have problems with logical formalisms, even
ones as simple as Datalog. To address this problem, we needtoolsthat help derive such
mappings. A recent successful tool of this sort is Clio [12, 26], which takes as input

correspondences(graphical pairings) betweenelements(usually columns/tags) of rela-
tional or XML schemas, and produces a GLAV-style mapping between the two schemas
that can be used to transfer data from one information source to the other. To understand
better the mapping, examples involving specific data values might also be used as de-
vices for eliciting information from Clio users.

For example, in trying to transfercs:Teach information, about who teaches whom,
from source db, the user might indicate thatcs:Teach.student corresponds to
db:Enroll.sname, and thatcs:Teach.prof corresponds todb:Course. instructor
(sincedb:Enroll does not explicitly list the course instructor). In Figure 2, this is in-
dicated by two correspondence arrows,vc1 andvc2 . Although correspondences indi-
cate connections between different schemas, it is also necessary to find logical/semantic
connections between attributes in a single schema. Clio assumes that these are indicated
that by co-occurrence of attributes in a single relation, and by foreign keys. So thedb
schema is augmented by foreign key information, as indicated by the dashed arrows in
Figure 2. As a result of these foreign keys, and a chase-like process, the right-hand side
of the mapping will be

db:enroll(pname,ctitle),db:course(ctitle,instructor), db:pupil(pname,...),
db:educator(instructor,...)

while the left-hand side will be

cs:teach(prof,studntId)

and these will be connected using the equalities

instructor=prof, studntId=pname

which represent the correspondences, yielding the Horn rule

cs:teach(prof,studntId) :-
instructor=prof, studntId=pname
db:enroll(pname,ctitle), db:course(ctitle,instructor),
db:pupil(pname,...), db:educator(instructor,...).

To summarize, the hypothesis underlying Clio is that users will find it is easier to specify
simple correspondences, and that the actual mappings desired will be among the ones
generated by the tool.

We have recently developed a tool, Maponto [27], for uncovering mappings between
relational schemas and ontologies. The tool can be used not just in cases when lineal
mappings were not preserved, but also when the ontology was independently developed
(e.g., a data warehouse or semantic web scenario). Inspired by Clio, this tool also starts
from correspondences of table columns to datatype properties in the ontology. It then
finds connections between the concepts bearing these attributes in the ontology, viewed
as a graph, and orders these connections according to total length, while keeping in
mind semantic information available in the relational schema as foreign keys. One aim
of this heuristic algorithm is to derive the “natural” mapping induced by the classical
relational schema design process from ER diagrams, in the case when the ontology is
exactly the ER schema, and the relational schema has not been de-normalized.

DB:
Educator:

ename
Student:

sname
Course:

ctitle

instructor
Enroll:

sname
ctitle

CS:
Professor:

pname
rank

Student:
name
age

Teach:
prof
student

vc1

vc2

Fig. 2.Schemas and their correspondences.

5 Intentional Semantics

Traditionally, the semantics of data deals with the “what/when” aspects of a subject:
what are the objects, their inter-relationships, their groupings into concepts, and con-
straints thereof. To achieve a more nuanced understanding of the semantics, it makes
sense to consider “how” aspects: distinguish (conceptual) objects that represent activi-
ties and processes in the domain. In fact, some conceptual modeling languages proposed
several decades ago followed this approach, applying the same paradigm to describe
both static and dynamic aspects of a domain. For example, Taxis transactions [28]
were classified into taxonomies with inheritance; Taxis scripts [29] extended this to
workflows, which were Petri nets that used message passing for communication; and
RML [30] used class hierarchies to organize objects, events and assertions while speci-
fying requirements for a software system.

To motivate the need for more, consider a university, where an information system
maintains, among others, relations

Student(st#,nm,addr,advisor,dept,degree)
Course(crs#,crsname,instr,dept,yr,term,size)

Suppose that the enrolment process at this university requires students to sign-up for
courses at the end of one term (say, May), and pay for each course at the beginning of
the next term (say, September), once the official “add/drop” period is over. (This design
in itself is the result of balancing needs ...) Consider now a query such as “Find the total
size of courses in a specific semester”. The meaning, andproper use, of the answer
depends on the meaning ofsize in tableCourse . If the size was incremented every
time a student signed up for a course, then the sum of the sizes may not be an accu-
rate reflection of the total enrolment in courses for that term, since some students may
change their mind, not pay for the course, and therefore fail to be officially enrolled. So
the sum of sizes is likely to be anoverestimateof enrolments. This may be satisfactory
from the point of view of the university central administration, which would like high
enrolment figures to support its request for more Government funding. However, this

Accurate
Maximize

Administration

Determine
income

Planning

Determine
size[crs]

Determine
Gov’t

income

Determine
size[crs]

Determine
Grant income

Fig. 3.Actors and their goals.

may be less than satisfactory for the university planning department, which needs the
most accurate answer possible.

Such considerations should be part of the data semantics solution because they bring
in the dimension of trust in the data we are trying to interpret. This naturally leads to the
question of how such information is to be obtained and represented. For this, it is help-
ful to recall that information systems are software systems, hence subject to the much
the same development processes as other kinds of software. Now, the development of
software can be viewed as being split into several stages, including:

– Early requirements, when analysts are trying to understand an organizational set-
ting; this results in an organizational model;

– Late requirements, when analysts formulate (software-based) solutions needed by
the organization, resulting in contractual requirements;

– Design and developmentof the software system itself.

The organizational model is concerned mostly with the actors/stakeholders, their goals,
and how these are currently met/dependent. Presumably the requirements describe a
(software) actor that helps further the goals of (some) organizational stakeholders. We
shall use the above university setting to introduce briefly the notions of thei* notation
for capturing early requirements [31], and how this can be applied to capture design
decisions during software development, as suggested by the Tropos project [32]. The
aim of the presentation – however sketchy and speculative – is to argue for the need to
link intentions to data semantics.

To begin with, we model in Figure 3 actors (e.g., Administration) represented by
circles. Actor goals (ovals), include determining income for the forthcoming year (for
Administration). This goal can be decomposed into a number of subgoals (indicated
by edges connected by an arc), such as determining income from the government, and
income from grants. In turn, determining government income relies on estimating sizes
for courses.

Now we are ready to consider one of the novel features of i*/Tropos: in addition to
standard goals, it is possible to also model so-calledsoftgoals, which capture general
intentions of actors, but which usually dont lead to functional requirements for the new

Accumulate
Course Credits

take[st,cr
s]

enrol
[st,crs]

doWork[st,c
rs]

signup
[st,crs]

payFee
[st,crs]

course
...

student
...

enrolled

std
crs...

>>

Fig. 4.Goals, tasks and objects.

system. Instead, softgoals are used to make choices between alternatives (architectures,
designs, implementations).

In the above case, one of the softgoal of the Administration actor (represented as
a cloud-like shape) is tomaximizeincome, which in this case results in wanting to
maximize various subgoals, including course sizes. As shown in Figure 3, the Planning
department is also an actor in this setting, and it happens to also have among its sub-
goals the determination of course sizes. However, its softgoals associated with its wish
to know course sizes are different in that it wants information that is as accurate as pos-
sible. (Imaginemaximizeandaccurateas being among a list of possible qualities, for
which a “logic” has been established.)

Before we turn to realizing these goals, we need to introduce one more bit of nota-
tion, concerning the activities and data that are used in the implementation. Consider, in
Figure 4, the student goal of accumulating course credits. Analyzing it, we realize that
it concernsseveral objects – a student and some courses, so that these must become
“resources” (data objects) in the implementation. (Further implementation decisions
will represent these as relational tables such as those diagramed above in rectangles.)
At the same time, the hexagonal box, labeledtake[st,crs] , with an arrow point-
ing to the goal, shows an activity that can be used to achieve that goal. (There may be
other ways of achieving the goal, such as working or being a teaching assistant.) The
diamonds underneath, linked by crossed edges, indicate subactivities, which may be
related by double arrows marking temporal precedence. Sotake[st,crs] , involves
among othersenrol[st,crs] , which in turn requires firstsignup[st,crs] and
thenpayFee[st,crs] .

Consider now alternative ways of fulfilling thesize[course] goal. One would
be to count how many students have signed up for the course – represented as the
activity count signups , in the hexagonal box in Figure 5. A different alternative
is to count payments. The effect of these alternatives on the two softgoals,Maximize
andAccurate , are represented by arrows labeled with+ and - , indicating positive

Determine
size[crs]

count
signups

count
payments

Maximize size
Accurate size

+ +− −−−−

COURSE
...
size is incre-
mented by
signup

COURSE
...
(no size)

select size
from course

select count(*)
from

enrolment

Fast Implementation

+

Fig. 5.Different activities for determining course size.

and negative contributions towards them. From this representation it is possible to read
off that counting signups will tend to maximize course size but decrease accuracy, in
contrast to counting payments.

We also have alternative implementations for thecount signups process: we
can either issue aselect count(*) type of query over the enrolment relation, or
we can essentially “cache” the size of each course, by incrementing it as part of the
signup[st,crs] activity carried out by each student, as diagrammed in Figure 4.
The second approach might be more efficient from the point of view of time, and hence
contribute positively to the overall non-functional requirement of fast response time.

Data Semantics Solution 5Data semantics a schema, as well as the intentions behind
its design.

Note that Solution 4 dealt with data semantics by answering the question “Where did the
schema of the data come from?” Solution 5, on the other hand, focuses on intentions
and accounts for data semantics by offering a framework for answering the question
“Why is the design of the schema the way it is? What were the alternatives? Why was
it chosen among the alternatives?” This is a radical solution, to be sure. But trust is
a major issue for data that are created and used in an open, distributed environment
such as the Web. And questions of trust cant be accounted for without bringing into the
picture “somehow” the intentions of the designers and the managers of an information
source. Radical solutions lead to radical research agendas. Here are some issues worth
exploring:

– From goals to schemas.Traditionally, database design amounts to a series of steps
that first construct a conceptual (e.g., ER) schema, and then transform this into
a relational one through well-defined transformations. This process needs to be
augmented, so that the designer starts with stakeholder goals and softgoals and

through goal analysis generates a set of possible schema designs. The output of the
design process is now a set of schemas, along with their evaluation with respect
to a set of softgoals. Among these schemas, one is chosen for further refinement
using existing techniques. The KAOS project [33] offers a glimpse of what this
design process might look like, but focuses on the design of software rather than
databases.

– Trusted query processing.Suppose that along with a query, we also specify de-
sired qualities (e.g., maximum/accurate course size numbers). Given a database
and its schema design, wed like to be able to tell (i) if the data in the database
“match” the desired qualities; (ii) (if not) develop techniques for populating ex-
actly/approximately alternative schema designs with the data that exist. For exam-
ple, if the Government wants accurate course size counts but is getting instead op-
timistic ones from University administration, perhaps data from previous years can
be used to derive approximate, but more accurate course size counts. Such “data
correction” mechanisms are bread-and-butter for economists, journalists and polit-
ical scientists. In the era of the Semantic Web, such mechanisms can form the basis
for dealing with issues of intent and trust.

6 Conclusions

We have briefly reviewed the history of the problem of data semantics, as well as recent
research trends towards the vision of the Semantic Web, pointing out solutions that
worked in the past, or might work in the future. We conclude from this review that
the problem of data semantics would have been with us even without the Web and its
semantic extensions. The problem arises from general trends towards open, distributed
computing, where it is no longer possible to assume that the operational environment
of an information source is closed and stable. Accordingly, we should be looking for
solutions that are general, i.e., not Web technology-specific.

We expressed concerns about current research towards ever-more expressive mod-
eling languages, both from the point of view of scalability for relevant technologies,
and usability for emerging tools. As an alternative to prevailing research directions,
we proposed a framework where the meaning of data is determined by its origin(s)
through (design-time) lineal mappings. This solution places an emphasis on schema
mappings and traceability techniques. As another alternative, we suggested concepts
and design techniques adopted from (software) Requirements Engineering for analyz-
ing stakeholder goals and softgoals to generate and select designs. This – admittedly
radical – solution focuses on the intentions behind a database design, as a means for
understanding the data in the database. We believe that issues of trust (in the data one
is trying to understand) will ultimately have to be dealt with in terms of intentions and
stakeholders.

Acknowledgements

We are grateful to Yannis Velegrakis for helpful feedback to an earlier draft of this
paper.

References

1. Zelazny, R.: 24 views of Mount Fuji. Isaac Asimov’s Science Fiction Magazine7 (1985)
2. Codd, E.: A relational model for large shared data banks. Communications of the ACM13

(1970) 377–387
3. Abrial, J.R.: Data semantics. In Klimbie, Koffeman, eds.: Data Management Systems, North-

Holland (1974)
4. Chen, P.: The entity-relationship model: Towards a unified view of data. In: Proceedings

International Conference on Very Large Databases (VLDB75). (1975)
5. Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design and Ultimate Destiny

of the World Wide Web by Its Inventor. Harper, San Francisco (1999)
6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)
7. W3C: Web ontology language (owl) version 1.0, http://www.w3.org/tr/2003/wd-owl-ref-

20030331 (2003)
8. Ladkin, P.: Abstraction and modeling, research report RVS-Occ-97-04, University of Biele-

feld, 1997; http://www.rvs.uni-bielefeld.de/publications/abstracts.html#AbsMod. (Technical
report)

9. Levesque, H.: Foundations of a functional approach to knowledge representation. Artificial
Intelligence23 (1984)

10. Borgida, A.: Description logics in data management. IEEE Transactions on Knowledge and
Data Engineering7 (1995) 671–682

11. Reiter, R.: Towards a logical reconstruction of relational database theory. In M. Brodie,
J. Mylopoulos, J.S., ed.: On Conceptual Modelling, Springer-Verlag (1984) 191–233

12. Miller, R., Haas, L., Hernadez, M.: Schema mapping as query discovery. In: Proceedings
International Conference on Very Large Databases (VLDB00), Cairo. (2000)

13. Pottinger, R., Bernstein, P.: Merging models based on given correspondences. In: Proceed-
ings International Conference on Very Large Databases (VLDB03), Berlin. (2003) 826–873

14. Levy, A., Rajaraman, A., Ordille, J.: Querying heterogeneous information sources using
source descriptions. In: Proceedings International Conference on Very Large Databases
(VLDB96), Mumbay,. (1996) 251–262

15. Lenzerini, M.: Data integration: A theoretical perspective. In: Proceedings International
Conference on Principles of Database Systems (PODS02). (2002) 233–246

16. Friedman, M., Levy, A., Millstein, T.: Navigational plans for data integration. In: Proceed-
ings National Conference on Artificial Intelligence (AAAI99). (1999) 67–73

17. Madhavan, J., Halevy, A.: Composing mappings among data sources. In: Proceedings Inter-
national Conference on Very Large Databases (VLDB03), Berlin. (2003) 572–583

18. Fagin, R., Kolaitis, P., Popa, L., Tan, W.C.: Composing schema mappings: Second-order de-
pendencies to the rescue. In: Proceedings International Conference on Principles of Database
Systems (PODS04). (2004) 83–94

19. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer
sources. Journal of Data Semantics (2003) 153–184

20. -: Proceedings of semantic integration workshop, at ISWC03, Sanibel Island, october 2003.
http://ceur-ws.org/vol-82 (2003)

21. Smith, B.C.: The correspondence continuum, TR CSLI-87-71, Stanford University. Techni-
cal report (1987)

22. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data management
systems. In: Proceedings International Conference on Data Engineering (ICDE03). (2003)

23. Bernstein, P., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., Zaihrayeu, I.:
Data management for peer-to-peer computing: A vision. In: Proceedings SIGMOD WebDB
Workshop. (2002) 89–94

24. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data provenance.
In: Proceedings International Conference on Database Theory (ICDT01). (2001) 316–330

25. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data integration in
data warehouses. Journal of Cooperative Information Systems10 (2001) 237–271

26. Velegrakis, Y., Miller, R., Mylopoulos, J.: Representing and querying data transformations.
In: Proceedings International Conference on Data Engineering (ICDE05), to appear. (2005)

27. An, Y., Borgida, A., Mylopoulos, J.: Refining mappings from relational tables to ontologies.
In: Proceedings VLDB Workshop on the Semantic Web and Databases (SWDB04), Toronto,
August 2004. (2004)

28. Mylopoulos, J., Bernstein, P., Wong, H.: A language facility for designing database-intensive
applications. ACM Transactions on Database Systems5 (1980) 185–207

29. Barron, J.: Dialogue and process design for interactive information systems using Taxis. In:
Proceedings ACM SIGOA Conference on Office Information Systems, Philadelphia. (1982)
12–20

30. Greenspan, S., Mylopoulos, J., Borgida, A.: Capturing more world knowledge in the re-
quirements specification. In: Proceedings International Conference on Software Engineer-
ing, (ICSE82), Kyoto. (1982) 225–235

31. Yu, E.: Modeling organizations for information systems requirements engineering. In: Pro-
ceedings IEEE International Symposium on Requirements Engineering (RE93), San Diego,
IEEE Computer Society Press. (1993) 34–41

32. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven software development
methodology: The tropos project. Information Systems27 (2002) 365–389

33. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of Computer Programming20 (1993) 3–50

