
Artificial Intelligence and Law 5: 1–74, 1997. 1
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Evaluating a Legal Argument Program:
The BankXX Experiments ?

EDWINA L. RISSLAND, DAVID B. SKALAK and M. TIMUR FRIEDMAN
Department of Computer Science, University of Massachusetts, Amherst, MA 01003, U.S.A.
(E-mail: rissland@cs.umass.edu)

Abstract. In this article we evaluate the BankXX program from several perspectives. BankXX is
a case-based legal argument program that retrieves cases and other legal knowledge pertinent to
a legal argument through a combination of heuristic search and knowledge-based indexing. The
program is described in detail in a companion article in Artificial Intelligence and Law 4: 1–71,
1996. Three perspectives are used to evaluate BankXX: (1) classical information retrieval measures
of precision and recall applied against a hand-coded baseline; (2) knowledge-representation and
case-based reasoning, where the baseline is provided by the functionality of a well-known case-based
argument program, HYPO (Ashley, 1990); and (3) search, in which the performance of BankXX
run with various parameter settings, for instance, resource limits, is compared. In this article we
report on an extensive series of experiments performed to evaluate the program. We also describe two
additional experiments concerning (1) the program’s search behavior; and (2) the use of a modified
form of precision and recall based on case similarity. Finally we offer some general conclusions that
might be drawn from these particular experiments.

Key words: case-based reasoning, legal argument, information retrieval, search, evaluation, bank-
ruptcy

Part I: Introduction

1. Introduction: The Problem of Evaluating Arguments

Evaluation of argument is a longstanding problem. It is also a complex one. Perel-
man and Olbrechts-Tyteca (1969) have noted, in fact,

In view of the complexity of the factors to be taken into consideration even
just to judge whether an argument has any strength at all, it is curious that the
writers of treatises on rhetoric should so glibly state, almost incidentally, that
the strength of arguments is common knowledge and that they should base
their advice regarding the order of discourse and the sequence of replies, on
the degree of conviction that the arguments must have produced, which it is
not hard for us to know, because we know what ordinarily brings this about.

(Perelman and Olbrechts-Tyteca, 1969, p. 462)

? This research supported in part by grant No. 90-0359 from the Air Force Office of Scientif-
ic Research and NSF grant No. EEC-9209623 State/University/Industry Cooperative Research on
Intelligent Information Retrieval.

J.K.; PIPS No.: 117029 MATHKAP
arti134.tex; 16/04/1997; 13:48; v.6; p.1

2 E.L. RISSLAND ET AL.

These respected authors also observe that it is difficult to characterize even just the
positive aspects of an argument (p. 461): “Thus the strength of an argument shows
itself as much by the difficulty there is in refuting it as by its inherent qualities.”

There is no doubt that more research needs be done on the problem of evaluating
arguments, whether they are complete arguments produced by humans or skeletons
of arguments created by computers. This paper presents one of the first attempts to
do a thorough evaluation of a legal reasoning program. It is a detailed foray into
mostly unknown territory.

Thorough evaluations are also exceedingly onerous. Blair and Maron have
remarked:

However, large-scale, detailed retrieval-effectiveness studies, like the one
reported here, are unprecedented because they are incredibly expensive and
time consuming; our experiment took six months; involved two researchers
and six support staff; and, taking into account all direct and indirect expenses,
cost almost half a million dollars.

(Blair and Maron, 1985, p. 298)

Evaluation also requires use of an analytic framework. Fox and Clarke (1991)
suggested a collection of heuristic rules to gauge the relative persuasiveness of
arguments:

(R1) A larger set of positive arguments is more persuasive than a smaller set;
(R2) A smaller set of negative arguments is less dissuasive than a larger set;
(R3) Arguments that make unverified assumptions (e.g., defaults) are less per-
suasive than those which are based on grounded arguments (e.g., observations);
(R4) Arguments that explain more observations are more persuasive than those
that explain less;
(R5) Any pair of arguments that is strictly independent is more persuasive than
a pair in which [each] argument depends upon the other.

(Fox and Clarke, 1991, p. 97)

Ashley (1990) also provided a list of nine argument-evaluation criteria in his
seminal work on precedent-based argument. Three of his criteria speak to the
comparison of the whole argument proposed by a side, rather than the comparison
of constituent precedents or points:

7. Improving an argument: The more nontrumped points there are, the better
for a side’s argument.
8. Comparing opposing sides in one argument: If all of the nontrumped points
favor Side 1 and there are no nontrumped points for Side 2, Side 1’s argument
is stronger.
9. Comparing same side in two arguments: If there are more nontrumped points
favoring Side 1 in argument [b] than in argument [a], argument [b] is stronger
for Side 1 than argument [a].

(Ashley, 1990, p. 279)

arti134.tex; 16/04/1997; 13:48; v.6; p.2

EVALUATING A LEGAL ARGUMENT PROGRAM 3

Thus for reasons of complexity, expense, or lack of evaluative framework, there
has been too little work on evaluation of argument. While we did not enjoy the
level of resources remarked upon by Blair and Maron, we nonetheless did strive to
perform a thorough, principled evaluation. This paper is a detailed report on our
efforts.

The difficulties of argument evaluation stem from at least two sources. First, the
subjective nature – or rhetoric – of argument is difficult to define and quantify, since
it depends on how persuasive the argument is to its audience, jury, court, etc. Second,
there is a fundamental lack of knowledge on what an argument is comprised of – its
epistemology or structure. While there have been several fundamental contributions
on this front – Olbrechts-Tyteca, Toulmin, Ashley, Branting, etc. – much remains to
be done. We have barely scratched the surface for certain kinds of argument, such
as appellate oral argument (e.g., Rissland, 1990), and have yet to address others,
such as legal briefs. Our work in BankXX with argument pieces (elaborated in
the first of this pair of articles (Rissland et al., 1996)) as well as past work on the
effect of high-level purposes on the content of argument (Rissland et al., 1993),
statutory argument strategies, moves and primitives (Skalak and Rissland, 1992),
precedent-based arguments (Rissland et al., 1984; Ashley, 1990) and hypotheticals
(Rissland and Ashley, 1986; Ashley, 1990), etc. has addressed certain structural
aspects of argument. Of course, although we emphasize the non-rhetorical aspects
of argument, what we have encoded via such mechanisms as argument factors,
argument pieces, dimensions, etc. does reflect some of our intuitions about the
persuasive aspects of argument.

With respect to arguments produced by computers, previous researchers have
relied on a variety of techniques to validate their programs against realistic base-
lines. For HYPO, Ashley made comparisons between its output and actual opin-
ions in the trade-secrets misappropriation area (Ashley, 1990). Branting (1991)
performed a series of experiments that enlisted the services of a domain expert in
the Texas worker’s compensation area to grade the output of the GREBE program
against memoranda written by four advanced law students. Gardner (1987) over-
came the lack of a right answer to most legal questions by comparing the output of
her program with the answers given to five short offer-and-acceptance questions in
Gilbert Law Summaries: Contracts, a study aid for law students (Eisenberg, 1982).

In this work, we address the evaluation question in three types of experiments:
1. External benchmarking comparisons of BankXX by running BankXX on

real legal cases and comparing BankXX output with hand-coded representa-
tions of the court opinions in the cases. These BankXX-Court experiments are
discussed in Section 3.

2. External system comparisons of BankXX with a re-implemented partial ver-
sion of the legacy case-based reasoning program HYPO (Ashley, 1990), which
we call �HYPO (micro-HYPO). These BankXX-�HYPO experiments are dis-
cussed in Section 4.

arti134.tex; 16/04/1997; 13:48; v.6; p.3

4 E.L. RISSLAND ET AL.

3. Internal system comparisons of the performance of BankXX with itself, by
varying internal parameter settings. These BankXX-BankXX experiments are
discussed in Section 5.

No single one of these evaluation approaches is perfect. For instance, none captures
all the aspects we wish to evaluate, and some introduce aspects that were not part
of the original design or intended scope of BankXX (e.g., constraints on case
citation stemming from jurisdictional and date considerations). Nonetheless, the
composite of these experiments does give us a fairly detailed look at BankXX’s
performance. We note that only the internal comparisons are completely “fair” in
the sense that what are being compared (BankXX against BankXX) are perfectly
commensurable. On the other hand, the external comparisons are more interesting.
Evaluating argument is truly a “two-handed” exercise – on one hand, on the other
hand.

Another way of understanding our approach to evaluation is in terms of the
following three substantive perspectives addressed in the BankXX project:
1. Information retrieval (IR): How well does BankXX retrieve the “right” infor-

mation? To benchmark BankXX’s performance from this perspective, we mea-
sure its performance against hand-coded versions of real court opinions using
traditional IR measures of precision and recall in the BankXX-Court experi-
ments.

2. Knowledge representation and case-based reasoning (CBR), particularly
case retrieval: How well do BankXX’s representation and CBR mechanisms
allow it to perform as compared with those of �HYPO, our re-implemented
micro version of HYPO? BankXX borrows a number of case representation
and analysis techniques from HYPO, but goes beyond HYPO in the types of
knowledge represented. For instance, BankXX contains knowledge about legal
theories and factual prototypes.

3. Heuristic search: How do the computational details of heuristic search – evalu-
ation function, start node, resource limit – affect performance? In the BankXX-
BankXX experiments we compare the efficiency and efficacy of BankXX under
different (internal) parameter settings that define its operation.

These three perspectives correspond with the three experimental approaches to
evaluation. They are the “semantics” underlying the “syntax” of those experimental
approaches. The driving motivation for all of this work is our fundamental concern
with legal argument. It permeates all our experiments and all aspects of the BankXX
system.

We note that BankXX is not a traditional IR program but rather a resource-
constrained heuristic information perusal and harvesting program. The goal of
a traditional IR program is to retrieve as many relevant documents as possi-
ble – while minimizing retrieval of nonrelevant documents – and perhaps rank-
order them according to probability of relevance, without particular concern about
resource limitations. By contrast, BankXX is indeed constrained by resource limits.
BankXX’s goal is to retrieve as much of the right kind of information as possible

arti134.tex; 16/04/1997; 13:48; v.6; p.4

EVALUATING A LEGAL ARGUMENT PROGRAM 5

under given resource constraints. Furthermore, there is no unique set of information
that constitutes the best or only correct information to be retrieved.

In general, our goal in this paper is to explore the use of heuristic search, guided
by evaluation functions capturing various types of information needs – as reified
in BankXX – to retrieve information, such as cases and legal theories, for use in
legal argument from a “library” of highly interconnected sources, as is typical in
law. In particular, we investigate several hypotheses:
� BankXX endowed with a knowledge-richer evaluation function performs bet-

ter than BankXX with a knowledge-poorer one. That is, BankXX with the
argument-piece evaluation function (BankXX/AP) and argument-factor eval-
uation function (BankXX/AF) outperform BankXX with the node-type eval-
uation function (BankXX/NT).

� BankXX/AP produces more balanced arguments than BankXX/NT.
� BankXX performs better than the HYPO approach on the task of retrieval.
� BankXX’s performance improves, and then levels off, with increased

resources.
In our experiments, we measure performance – and thus define “better” – with
traditional statistics on precision and recall and with counts of numbers of items
retrieved. To use precision-recall measures, we must define test problems and
answer keys. We use real bankruptcy cases – the 55 represented in BankXX’s case
base – as de novo test problems and their court opinions as the answer keys. We
follow a standard leave-one-out cross validation methodology.

In these experiments, the number of cases in the case base and the numbers of
items retrieved are fairly small. Nevertheless, since we apply leave-one-out cross
validation, our conclusions have a solid basis, since each experimental value is
based on 55 data points: one for each case. This is a larger number of data points
than often is found in experiments where n-fold validation has been applied. For
example, 10-fold cross validation, which yields 10 data points, is typical of many
evaluations of classification algorithms in machine learning. In the last TREC (Text
REtrieval Conference), an important competitive forum for comparing the world’s
best IR systems, the merits of the retrieval capabilities of the competing systems
were judged on the basis of only 50 queries (Harmon, 1995). Blair and Maron used
40 queries in their study (Blair and Maron, 1985).

The remainder of this paper is divided into six main sections. First we describe
general aspects of the experiments carried out upon BankXX and further discuss
the three evaluation perspectives and types of evaluations. Each is explored in depth
in one of the next three sections (Sections 3, 4, 5) of the paper.

The sixth, and penultimate section of the paper, describes a final set of experi-
ments that respond to questions that arose in the course of these experiments and an
alternative approach to precision and recall. In particular, since we are concerned
with the use of traditional precision-recall measures, which may not be totally
appropriate in our domain, we also briefly explore an alternative approach using
modified precision-recall measures. The article closes with a short discussion of

arti134.tex; 16/04/1997; 13:48; v.6; p.5

6 E.L. RISSLAND ET AL.

alternative design decisions and with general points that might be drawn from these
experiments with BankXX and the particular knowledge we have given it.

We acknowledge that this paper is highly detailed. We felt that such a careful
exposition was required in order to discuss properly our set of evaluation exper-
iments. To ease the burden of the reader, we have provided boxed summaries. In
particular, the subsections of Sections 3, 4 and 5 that discuss the details of the
experiments are provided with boxed summaries of conclusions.

2. Evaluation of BankXX: General Experimental Design

2.1. THE EXPERIMENTAL SPACE

Setting up a series of empirical evaluations involves making a series of choices. Here
we briefly lay out the choices we explore in our BankXX experiments. Obviously
there are others as well.

One can think of the top level choice as the choice of experimental approach.
There are the three major choices in approach, laid out in the introduction:
1. External benchmarking (against court opinions) – explored in Section 3.
2. External cross-system comparison (with HYPO) – explored in Section 4.
3. Internal comparison (with different parameter choices) – explored in Section 5.

Next, there are several parameters that can be varied within BankXX. These
stem primarily from BankXX’s computational architecture as a heuristic search
program. The configuration choices for BankXX are:
1. the evaluation function:

a. node-type (NT) evaluation function (denoted BankXX/NT)
b. argument-piece (AP) evaluation function (BankXX/AP)
c. argument-factor (AF) evaluation function (BankXX/AF)

2. the start node:
a. a standard well-known case (Estus)
b. the problem case
c. a random node

3. resource limits:
a. number of nodes closed (e.g., 30, 60, 90);
b. number of “billable seconds” (e.g., 1, 2, 10)

“Billable seconds” is the time BankXX takes from the moment it is invoked until
it returns its output (i.e., “wall clock” time). It includes any time spent on garbage
collection and output to the screen during intermediate processing.

The terms and weights for the three evaluation functions are given in the Techni-
cal Appendix. Note that BankXX/AP in addition to using the fill limits on argument
pieces in the argument-piece evaluation function, also uses the same fill limits when
deciding whether or not to harvest a node it has closed. Thus, for instance, if a
case is both a leading case and a same-side case and BankXX has already reached
its fill on same-side but not leading cases, the case will be harvested, and listed in

arti134.tex; 16/04/1997; 13:48; v.6; p.6

EVALUATING A LEGAL ARGUMENT PROGRAM 7

BankXX’s output, only as a leading case.? Regardless of configuration, BankXX
always harvests information for the same standard set of argument pieces. (These
are discussed in detail in the companion article (Rissland et al., 1996).)

We vary each of these three configuration choices in the internal comparisons,
discussed in Section 5. In both external comparisons, the start node and resource
limits are not varied.

All external comparison experiments use the Estus case as start node and
resource limits of 30 closed nodes and 1000 billable seconds. All external compar-
ison experiments use the Estus case as start node and resource limits of 30 closed
nodes and 1000 billable seconds. The node closure parameter setting was found to
be a good choice after examination of the results of the internal experiments (see
Section 5). The time limit is many orders of magnitude more than enough to allow
BankXX to run until its list of items to expore (i.e., its OPEN list) is empty with our
current hardware. This number was first used on hardware that was much slower.

In addition, there is a fourth configuration choice as to whether BankXX filters
its output for items – cases decided or theories promulgated – dated after the
problem case and when it does so. Date-filtering is needed in both types of external
benchmarking experiments in order to exclude post-dated cases and theories that
are extraneous to the problem-case. The choices for date-filtering are:

a. no filtering.
b. post-processing filtering – after BankXX has concluded processing a problem

case.
c. during-processing filtering – while BankXX is processing a problem case,

specifically, at the time a node is expanded. Thus, post-dated items never get
put on the OPEN list.

All external experiments – discussed in Sections 3 and 4 – filter for dates during
processing. The internal experiments do not filter for dates at all. By comparison,
the extended example of the companion article used post-processing date filtering.

Finally, there are choices of metric, comparison points, and test cases to use
in the external benchmarking experiments comparing BankXX’s output with real
court opinions:
1. Evaluation metric:

a. classic precision and recall measures
b. modified precision and recall measures

2. 2. A set of comparison points:
a. the full set of BankXX’s standard 12 argument pieces
b. a set of 4 simplified so-called aggregated argument pieces

3. A set of test cases (to use in averages):
a. the entire 55 case corpus (called All)
b. only the top 20 cases in the leading-cited cases ranking (Top20)
c. only the 14 appellate cases from the corpus (Appellate)

? See the companion paper, for instance, Section 4.3.2 describing the argument-piece evaluation
function and Section 5 giving an extended example of BankXX/AP processing the Estus case.

arti134.tex; 16/04/1997; 13:48; v.6; p.7

8 E.L. RISSLAND ET AL.

d. only the 14 so-called meaty cases (Meaty)?

For the most part, we only use the classic precision and recall measures in these
experiments, although in Section 6.2 we briefly explore a modified version of them
to emphasize that the choice of metric is indeed a choice. There is no a priori
mandate to use, or use exclusively, precision-recall measures in their traditional
form. In fact, in fields such as ours, where there are no unassailable “correct”
answers to use as evaluative standards, we need alternative approaches. We explore
use of a modified precision-recall meaure to encourage, by example, development
of other measures.

To suit the circumstances of what is being compared – BankXX-Court, BankXX-
�HYPO, BankXX-BankXX – we use different sets of comparison points. The exter-
nal BankXX-Court and BankXX-�HYPO experiments use a set of four simplified
aggregated argument pieces. The internal BankXX-BankXX experiments use the
standard dozen argument pieces. Finally to analyze performance on different types
of cases, we use four different partitions of the BankXX case corpus.

In summary, the experimental space is quite large: 3 overall experimental
approaches, 3 configurations of BankXX, 4 partitions of the case base, etc. In
these experiments we try to explore portions of this space in the classical way by
varying one aspect while holding others constant. For instance, within the internal
comparison experiments, we vary the start node while holding the evaluation func-
tion and resource limits constant. The experimental paradigm we apply throughout
this article treats each case in the case base as a de novo problem case in turn,
which is tantamount to performing statistical leave-one-out cross-validation.

Even with the very rich set of variations engendered by the above choices, we
are still only exploring a small subset of the possibilities. For instance, throughout
our experiments we have not tinkered with the terms and weights in our evaluation
functions. In fact, each of the three evaluation functions is but one particular
function from a family of functions spanned by the terms; others can be generated
by varying the weights. Other such closely related evaluation functions beg to be
explored. In particular, if one is interested in fielding a system such as BankXX,
tuning the weights and terms is a must.??

We have performed a large number of experiments – and this is a long paper
– and some results require a close technical explanation that appeals to the design
and implementation of the program. For convenience, for each experiment, we
summarize the parameters that are varied and held constant, and we offer a very
broad summary of the results. These are presented in boxed areas of text. However,
we caution the reader against wholesale reliance on these summary characteriza-
tions and extraction of the summaries from the experimental context in which they

? A meaty case is a case having numbers of cases that are cited in the court opinion and represented
in the BankXX case corpus above a certain threshold. See Sections 3.4 and 3.5, especially Table III,
for data on this point.
?? The data in these experiments suggest some changes to term weights and thresholds, for instance,

increasing the fill limits on supporting-cases and contrary-cases argument pieces in the argument-
piece evaluation function.

arti134.tex; 16/04/1997; 13:48; v.6; p.8

EVALUATING A LEGAL ARGUMENT PROGRAM 9

are made. A rather blanket caveat is that the results we present are limited to the
particular set of cases and theories we have incorporated into the program.

2.2. THE de novo TREATMENT OF A PROBLEM CASE

In these experiments when a case from the case base is treated as a problem situation
de novo, it is run as if never seen before by BankXX. The point of view (debtor or
creditor) given to BankXX is that of the side that prevailed in the actual court case.
Each of the 55 cases in the BankXX case base is treated in this way.

In the de novo approach, we excise the problem case from the case-domain graph
by excising the nodes that represent it (e.g., fact situation node, citation nodes) and
disabling the pointers that connect it to other cases and items of knowledge (e.g.,
legal theories). In particular, we decouple the de novo case from any legal theories
it actually put forth or applied. For instance, when the Estus case is run in a de novo
fashion, the Estus theory, which was promulgated by the Estus case, is treated as if
it came from some other case (not included in BankXX’s case base) since it is left
in the knowledge base but its links to the Estus case are removed.

2.3. ADDITIONAL COMMENTS ON DATE FILTERING

In the intended use of BankXX on new problem cases, date-filtering would not
be an issue because everything known to BankXX should be available, since the
problem is presumably occurring after the dates of the cases in the BankXX corpus.
However, in order to do comparisons of BankXX output with real case opinions,
post-dated cases and theories – that is, cases decided or theories promulgated after
the date of the problem case – need to be filtered from BankXX output.

With the post-processing date-filtering option, all cases and theories remaining
in the case-domain graph after de novo preparations are available to BankXX
when it is run on a problem case, regardless of their dates relative to the problem
case. For instance, a case decided after the problem case would be fair game for
consideration. Many of these post-dated items would be harvested by BankXX and
would then be deleted in preparation for comparison against the court opinion.

Deleting post-dated items after processing can greatly distort the measurement
of BankXX’s performance, especially when BankXX is run on earlier problem cases
where many items must be deleted. First, post-dated items are ignored in the external
comparisons, so they count for naught. Second, they represent lost “opportunity”
costs for BankXX since they used up a certain amount of BankXX’s resource
limits and may even have prevented BankXX from harvesting relevant, non-post-
dated cases. They represent wasted resources. Especially with BankXX/AP, where
there is a limit on how many items can be harvested to fill any argument piece, a
harvested post-dated item represents a lost opportunity: a pre-dated item actually
used in the actual court opinion might have been harvested instead. For instance,
there are limits of three cases each for supporting and contrary cases; if these

arti134.tex; 16/04/1997; 13:48; v.6; p.9

10 E.L. RISSLAND ET AL.

argument pieces are filled by post-dated cases, pertinent cases must be passed up.?

In addition, consideration of extraneous items uses up other limited resources like
allowed computation time.

In summary, we use the during-processing date filtering option in the external
experiments since post-processing filtering would be unduly disadvantageous to
BankXX. The question of dates is not an issue in the internal experiments.

Part II: The BankXX Experiments

3. External Evaluation from an Information Retrieval Perspective:
Comparing BankXX with Hand-Coded Court Opinions

In this section, we present our primary external evaluation of BankXX in which
we compare the performance of the three configurations of BankXX against hand-
coded opinions of the cases in the BankXX case base. In Section 3.1, we present our
methodology, including the definitions of the four aggregated argument pieces used
in the comparisons and a discussion of precision and recall measures. In Section 3.2,
we give an overall assessment of BankXX’s performance. In Sections 3.3, 3.4, and
3.5 we examine the results in much greater detail. In particular, in Section 3.4 we
examine BankXX’s performance on four subsets of cases and in Section 3.5 we
examine the effects of sparseness.

In these BankXX-Court experiments, we examine how well BankXX retrieves
the cases and theories that are actually cited in the court opinions of real legal
cases. Our evaluation methodology was to run BankXX in the de novo manner (see
Section 2.2) three times on each of the 55 cases in the BankXX case base – once
in each configuration of BankXX with other parameters held constant – and then
to compare the items harvested by BankXX with those from the hand-coding of
the actual court opinion. We thus follow a standard leave-one-out cross validation
protocol.

For this comparison we represented both the opinions and BankXX output in
terms of four simplified, aggregated argument pieces. We then computed precision
and recall scores on these argument pieces. This produced 3� 4� 55 = 660 raw
data points and 1320 individual precision and recall scores.

Parameters Varied:
BankXX configurations: BankXX/NT, BankXX/AP, BankXX/AF

Parameters Held Constant:
Start node: Estus
Closed node limit: 30
Time limit: 1000 billable seconds

Date-filtering option:
During-processing

? See the treatment of [GOEB] and [IACOVONI] in the extended example of Section 5 of the
companion paper.

arti134.tex; 16/04/1997; 13:48; v.6; p.10

EVALUATING A LEGAL ARGUMENT PROGRAM 11

3.1. METHODOLOGY

3.1.1. The aggregated argument pieces

In order to carry out BankXX-Court opinion comparisons – external benchmarking
with an IR perspective – we needed to create a corpus of “correct” answers. To do
this we encoded each case in the BankXX corpus by hand by entering each case
and theory actually cited in the published opinion into its appropriate argument
piece[s]. We then checked these against those contained in BankXX’s case-domain
graph and kept only those that are represented in BankXX. (It would not make sense
to check if BankXX harvested something that it could not know about.)

For example, if an opinion cited the important Estus and Deans cases, which
are present in BankXX, we would list them in appropriate argument pieces, such
as leading-cited-cases. The Estus case, for example, also mentions several cases
that are not present in the BankXX corpus (e.g., In re Wiggles, 7 B.R. 373 (Bkrtcy
N. D. Ga. 1980), In re Harland, 3 B.R. 597 (Bkrtcy D. Neb. 1980)). Hence, these
are not encoded in the Estus opinion.

The second and third authors of this article were responsible for this hand-
encoding. Although we did no formal tests of inter-coder variability, informally,
we believe there was a high level of agreement since there was much discussion and
consensus about the cases. In addition, we chose encoding categories (see below)
that eliminated most subjective judgments.

In doing this encoding, we initially tried to use all twelve categories of cases and
theories defined by the standard dozen BankXX argument pieces. (See the compan-
ion article.) However, we found that some of the technical distinctions made easily
by BankXX were difficult for us to make. For example, it is difficult to say whether
a theory belongs to the applicable-theories or the nearly-applicable-theories argu-
ment piece. This is not a problem for BankXX since BankXX uses a well-defined
test based on the domain factors to decide whether a theory is applicable or nearly
applicable. In order to avoid forcing such hard-to-make distinctions in encoding,
we defined a set of aggregated argument pieces. They aggregate case or theory
sub-categories and are simpler than those normally used by BankXX.

To encode court opinions, we created three broad categories aggregating pairs
of standard BankXX argument pieces:
� supporting-best and ordinary supporting cases,
� contrary-best and ordinary contrary cases,
� applicable and nearly applicable theories.

We also used the leading-cited-case category without alteration since there were
no difficulties involved in applying it: one merely checks whether a cited case is
on the ‘hit parade’ of the top five most cited cases in the BankXX corpus. These
are in order: 1. Rimgale, 2. Estus, 3. Goeb, 4. Deans, 5. Iacovoni. See Figure 1.

Given a simplified encoding for the court opinions, we used the parallel set of
aggregated argument pieces for BankXX output: the three new aggregated argument
pieces plus the original leading-cited-cases argument piece. See Figure 2.

arti134.tex; 16/04/1997; 13:48; v.6; p.11

12 E.L. RISSLAND ET AL.

1. pro (same-side) cases any same-side case mentioned in the opinion
2. con (contrary) cases any contrary case mentioned in the opinion
3. leading-cited-cases any of the top 5 most cited cases in the BankXX corpus
4. theories any theory mentioned in the opinion

Figure 1. The four categories used to encode court opinions in the BankXX-Court comparisons.
The pro viewpoint in the encoding is that of the side that prevailed in the actual court case.

1. aggregated-pro-cases union of supporting-cases and supporting-best-cases
2. aggregated-con-cases union of contrary-cases and contrary-best-cases
3. leading-cited-cases leading-cited-cases
4. aggregated-theories union of applicable-theories and nearly-applicable-theories

Figure 2. The four aggregated argument pieces used for BankXX output in the BankXX-Court
comparisons. The pro viewpoint is that of the prevailing side in the actual court case.

These four argument pieces – involving seven of the original dozen argument
pieces – are the basis of all the BankXX-Court comparisons. We ignored the oth-
er five argument pieces (supporting-citations, factor analysis, overlapping-cases,
factual-prototype-story, family-resemblance-prototype) because they were typical-
ly too computational in nature to use in the hand-encoding of court opinions.?

While the aggregated categories do wash out some of the distinctions that we feel
are indeed important in legal argument and they ignore much of what BankXX
accomplishes, they allowed us to minimize subjectivity or ambiguity in the hand-
encoding.??

In summary, if an opinion cited a case, we simply encoded it as pro, con, or
leading, and then filtered it against those known to BankXX (in the case-domain-
graph). We did not try to distinguish a set of best cases, work out other nuances
captured in the BankXX argument pieces, or hand-simulate their computational
definitions (i.e., “functional predicates”).z A cited theory was listed, regardless of
whether the court said that it did, nearly did, or should apply, etc.

? For instance, overlapping-cases must have 75% or more of their domain factors in common
with the problem case. Factor-analysis requires strict (computational) application of domain factors
(dimensions), particularly, their prerequisites; in addition, it is not that illuminating in the context of
this experiment. Supporting-citations requires a careful check of cases cited by supporting citations
(e.g., accord, see). Family-resemblance-prototype requires application of the Rosch prototypicality
metric. The factual-prototype-story-category was also left out because (if retrieved by BankXX) it
would always match on both sides of the comparison since it was a category tag assigned by us.
?? There is no doubt that judges and lawyers do have a sense of “best” or “better” case. The problem

is that it is sometimes hard to make such distinctions consistently in a well-defined manner. Since we
wanted the same sense to be used throughout the set of hand-coded answers, we decided to sacrifice
descriptiveness for consistency in the external BankXX-Court comparison experiments.

z If we had used a hand-simulation sense for encoding the opinions, we would have defined the
best BankXX could have done on arguments represented in BankXX’s terms. This would have been
another interesting set of experiments to have done. Since it would have involved a great deal of effort
and we were interested in a true external comparison, we did not perform it.

arti134.tex; 16/04/1997; 13:48; v.6; p.12

EVALUATING A LEGAL ARGUMENT PROGRAM 13

Figure 3. Regions of interest in BankXX-Court experiments: cases and theories found by both
BankXX and the opinions (overlap), those found in the opinion but not by BankXX (missed),
and those found by BankXX but not in the opinion (additional).

3.1.2. Comparing BankXX output with the hand-coded case opinions

At this new coarser-grained level of representation, the arguments output by the
program and those encoded by hand from actual court opinions were compared
automatically. For each aggregated argument piece a comparison module listed the
items that were:
(a) overlap – included in both BankXX’s output and the hand-coded argument;
(b) missed – included in the hand-coded argument but not output by BankXX;
(c) additional – output by BankXX but not included in the hand-coded argument.

This breakdown provides a qualitative sense of how well the program has performed
in analyzing a given case. See Figures 3 and 4.

To get a quantitative measure of comparison, we calculate the traditional pre-
cision and recall measures used in information retrieval (Salton, 1989) with the
hand-coded argument serving as the benchmark against which BankXX is mea-
sured. In other words, an item is deemed “correct” if it occurs in the hand-coded
answer.

In terms of overlap, missed, and additional cases, the standard definitions of
precision and recall are:
1. recall is the fraction of correct items that were retrieved by BankXX:

r = |overlap| / |missed [overlap| = |overlap| / |hand-coded answer|
2. precision is the fraction of items retrieved by BankXX that are correct:

p = |overlap| / |additional [overlap| = |overlap| / |BankXX output|
We calculate precision and recall separately for each of the four aggregated

argument pieces used in the external comparisons. For example, for the data shown
in Figure 4, precision is 4/5 and recall is 4/4 on leading-cited-cases.

We do not employ so-called average precision scores. In 11-point average
precision, for instance, one calculates precision scores at 11 points: when no
relevant items have been retrieved, when 10% of the relevant items has been
retrieved, when 20% of the relevant items has been retrieved, and so on, through

arti134.tex; 16/04/1997; 13:48; v.6; p.13

14 E.L. RISSLAND ET AL.

AGGREGATED-THEORIES:
OVERLAP MISSED ADDITIONAL

ALL-THE-FACTS-AND- OLD-BANKRUPTCY-
CIRCUMSTANCES ACT-GOOD-FAITH-

DEFINITION

LEADING-CITED-CASES:
OVERLAP MISSED ADDITIONAL
ESTUS IACOVONI
DEANS
GOEB
RIMGALE

AGGREGATED-PRO-CASES:
OVERLAP MISSED ADDITIONAL
ESTUS KULL BURRELL
HEARD CHURA

IACOVONI

AGGREGATED-CONTRARY-CASES:
OVERLAP MISSED ADDITIONAL
DEANS BELLGRAPH GOEB
RIMGALE BARNES

Figure 4. Comparison of the argument generated by BankXX/AP with the hand-coded version
of the Kitchens case using aggregated argument pieces. BankXX filtered for dates during-
processing. The point of view taken by BankXX (“pro”) was that of the creditor who won in
the actual case.

100% of the relevant items retrieved (Salton and McGill, 1983). These 11 precision
values are then averaged.

Use of average precision would require us to make several assumptions that are
not valid in the BankXX context. First, calculation of average precision requires
that the retrieved items are ordered (e.g., by relevance scores) so that one can do
these calculations by working down the list of retrieved items appropriately. For
instance, to get the precision value when 20% of the relevant items have been
retrieved, one works down the ordering until 20% of the relevant items have been
retrieved – along with many non-relevant items as well – and then calculates the
precision. By contrast, items retrieved by BankXX are not ordered. Although they
are grouped into argument pieces, there is no relevance score attached to a retrieved
item. Second, in our context, we typically have only 3 to 5 items in the answer
key; no answer has more than 8 items (see Table III in Section 3.5). Use of average
precision would cause us to ask about retrieval at small fractional levels (e.g., the
precision achieved when 2.4 relevant items have been retrieved). This might lead
to misleading results. Third, in BankXX we cannot assume that we always have

arti134.tex; 16/04/1997; 13:48; v.6; p.14

EVALUATING A LEGAL ARGUMENT PROGRAM 15

BankXX’s answer
Coded Answer empty non-empty
empty (A) p = 0/0 r = 0/0 (B) p = 0 r = 0/0

(N = 21) (N = 90)
non-empty (C) p = 0/0 r = 0 (D) as defined

(N = 3) (N = 546)

Figure 5. The possible combinations of empty/non-empty court and BankXX answers. N
is the number of occurrences out of the 660 possible data points from all three BankXX
configurations.

enough resources to retrieve 100% of the relevant items. Especially in BankXX/AP
there are fill limits that in most cases prevent 100% recall.

For these reasons, we do not employ average precision. Instead, we calculate
recall and precision scores on each of the 55 individual problems we run, and then
average them. We compute these averages for each of the four aggregated argument
pieces and for each of the three configurations of BankXX.

3.1.3. Precision-recall scores and empty answers

In the case of ratios of 0/0, precision and recall scores are undefined. These occur
when either the hand-coded answer is empty or BankXX’s answer is empty.? The
matrix in Figure 5 sums up the possibilities.

For instance, a recall value cannot be computed when there are no items listed
in the hand-encoding of the court opinion (cells (A) and (B) of the matrix). The
numerator is 0 since the intersection of those items retrieved by BankXX and
those listed in the hand-encoded answer – the null set – is the null set, and the
denominator is 0 since BankXX has not missed any items. Thus for a case with an
empty encoded answer, the recall ratio is 0/0, an undefined value. The problem of
empty answers with concomitant undefined recall values occurred many times in
our experiments (N = 111 or about 17% of the possible data points). Twenty of our
cases had at least one argument piece that was empty.?? The problem of undefined
recall scores does not arise with non-empty answers.

? When we speak of a BankXX answer, we mean the answer for a particular aggregated argument
piece with respect to a particular configuration of BankXX. Since there are 4 aggregated argument
pieces, 3 configurations of BankXX, and 55 cases, there are 660 BankXX answers produced in this
set of experiments. Of course, there are only 220 (4� 55) hand-coded answers since these are the
same regardless of BankXX configuration.
?? In the BankXX corpus of 55 cases, there were 37 aggregated-argument pieces having empty

hand-coded answers: 12 cases had no leading-cited-cases, 8 had no aggregated-same-side-cases, 13
had no aggregated-contrary-cases, 4 had no aggregated-theories. See Table III in Section 3.5. Thus,
there are 111 (3 � 37) instances of empty hand-coded answers in our BankXX-Court comparison
experiments over the three configurations. Many cases had more than one empty aggregated argument
piece.

arti134.tex; 16/04/1997; 13:48; v.6; p.15

16 E.L. RISSLAND ET AL.

For a case with an empty hand-coded answer, if BankXX retrieves no items,
the precision ratio will also be 0/0 (cell (A) of the matrix). This occurred very
infrequently (N = 21 or about 3%) and only with cases decided in 1980 or 1981.

However, note that with an empty hand-coded answer, precision will be 0% if
BankXX retrieves any items whatsoever – they’ll all be “additional” – cell (B) of
the matrix. Since a BankXX answer is almost never empty, this phenomenon of
p = 0 on empty hand-coded answers occurred many times (N = 90 or about 14% of
all the answers). Approximately two-thirds of these situations occurred with early
cases (i.e., case decided in 1980 through 1983), when there were few precedents
available to cite.?

For a non-empty hand-coded answer, the precision ratio can also be undefined
when BankXX’s answer is empty since in this situation, both the overlap and
additional item sets will be empty (cell (C) of the matrix). (N.B., in this case recall
will 0%.) This problem almost never happens, since BankXX is designed to retrieve
as much information as its resource limits allow. It occurred extremely infrequently
(N = 3 or less than 0.5%) – and only with the earliest (1980) cases.?? What caused
BankXX to produce its few empty answers was the lack of date-appropriate items.
If few items can pass through the date filter – which is the situation with the earliest
cases – few can be opened, let alone harvested (if few can be called, fewer can be
chosen).

If BankXX produces a non-empty answer with no overlap with a non-empty
hand-coded answer – what we call a skew answer – both precision and recall will
be 0 (as they should be). Of the (546) instances where both precision and recall
values are defined (cell (D) of the matrix), this problem of skew “double-0” answers
happened quite a bit (107 times). It is very much related to the sparseness of some
cases.z It could be called a needle-in-the-haystack problem. It occurred the most
with aggregated-theories where 50% of all such skew answers occurred. Double-0
answers occurred the least on BankXX/NT and the most on BankXX/AF.zz

In summary, if the hand-coded answer is empty (regardless of whether
BankXX’s answer is empty or not), recall is undefined. If BankXX’s answer is

? Of the 90 scores in the cell (B) category, 61 involved early (1980 through 1983) cases. With
BankXX/NT 71% of such cell (B) scores occurred with early cases, with BankXX/AP, 64%, and
with BankXX/AF, 67%. With respect to argument pieces: 75% (9 of 12) of such aggregated-theory
scores, and 67% (52 of 78) of such scores on the three case-related argument pieces occurred with
early cases. There is quite a strong tie between 0%-precision-on-empty-cases and the early cases. In
fact, earliness and sparseness are not unrelated but tend to co-occur. Over 50% of the early cases are
empty or “sparse” (i.e., just have 1 or 2 items in hand-coded argument-piece categories) and 50% of
empty or sparse cases are early. This is not surprising.
?? It occurred on only 3 of the 660 possible instances, and only with two 1980 cases (Heard, Terry).

For instance, Terry had 1 leading-cited-case and BankXX missed it and found no other alternatives.
z With BankXX/NT, 18 of 24 (75%) of the double-0 answers involved sparse cases; with

BankXX/AP, 29 of 36 (81%); and with BankXX/AF, 36 of 47 (77%). See the discussion of sparseness
in Section 3.5.

zz Of 220 possible instances in each configuration, it occurred on 11% (N = 24) of the instances
with BankXX/NT; 16% (N = 36) with BankXX/AP and 21% (N = 47) with BankXX/AF.

arti134.tex; 16/04/1997; 13:48; v.6; p.16

EVALUATING A LEGAL ARGUMENT PROGRAM 17

empty (regardless of whether the hand-coded answer is empty or not), precision is
undefined. The matrix in Figure 5 sums up the possibilities.

3.1.4. Handling undefined precision and recall ratios

There are two approaches to dealing with undefined values:
1. call them undefined; and do not use them (e.g., in any averaging computations)
2. give BankXX 100% credit, that is, set them to 1.

There are arguments for both options. For instance, if no cases are cited by the
case opinion and none are found by BankXX – resulting in a 0/0 for both precision
and recall – BankXX has done exactly what is called for according to the answer:
BankXX retrieved all the cases there were and no additional ones. That is, it
retrieved exactly what was in the answer and should get 100% for both precision
and recall. Throwing out the datum is somewhat “unfair” to BankXX since this in
effect penalizes BankXX for the lack of a contentful answer in the encoded court
opinion (as it overlaps with BankXX’s knowledge-base).

We have used both approaches and label results accordingly. We indicate the
number of 0/0 situations included/excluded in any averages we compute. It turns
out that there is not much difference between the two approaches in the context of
these experiments except that the second approach leads to slightly higher averages,
which is to be expected.

3.1.5. Propriety of precision and recall as performance measures

In our context of legal argument, the traditional IR assumption of an unequivocal
master answer key is a weighty one. Jurisprudentially, it is problematic to elevate
the cases and theories that are mentioned in a legal opinion as the only “correct”
or “best” ones. It is not even clear from a jurisprudential standpoint what it might
mean to consider case citations as the best or the correct ones. Given the workload
of most courts in the U.S., it is doubtful that judges and their clerks have the time
or the resources to seek out all the possible citations and include only the very
best ones. They may rely for their citations and theories upon briefs written by
attorneys who are equally overburdened and, of course, interested in analyzing the
case from the viewpoint of their clients. While there may be a presumption of the
appropriateness and worth of citations found in U.S. Bankruptcy Court decisions,
the matter is far from proved to the extent necessary to rely on those citations as
providing an answer key. There is no assurance that the court is putting forth the
only or best argument that could be made. It is easy to conceive that an alternative
or even better argument could be made. These possibilities clearly undermine the
appropriateness of treating the opinion as the answer key.

Furthermore, each opinion is the product of an individual judge and clerks. Some
cite many cases in support of their argument; others, few. Some mention only the
legal theory of their particular judicial circuit; others look to other circuits as well.

arti134.tex; 16/04/1997; 13:48; v.6; p.17

18 E.L. RISSLAND ET AL.

We found that earlier decisions – those written when the good faith issue was first
being addressed under the new law – tended to look further afield and compared
more different approaches. Once a number of appeals courts had set standards for
analyzing good faith, opinions tended to look more exclusively to appeals cases
in their own circuit for guidance. This can create mismatches between the criteria,
such as jurisdiction, used by a court in selecting its citations and those used by
BankXX.

In our domain, many of the encoded court opinions are quite skimpy, which
means very small numbers are involved in the precision-recall calculations. (See
Table III in Section 3.5 for sparseness data.) This makes such scores unstable. For
instance, a zero level of recall might reflect the failure of BankXX to find the one
or two cases in the encoded court opinion; finding those one or two cases could
boost recall from 0 to 100%. A low level of precision might reflect the fact that
there are very few cases in the hand-coded answer and thus very few cases found
by BankXX count as the “correct” cases to have found; any extras drive down the
precision. For example, if there is one case in the overlap and no extras, precision
is 100%; one extra case found by BankXX halves this to 50%, one more cuts it
to 33%. Thus, large differences in recall and precision can be engendered by the
small numbers of items involved.

In general there is a tendency to place too much faith in numerical scores in all
evaluation work. This is especially risky in the case of our precision-recall scores
since the numbers involved are small. For instance, an opinion might mention only
2 or 3 cases. A recall of 0.66 can sound quite seductive whereas 2 of 3 might not
and a precision of 100%, smashing, whereas 2 of 2, maybe not. There is a danger
in thinking of such numbers as more meaningful than they are.

In addition, these measures are problematic for a program like BankXX which
seeks to harvest as much information as its resource limits allow. If BankXX
retrieves information not found in the opinions – which is likely to happen given
its biases and the sparseness of many opinions – this lowers its precision and may
not help its recall, even though it might be doing a good job of legal analysis.

Nevertheless, the theories and cases cited in an opinion do provide a useful
benchmark, and the rest of this section on external evaluation uses hand-coded
opinions as the benchmark against which to measure BankXX’s performance.
However one must bear in the mind the jurisprudential and measurement difficulties
we have touched on.

3.2. COMPARING EVALUATION FUNCTIONS

3.2.1. Qualitative observations

BankXX/NT
Since in this set of experiments, the start node was always taken to be the well-
known Estus case, all the answers produced by BankXX using the node-type eval-
uation function (BankXX/NT) look very similar. BankXX/NT explored the case-

arti134.tex; 16/04/1997; 13:48; v.6; p.18

EVALUATING A LEGAL ARGUMENT PROGRAM 19

domain graph in roughly the same way in each problem case since BankXX/NT in
essence prioritizes its search according to the types of nodes and the types of nodes
connected to Estus (via the neighbor methods) do not change.

What accounted for the small changes among BankXX/NT’s raw output on
problem cases were: (1) the year of the problem case and hence the cases that
could pass through the date filter and be opened; (2) the cases that qualified as
most on-point and hence could be used to initialize the open list; and (3) the
cases that qualified as best cases and could be harvested as aggregated-pro-cases
and aggregated-con-cases, which include best cases. There is more variation in
BankXX/NT’s search in early cases than in late ones, where hardly anything is
passed over due to date-filtering.

In its problem solving, BankXX/NT produced two typical strings of harvested
cases, one pro-debtor and one pro-creditor. It did surprisingly well on recall with
these. Thus, BankXX provides a good baseline, even if it was neither particularly
discriminating nor problem-sensitive.

Concerning the two baseline strings of cases, it is important to note that we
would not have known about them if we had not run BankXX/NT. This raises the
interesting question of how to use such an initial result – produced by not particu-
larly clever but still useful means – as a “learning experience” for the system to be
used later in more clever problem-solving. For instance, a human legal researcher
would eventually learn a standard set of cases to use as an initial guess as to which
cases to cite in a problem. But, of course, these would only serve as an initial
“first-order approximation” to an answer since one cannot get away with a totally
rote use of the same string cites for each problem case.

BankXX/AP and BankXX/AF
The other two configurations of BankXX produced quite different searches for
different problem cases. In particular, BankXX with the argument-piece evaluation
function (BankXX/AP) produced very varied results since its evaluation function is
quite responsive to the problem-solving context. For instance, the argument-piece
evaluation function (see the Technical Appendix) breaks cases down into 6 sub-
categories that depend on the problem case. In contrast, the node-type evaluation
function uses only one broad category for cases and it is independent of the problem
case.

BankXX/AP and BankXX/AF were much less profligate in their output than
BankXX/NT (see Figure 6). In the case of BankXX/AP, fill limits on argument
pieces kept numbers of harvested items quite low, especially for pro and con cases.?

In fact, the sum total of fill limits from the 7 argument pieces that contribute to
the 4 aggregated argument pieces that comprise an answer is 28, less than the limit

? Fill limits relevant to pro and con cases are: 5 best-supporting-cases, 3 supporting-cases, 3
best-contrary-cases, 3 contrary-cases.

arti134.tex; 16/04/1997; 13:48; v.6; p.19

20 E.L. RISSLAND ET AL.

BankXX/NT:
AGGREGATED PRO CASES: Estus, Heard, Kull, Terry, Strong, Sotter, Sheets, Sellers,

Sanders, Iacovoni, Burrell, Chura
AGGREGATED CON CASES: Deans, Barnes, Rimgale, Valentine, Flygare, Goeb, Ali
LEADING-CASES: Estus, Deans, Goeb, Rimgale, Iacovoni
THEORIES: Old-Bankruptcy-Act, Kitchens-Kull Theory

BankXX/AP:
AGGREGATED PRO CASES: Estus, Heard, Burrell, Chura, Iacovoni
AGGREGATED CON CASES: Deans, Rimgale, Goeb
LEADING-CASES: Estus, Deans, Goeb, Rimgale, Iacovoni
THEORIES: Old-Bankruptcy-Act

BankXX/AF:
AGGREGATED PRO CASES: Estus, Burrell, Chura
AGGREGATED CON CASES: Deans, Barnes, Goeb, Ali
LEADING-CASES: Estus, Deans, Goeb
THEORIES: Kitchens-Kull Theory

Figure 6. Sample BankXX output from the Kitchens (1983) case.

of 30 closed nodes.? This guarantees small answers for BankXX/AP. Output from
BankXX/AF was also comparatively small, not because of any limits on items
harvested, but because of resource limitations since computing with argument
factors is time-consuming.

Note these observations – larger, fairly rote, answers under BankXX/NT and
smaller, problem-sensitive answers under BankXX/AP and BankXX/AF – suggest
a classic trade-off due to differences in how knowledge-rich the evaluation functions
are: larger but lesser quality answers with BankXX/NT and smaller but higher
quality answers with BankXX/AP or BankXX/AF. Analogous observations arise
in the precision-recall data, explored in the detailed in following sections.

Qualitative observations on system performance can be shown in histograms that
record the number of objects in the OVERLAP, MISSED and ADDITIONAL categories.
These give a rough idea of how BankXX output compares with the hand-coded
arguments. Figure 7 shows histograms for each of the four aggregated argument
pieces for BankXX/AP. The two other BankXX configurations produced similar
sets of histograms.

Each histogram summarizes BankXX/AP’s performance on all 55 cases treated
as de novo problems (case names are omitted). The vertical axis indicates the
number of items retrieved. Everything above the zero line represents items retrieved
by BankXX/AP, with the dark gray part of a bar representing those retrieved by
BankXX/AP and mentioned in the opinion (i.e., the OVERLAP). The lightly shaded
portion represents items retrieved by BankXX/AP that were not mentioned in the

? Since an individual item can be harvested by more than one argument piece, BankXX/AP is
likely to throw away some of the information it finds. For instance, a best case can be used by two
argument pieces; if it is also a leading case, three.

arti134.tex; 16/04/1997; 13:48; v.6; p.20

EVALUATING A LEGAL ARGUMENT PROGRAM 21

Figure 7a. Histogram showing for each of the 55 problem cases the number of items that were
in the overlap, missed and additional categories for the aggregated-pro-cases argument piece
for BankXX/AP.

Figure 7b. Histogram showing for each of the 55 problem cases the number of items that were
in the overlap, missed and additional categories for the aggregated-con-cases argument piece
for BankXX/AP.

opinion (i.e., ADDITIONAL items). The black part of the bar below the zero line
represents items mentioned in the opinion that were not retrieved by BankXX/AP
(i.e., the MISSED items). Graphically, precision is the proportion of dark gray out
of the total bar above the zero; recall is the proportion of dark gray out of the
combined dark gray and black parts of the bar.

Bars are organized from left to right from highest to lowest recall and within
a given recall band from highest to lowest precision, and within that from highest
to lowest absolute number of objects in the overlap between BankXX’s output and

arti134.tex; 16/04/1997; 13:48; v.6; p.21

22 E.L. RISSLAND ET AL.

Figure 7c. Histogram showing for each of the 55 problem cases the number of items that were
in the overlap, missed and additional categories for the leading-cited-cases argument piece for
BankXX/AP.

Figure 7d. Histogram showing for each of the 55 problem cases the number of items that were
in the overlap, missed and additional categories for the aggregated-theories argument piece
for BankXX/AP.

the hand-coded answer. This ordering means that cases do not appear in the same
order in the histograms. In addition, some bars toward the far left may be empty
due to an empty hand-coded answer and/or empty BankXX output since we are
using the convention here that the undefined value of 0/0 is set to 1.

Notice that many cases display low levels of overlap, which can translate into
low values for recall and precision. This often occurred because many of the hand-
coded answers contain very small numbers of cases or theories (see Section 3.5).
This sparseness of the answer sets makes it hard for there to be much shared
between BankXX and the answers.

arti134.tex; 16/04/1997; 13:48; v.6; p.22

EVALUATING A LEGAL ARGUMENT PROGRAM 23

Ta
bl

e
I.

A
ve

ra
ge

d
pr

ec
is

io
n

an
d

re
ca

ll
va

lu
es

w
it

h
un

de
fi

ne
d

ra
ti

os
se

t
to

1.
A

ve
ra

ge
s

ta
ke

n
on

ly
w

he
n

a
va

lu
e

is
de

fi
ne

d
ar

e
gi

ve
n

in
pa

re
nt

he
se

s;
th

e
nu

m
be

r
us

ed
in

th
es

e
av

er
ag

e
is

gi
ve

n
su

bs
cr

ip
ts

.

A
ve

ra
ge

d
pr

ec
is

io
n

an
d

re
ca

ll
pe

rc
en

ta
ge

s
ac

ro
ss

al
lc

as
es

A
G

G
’D

-P
R

O
-C

A
SE

S
A

G
G

’D
-C

O
N

-C
A

SE
S

L
E

A
D

IN
G

-C
A

SE
S

A
G

G
’D

-T
H

E
O

R
IE

S

B
an

kX
X

/N
T

p
=

24
(2

3 5
4
)

r
=

76
(7

2 4
7
)

p
=

23
r

=
84

(7
9 4

2
)

p
=

46
(4

5 5
4
)

r
=

99
(9

9 4
3
)

p
=

23
r

=
53

(4
9 5

1
)

B
an

kX
X

/A
P

p
=

32
(3

0 5
3
)

r
=

55
(4

8 4
7
)

p
=

42
(3

3 4
8
)

r
=

64
(5

3 4
2
)

p
=

46
(4

5 5
4
)

r
=

99
(9

9 4
3
)

p
=

21
r

=
43

(3
8 5

1
)

B
an

kX
X

/A
F

p
=

30
(2

6 5
2
)

r
=

56
(4

8 4
7
)

p
=

33
(2

6 5
0
)

r
=

63
(5

2 4
2
)

p
=

55
(5

2 5
1
)

r
=

78
(7

2 4
3
)

p
=

26
r

=
38

(3
3 5

1
)

arti134.tex; 16/04/1997; 13:48; v.6; p.23

24 E.L. RISSLAND ET AL.

Figure 8. Averaged precision and recall values for the four aggregated argument pieces for
BankXX/NT, BankXX/AP, and BankXX/AF. Undefined ratios excluded from the average.

3.2.2. Quantitative precision-recall analysis

Another way to examine the data is to compute precision-recall statistics. Averaging
precision and recall over the case base smoothes out the vagaries of any individual
scores. Averaged precision and recall results for the BankXX-Court comparisons
are shown in Table I (with both treatments of undefined values) and in Figure 8 on
a precision-recall plot (with undefined values ignored).

Note, when undefined precision/recall ratios are set to 1, a few individual scores
arguably can be said to be “artificially” high. Thus, to give a more conservative
measure of performance – one that probably undervalues BankXX performance
on empty cases – Table I also gives averages when undefined values are excluded
from the averages.?

Recall scores for BankXX/NT lie at or above those for both BankXX/AP and
BankXX/AF. In fact, with one small exception, all the averaged recall values for
each of the four aggregated argument pieces for BankXX/NT lie at or above the
corresponding values for BankXX/AP which in turn lie at or above those for
BankXX/AF. The exception occurs with aggregated-pro-cases, when undefined

? The presence of so many empty or nearly empty cases motivated us to re-examine our results
by considering only “meaty” cases, those cases having hand-coded answers with numbers of items
above a certain threshold. (N.B., p = 0 on an empty answer.) See Section 3.4 below. It also motivated
us to examine performance with respect to degrees of sparseness. See Section 3.5 below.

arti134.tex; 16/04/1997; 13:48; v.6; p.24

EVALUATING A LEGAL ARGUMENT PROGRAM 25

values are set to 1. There are no exceptions when undefined values are ignored.
Note, that sometimes the differences in scores are quite small. In summary, one
can say:

r(BankXX/NT)� r(BankXX/AP)� r(BankXX/AF)

(with only 1 exception)

Precision scores for BankXX/NT lie below those for both BankXX/AP and
BankXX/AF, with one exception on aggregated-theories. Precision on leading-
cases and aggregated-theories with BankXX/AP is less than with BankXX/AF.
However, on the two argument pieces concerning cases – aggregated-con-cases
and aggregated-pro-cases – the reverse is true. Thus, there is not a monotonic
relation among precision scores as there is with recall scores. These observations
hold regardless of the way in which undefined scores are handled. In summary, we
can say:

p(BankXX/NT)� p(BankXX/AP), p(BankXX/AF)

(with only 1 exception)

Between BankXX/NT and BankXX/AP there are big upwards jumps in preci-
sion for aggregated-con-cases (where it nearly doubles) and aggregated-pro-cases
accompanied by big falls in recall. The precision-recall values for leading-cases
are identical for BankXX/NT and BankXX/AP. For aggregated-theories, there is
downward change in both precision and recall. See Table I.

Between BankXX/AP and BankXX/AF, significant differences (about 20% rel-
ative change) occur for leading-cases: precision jumps up and recall down. The
same relative changes are seen with aggregated-theories but they are not as large for
recall. Precision and recall scores on both aggregated-pro-cases and aggregated-
con-cases present exceptions to the general pattern of increasing precision accom-
panied by decreasing recall. There is a minuscule change in recall but a significant
drop in precision on aggregated-con-cases. Scores on aggregated-pro-cases are
nearly the same.

With respect to the individual argument pieces, in all three configurations of
BankXX, highest recall and precision were found for leading-cases, followed by
aggregated-con-cases, aggregated-pro-cases then aggregated-theories, with one
small exception. The exception occurred with precision with BankXX/NT on
aggregated-pro-cases. These observations hold no matter how undefined ratios
are handled. Thus, in general BankXX does best on leading cases, followed by con
and pro cases, followed by theories:

p(leading-cases) �

p(aggregated-con-cases)�

p(aggregated-pro-cases)�

p(aggregated-theories)

arti134.tex; 16/04/1997; 13:48; v.6; p.25

26 E.L. RISSLAND ET AL.

r(leading-cases) �

r(aggregated-con-cases)�

r(aggregated-pro-cases)�

r(aggregated-theories)

(in all 3 configurations, with only 1 exception)

We interpret the high recall and precision on leading-cases as follows. Since the
same small group of leading cases is cited repeatedly in the opinions – that’s
what makes them leading cases – the chance that a given leading case harvested
by BankXX is also mentioned in the opinion is very high. In other words, a
harvested leading case is likely to be in the overlap with the hand-coded answer.
Furthermore, since leading cases are so well woven into the case-domain graph,
BankXX is unlikely to miss any. For the other argument pieces, there is a much
wider range in the amount of information mentioned in the opinions and in how
well they are tied into the network of domain knowledge: hence a much wider
range in precision-recall scores.

Low precision and recall scores on aggregated-theories are due to the small
OVERLAP between BankXX and the court opinions on aggregated-theories in con-
cert with large ADDITIONAL and MISSED sets in the comparisons (see Figure 7d).
We feel several factors contribute to this situation: (i) many opinions do not cite a
large number of theories; (ii) there is a relatively high number of legal theories (18)
in BankXX’s corpus of 55 cases; and (iii) many theories are very similar (in terms
of their defining factors) and are nearly “synonymous” since they refer to the same
legal ideas.

Synonymy of theories means that both BankXX and the opinion could be citing
essentially the same theory without using the same name. Since the match used in
the comparisons is totally literal, such a citation would not show in the overlap,
and thus would hurt both recall and precision. The program receives no credit for
retrieving a useful but uncited or synonymous theory. A metric to measure the
similarity of the retrieved theory to the one actually applied by a court would be
required to make this determination. For instance, one could measure similarity in
terms of sets of shared cases that have applied the theories or sets of shared factors
that define them.

One way to examine the data further is to look at the results from the 55 cases
sorted according to ranges of achieved performance. For instance, one can look
at the number of cases that have achieved a recall score of 90% or better on a
particular argument piece. Figure 9a presents a graph that shows the number of
cases achieving recall performance at or above decile intervals: 0, 10, 20%, etc.
for BankXX/AP for the four aggregated argument pieces. Figure 9b shows the
analogous graph for precision. The distribution of results was similar with the
other two evaluation functions.

arti134.tex; 16/04/1997; 13:48; v.6; p.26

EVALUATING A LEGAL ARGUMENT PROGRAM 27

Figure 9a. Graph showing the number of problem cases that display a given or better recall
level on the four aggregated pieces with BankXX/AP. Recall values of 0/0 are defined to be 1.

Figure 9b. Graph showing the number of problem cases that display a given or better precision
level on the four aggregated pie ces with BankXX/AP. Precision values of 0/0 are defined to
be 1.

arti134.tex; 16/04/1997; 13:48; v.6; p.27

28 E.L. RISSLAND ET AL.

With regard to recall, the leading-cited-cases argument piece, uniformly high
recall performance is observed; almost all problem cases achieved a near perfect
level of recall. Except for leading-cases, levels of recall higher than 0.7 are not fre-
quently observed. For precision, fewer cases achieve similar levels of performance.

Looking at results achieved by 50% of the cases (i.e., at the 27-28 number-of-
cases level) provides the medians:

Median Recall Median Precision

aggregated-pro-cases 55% or better 30% or better
aggregated-con-cases 65% or better 30% or better
leading-cases 95% or better 45% or better
aggregated-theories 50% or better 20% or better

Comparing these medians with the averages (in Table I) gives an indication of
the distribution of scores. Except for recall on aggregated-theories, and precision
on aggregated-con-cases, the medians are about equal to the averages, which means
that the distribution of scores is not particularly skewed.

For theories, there is more of a concentration of low recall scores; for con cases,
a higher concentration of high precision scores. In general, for precision, there is a
shift to lower median scores, which indicates that there is a greater concentration
of cases with lower precision scores. (See Figure 9b vs. Figure 9a.)

arti134.tex; 16/04/1997; 13:48; v.6; p.28

EVALUATING A LEGAL ARGUMENT PROGRAM 29

Summary for Section 3.2

Among the three configurations of BankXX, there was a general pattern for
precision and recall scores, averaged over all 55 cases in the BankXX corpus:

precision(BankXX/NT)� precision (BankXX/AP)and precision(BankXX/AF)

recall(BankXX/NT)� recall(BankXX/AP)� recall(BankXX/AF)

These inequalities held with rare exception across all argument pieces no matter
which way undefined values were handled.? For precision, there were too many
significant exceptions to allow us to observe a three-way monotonic pattern.??

Note, in many cases the differences between the scores were small.
Thus, across all argument pieces, BankXX/NT displayed the highest of levels of
recall and the lowest levels of precision while BankXX/AP and BankXX/AF dis-
played the highest levels of precision and lowest recall. This shows a trade-off in
precision and recall between BankXX/NT and BankXX/AP and/or BankXX/AF.
In other words, BankXX/NT was not very discriminating but produced good
coverage of the hand-coded answer whereas BankXX/AP and BankXX/AF were
discriminating but at the expense of overall coverage.
On individual argument pieces, across all three configurations of BankXX, we
found a highly consistent monotonic pattern of precision and recall scores:z

leading-cases �

aggregated-con-cases�

aggregated-pro-cases�

aggregated-theories

In addition, BankXX/NT tended to produce the same answer for every problem
case, whereas BankXX/AP and Bank/AF were quite problem-sensitive.

3.3. QUALITATIVE OBSERVATIONS: A MORE DETAILED LOOK

Our overall qualitative observations are also borne out by close examination of
the items in the OVERLAP, MISSED, and ADDITIONAL categories produced for the
BankXX-Court comparisons. The observations that we summarize here were made
by closely inspecting output from each of the three BankXX configurations on the
set of the twenty most frequently cited cases, the so-called Top20 cases.

? There was one small exception to the precision pattern: aggregated-theories under BankXX/AP.
There was one small exception to the recall pattern: aggregated-pro-cases under BankXX/AF.
?? There are 3 exceptions: in BankXX/AP on aggregated-theories, and in BankXX/AF on

aggregated-con-cases and aggregated-pro-cases.
z There was one small exception: aggregated-pro-cases under BankXX/NT.

arti134.tex; 16/04/1997; 13:48; v.6; p.29

30 E.L. RISSLAND ET AL.

For all argument pieces:
Missed-items(BankXX/NT)�Missed-items(BankXX/AP)
Missed-items(BankXX/NT)�Missed-items(BankXX/AF)

For all leading-cases and theories instances and 70% of the pro and con case instances:
Missed-items(BankXX/NT)

�Missed-items(BankXX/AP)
�Missed-items(BankXX/AF)

Figure 10. Relationship in the Top20 among the sets of MISSED items for BankXX/NT,
BankXX/AP, and BankXX/AF.

MISSED items
For each of the four aggregated argument pieces, we always found that the sets of
items MISSED by BankXX/NT are contained in those MISSED by BankXX/AP as
well as in those MISSED by BankXX/AF. Close inspection showed that there were
not significant differences for the theories and leading cases missed in the three
versions but that there were big differences in pro and con case categories.

In all of the Top20 cases, for the aggregated-theories and leading-case argu-
ment pieces, there was actually a three-way monotonic chain of containments.
Theories or leading cases MISSED by BankXX/NT were a subset of those MISSED

by BankXX/AP which were in turn a subset of those MISSED by BankXX/AF.
For aggregated-theories and leading-cases, all three versions of BankXX missed

about the same items: virtually no leading cases were missed and the same small
set of two or three theories were missed across the board. This is reflected in the
nearly perfect recall scores for leading-cases (see Table II in Section 3.4). Since on
average cases have only two or three theories in the encoded answer (see Table III
in Section 3.5), consistently missing two or three results in low recall scores for
aggregated-theories.

For the aggregated-pro-cases and aggregated-con-cases argument pieces, there
were some differences in the sets of MISSED cases. All three versions did rather
well in terms of not missing many cases. In about a third of the Top20 cases, no
pro or con cases were missed by any version of BankXX.? About half the time, all
three versions of BankXX missed exactly the same cases.

In general, BankXX/NT did the best at not missing any cases. On nearly three-
quarters of the Top20 cases, BankXX/NT missed no pro or con cases. This was
better than either BankXX/AP or BankXX/AF, which were not that different from
each other. A three-way monotonic nesting of MISSED cases held about three-
quarters of the time.

These observations are summed up in Figure 10.

? For the picture across the entire 55 case corpus (with Bank XX/AP), see Figures 7a and 7b.

arti134.tex; 16/04/1997; 13:48; v.6; p.30

EVALUATING A LEGAL ARGUMENT PROGRAM 31

ADDITIONAL items
One would expect to find the complementary relations between sets of additional
cases. We did.

With few exceptions, we found that the set of ADDITIONAL items found by
BankXX/NT contained those found by BankXX/AP as well as those found by
BankXX/AF. Unlike the sets of MISSED items, the sets of ADDITIONAL items were
rarely empty. The uniform presence of non-empty ADDITIONAL sets demonstrates
BankXX’s drive to retrieve information.?

As we found for MISSED items, there was often a monotonic chain: ADDITIONAL

items found by BankXX/NT contained those found by BankXX/AP which in turn
contained those found by BankXX/AF. Again we found that the three-way chain
was most robust on leading-cases and aggregated-theories. It held on all 20 Top20
cases for the leading-cases category and on three-quarters (15 of 20) of the Top20
cases in the aggregated-theories category. Again, there was a steady stream of 2 or
3 ADDITIONAL theories and a great deal of similarity among the sets of ADDITIONAL

theories.
We note that for leading-cases, BankXX tended to find all 5 leading cases, and

thus any leading case not mentioned in the hand-coded answer showed up on the
ADDITIONAL set and lowered precision. Since no case mentioned all 5 leading cases
in its hand-coded opinion (see Table III in Section 3.5), this means that BankXX
never achieved 100% precision.??

For aggregated-pro-cases and aggregated-con-cases, BankXX/NT found ADDI-
TIONAL items in every Top20 case. BankXX/AP and BankXX/AF also frequently
found ADDITIONAL cases. In other words, regardless of version, BankXX typically
found ADDITIONAL cases.

In more than half the Top20 cases, the set of ADDITIONAL cases found
by BankXX/NT was much larger than those sets for either BankXX/AP or
BankXX/AF. In general, the set of ADDITIONAL aggregated-pro-cases was larg-
er than the set of ADDITIONAL aggregated-con-cases.

As we found for MISSED items, a monotonic chain of nesting of the ADDITIONAL

sets for aggregated-pro-cases and aggregated-con-cases was found less often. It
occurred in about half the Top20 cases.

These observations are summed up in Figure 11.
In summary, close examination of the data on MISSED and ADDITIONAL sets

shows that BankXX/NT is less selective than either BankXX/AP and BankXX/AF.
There are larger ADDITIONAL and smaller MISSED sets with BankXX/NT than with
either BankXX/AP or BankXX/AF. We posit two reasons for this:

? The picture is similar across the entire 55 case corpus. See Figure 7 (for BankXX/AP).
?? For example, if in a problem case, BankXX found all 5 leading cases and the answer only

mentioned 4, precision would be 0.8; if only 3 were mentioned, precision would be 0.6, etc.

arti134.tex; 16/04/1997; 13:48; v.6; p.31

32 E.L. RISSLAND ET AL.

For all argument pieces:
Additional-items(BankXX/NT)� Additional-items(BankXX/AP)
Additional-items(BankXX/NT)� Additional-items(BankXX/AF)

For all leading-cases, 75% of theories, and about 50% of pro and con cases:
Additional-items (BankXX/NT)

� Additional-items(BankXX/AP)
� Additional-items(BankXX/AF)

Figure 11. Relationships in the Top20 among the sets of ADDITIONAL items found by
BankXX/NT, BankXX/AP, and BankXX/AF.

1. BankXX/NT uses a less discriminating evaluation function than the others;
2. BankXX/NT has no fill limits on the harvesting of items for the argument pieces

as BankXX/AP does and no significant computational burden as BankXX/AF
does.

In addition, BankXX/NT and BankXX/AF sometimes harvested very similar sets
of cases even though they followed quite different paths through the case-domain
graph in doing so as evidenced by the order and content of their OPEN and CLOSED
lists. All three configurations of BankXX tended to exhibit similarities in their sets
of MISSED and ADDITIONAL cases for the leading-cases and aggregated-theories
argument pieces. They varied most on aggregated-pro-cases and aggregated-con-
cases. The persistent tendency of all versions of BankXX to find ADDITIONAL items
in all argument pieces is reflected in the low precision scores that BankXX received
across the board (see Table II).

Our qualitative analysis has shown that BankXX/NT and BankXX/AP or
BankXX/AF exhibit a classic trade-off in selectivity and coverage, especially in the
pro and con case categories. This is the same trade-off that was seen quantitatively
in precision-recall values in the last section (see Table I).

arti134.tex; 16/04/1997; 13:48; v.6; p.32

EVALUATING A LEGAL ARGUMENT PROGRAM 33

Summary for Section 3.3

Detailed analysis of the MISSED and ADDITIONAL cases for each of the 20 cases
in the set of Top20 cases showed that BankXX/NT misses fewer items in the
hand-coded answers than either BankXX/AP or BankXX/AF. BankXX/NT also
finds more additional items than the other two configurations:

For all argument pieces:
Additional-items(BankXX/NT)� Additional-items(BankXX/AP)
Additional-items(BankXX/NT)� Additional-items(BankXX/AF)

and

Missed-items(BankXX/NT)�Missed-items(BankXX/AP)
Missed-items(BankXX/NT)�Missed-items(BankXX/AF)

In many situations there is a three-fold nesting (see Figures 10 and 11).
MISSED and ADDITIONAL sets for leading-cases and aggregated-theories were
similar in all three configurations of BankXX. There was much more variation
for aggregated-pro-cases and aggregated-con-cases.
The detailed analysis exhibits qualitatively what was seen in the quantitative
precision-recall observations of the previous section: There is a trade-off in selec-
tivity and coverage between BankXX/NT and both BankXX/AP and BankXX/AF.

3.4. A CLOSER LOOK AT THE QUANTITATIVE ANALYSIS: THE SUBSET
EXPERIMENTS

Our goal in the analysis in this section is to investigate BankXX’s performance
on various types of cases, like appellate cases, and determine whether any gen-
eralizations can be made with respect to them. In particular, we wanted to know
whether the overall precision-recall patterns of the previous sections held on these
particular subsets as well. We especially wanted to examine a group of cases that
were not sparse or empty (and thus suffered from problematic precision and recall
values). The effect of sparseness is examined in detail in the next section. Some of
the minute details about exceptions, numbers of data points, etc., are given in the
footnotes.

In this section, we re-examine BankXX-Court comparison data with respect to
four different subgroups of cases:
1. The Top20 – the set of twenty cases most highly ranked cases according to our

study of leading citations.
2. Meaty cases – the set of cases defined as having in their hand-coded answers:

(a) 3 or more aggregated-pro-cases; and
(b) 3 or more aggregated-con-cases; and

arti134.tex; 16/04/1997; 13:48; v.6; p.33

34 E.L. RISSLAND ET AL.

Table II. Precision and recall values broken out by BankXX configuration, aggregated argument
piece, and special subsets of cases. All values are averages. There are 14Meaty, 20 Top20, 14 Appeals
and 55 All cases. Values in parentheses do not include undefined values.

NT-Precision NT-Recall
Meaty Top20 Appeals All Meaty Top20 Appeals All

Leading Cases 81 52 (4919) 52 46 (4554) Leading Cases 100 97 (9615) 100 (10011) 99 (9943)

Con Cases 45 26 25 23 Con Cases 83 85 (8015) 84 (8212) 84 (7912)

Pro Cases 38 29 29 24 (2354) Pro Cases 77 81 (7617) 79 (7813) 76 (7247)

Theories 26 22 26 23 Theories 39 24 23 53 (4951)

AP-Precision AP-Recall
Meaty Top20 Appeals All Meaty Top20 Appeals All

Leading Cases 81 52 (4919) 52 46 (4554) Leading Cases 100 97 (9715) 100 (10011) 99 (9913)

Con Cases 63 47 (3416) 38 (3412) 42 (3348) Con Cases 53 59 (4615) 53 (4511) 64 (6342)

Pro Cases 45 35 38 32 (3053) Pro Cases 44 63 (5316) 56 (5312) 55 (4847)

Theories 26 22 26 21 Theories 28 24 23 43 (3851)

AF-Precision AF-Recall
Meaty Top20 Appeals All Meaty Top20 Appeals All

Leading Cases 92 65 (5615) 57 (5313) 55 (5251) Leading Cases 71 71 (6215) 71 (6712) 78 (7243)

Con Cases 52 46 (2916) 32 (2712) 33 (2650) Con Cases 61 58 (4415) 58 (5112) 63 (5242)

Pro Cases 39 39 (3619) 38 (3712) 30 (2652) Pro Cases 44 61 (5116) 58 (5513) 56 (4817)

Theories 31 21 28 26 Theories 27 16 21 38 (3351)

(c) 1 or more aggregated-theories; and
(d) 3 or more leading cited cases.
There are 14 meaty cases in our case base.

3. Appellate cases – there are 14 appellate cases in our case base.
4. All – the entire corpus of 55 cases.

In Table II we show averages taken with respect to these different subsets. As before
we show averages taken according to the two ways of treating undefined values:
(1) when undefined ratios are set to 1 and included in the average; and (2) when
undefined ratios are excluded from the average and the average is taken only over
defined ratios. The latter scores are given in parentheses with a subscript indicating
how many scores were included in the average. There are several observations that
can be made about these data. Many involve monotonicity.

3.4.1. Analysis with respect to subsets

In this subsection we analyze our data with respect to subsets and investigate
patterns that depend on them – that is, row monotonicity – in Table II. For precision,
there is a rough monotonicity. For recall, there is no real pattern. Further, for
precision, the maximum score is always – for all BankXX configurations, for all
argument pieces – achieved on the Meaty cases. The situation with recall is very
mixed: there is no subset of cases that clearly outscores the others.

arti134.tex; 16/04/1997; 13:48; v.6; p.34

EVALUATING A LEGAL ARGUMENT PROGRAM 35

Precision: The rows in Table II support an overall impression that precision
scores on Meaty cases are higher than those on both Top20 cases and Appellate
cases, which in turn are both higher than those on All cases:?

p(Meaty) � p(Top20), p(Appellate) � p(All)

This is true no matter how undefined values are handled.
Although there are several exceptions, there is a “full” chain of inequalities in

many rows:

p(Meaty) � p(Top20)� p(Appellate)� p(All)

For unparenthesized values (i.e., when 0/0 scores are set to 1), it holds for half of
the dozen rows in the precision portion of Table II.?? For parenthesized values (i.e.,
when undefined values are ignored), there are only two exceptions.z

In addition, for almost all of the rows in the precision portion of Table II, there is
a pattern of a significant drop off (over 10%) between Meaty and Top20 cases, the
middle two cells are in the same ballpark, and there is another not-so-large drop-off
between Appeals and All cases. The first drop-off can be quite dramatic (e.g., over
40% in con cases with BankXX/NT). In general the drop-offs decrease as one
proceeds down the blocks of Table II representing the different configurations of
BankXX.

Examining the raw outputs that underlie these data, we found that low out-of-
pattern scores can be due to the presence of a high proportion of items with p = 0
precision scores in the cell. These occur because either the hand-coded answer
is empty or there is no overlap between the hand-coded answer and the BankXX
answer. The later phenomenon is associated with sparseness in the hand-coded
answer.zz For example, relatively low scores in all the aggregated-theories cells for
Top20 cases are due to the presence of relatively many more p = 0’s in the Top20
collection than in the other collections.{

In only one row is a break in row monotonicity due to boosting resulting from
setting undefined precision ratios to 1. Undefined precision scores are the result of
an empty answer produced by BankXX. This happens infrequently (only 24 of 660
possible scores; see Figure 5).

? There are 3 out-of-pattern cells: aggregated-theories with BankXX/NT and aggregated-con-
cases with BankXX/AP and BankXX/AF.
?? There are 6 out-of-pattern cells. In each configuration, there is an out-of-pattern low score for

aggregated-theories on Top20 cases. The other exceptions are aggregated-pro-cases and aggregated-
con-cases with BankXX/AP, and on aggregated-con-cases with BankXX/AF.

z Both occur with out-of-pattern low scores on Top20 cases: leading-cases with BankXX/AP and
aggregated-pro-cases with BankXX/AF.

zz There are 197 cases where BankXX gets p = 0 scores. 90 of these occur because the hand-coded
answer is empty. 107 occur because there is no overlap between the hand-coded and BankXX answers.
{ For aggregated-theories with BankXX/NT, 50% of the instances in the Top20 collection score

p = 0 compared with 29% in Meaty, for instance. For BankXX/AP it is 50 vs. 36%. For BankXX/AF,
it is 55 vs. 36%.

arti134.tex; 16/04/1997; 13:48; v.6; p.35

36 E.L. RISSLAND ET AL.

Sometimes an exceptional cell is due to a mix of boosting and lowering. For
example, in the row for aggregated-con-cases under BankXX/AP the score in the
All cell is high compared with that for Appeals. This is due to a combination of
proportionally more boosting by default scores of p = 1 in All than in Appeals and
more lowering by p = 0 scores in Appeals than All.? An indicator of a potential
boosting problem is a large difference between the two ways of computing with
undefined scores, for instance, the scores 33 vs. 42 in the cell for aggregated-con-
cases under BankXX/AP on All. Note that in this row, the scores not using the
undefined ratios – shown in ()’s – are in line with each other.

Recall: With respect to subsets, there is no overall pattern of recall values.
There are too many exceptions – at least one per row – for there to be a pattern of
monotonicity for recall; however the exceptional values are often only a small bit
out of line.

Examination of Table II shows that most of the exceptions occur with the Top20
and All subsets. Many of the out-of-pattern scores are either a little too low or too
high although a few – especially with aggregated-theories on All cases – are very
dramatic. There is also significant gap between aggregated-pro-cases between the
Meaty and Top20 subsets, especially with BankXX/AP and BankXX/AF. Because
of variation in the exceptions, a simple re-arrangement of the columns (e.g., putting
Top20 cases first) will not establish a monotonic pattern.

As with precision, some high out-of-pattern values are due to the use of 1 as a
default value for undefined 0/0 scores. Undefined recall scores are the result of an
empty hand-coded encoded answer. This happens a fair number of times (111 of
660 data points). The presence of so many empty answers in the All category that
are not members of the other subset categories accounts for many of the upward
jumps in recall scores present in the All column entries.

? The percentages of boosting p = 1 scores are: 20% in Top20, 13% in All, 8% in Appeals, and 0%
in Meaty cases. The percentages of lowering p = 0 scores are: 30% in Appeals, 25% in Top20, 24%
in All and 0% in Meaty cases.

arti134.tex; 16/04/1997; 13:48; v.6; p.36

EVALUATING A LEGAL ARGUMENT PROGRAM 37

Summary for Section 3.4.1
Comparisons with respect to subsets (“rows” in Table II)

In all BankXX configurations for all four argument pieces – that is all rows of
the precision portion of Table II – highest precision is achieved on Meaty cases,
without exception. With only a few exceptions, the lowest is achieved on All
cases.? Top20 and Appellate cases tend to fall in between. Thus, generally (no
matter how undefined values are handled):

p(Meaty) � p(Top20), p(Appellate) � p(All)

About half of the time there is a full chain of inequalities: precision on Meaty cases
is higher than precision on Top20 cases, which in turn is higher than precision on
Appellate cases, which in turn is higher than precision on All cases:

p(Meaty) � p(Top20)� p(Appellate)� p(All)

The situation with recall is quite mixed. For instance, Top20 cases often outscore
Meaty ones.

3.4.2. Analysis with respect to argument pieces

There is an overall pattern of inequalities with respect to argument pieces – column
monotonicity – in Table II that holds across all subsets of the BankXX corpus.

Precision: With respect to argument pieces, for all four subsets of case, and
in all three BankXX configurations, there is an overall pattern in precision scores.
Precision on leading-cited-cases is higher than precision on either of the other two
case categories, which, in turn, are higher than precision on aggregated-theories:

p(leading) > p(con), p(pro)� p(theories)

This pattern holds no matter how undefined values are handled.
On the Meaty cases, one can break this down further since higher precision is

always achieved on aggregated-con than on aggregated-pro cases:

p(leading) > p(con) � p(pro) � p(theories)

For Meaty cases, the differences between the scores on the different argument
pieces are always dramatic.

On the set of All cases, there is only one exception to this “full” pattern and it is
a very small one (with BankXX/NT). For All cases the differences between scores

? There are 3 exceptions: In BankXX/NT: aggregated-theories on Top20 cases. In BankXX/AF:
aggregated-theories on Top20 and aggregated-con-cases on Appeals. There are no exceptions with
BankXX/AP.

arti134.tex; 16/04/1997; 13:48; v.6; p.37

38 E.L. RISSLAND ET AL.

are less striking. The pattern does not hold for the Top20 and Appeals subsets where
there are a few exceptions (with BankXX/NT and BankXX/AF).

BankXX/AP is particularly “well-behaved” – especially for unparenthesized
scores – with respect to this full pattern since it holds across all the subsets.
BankXX/AF pretty much fits the pattern – with the exception of scores on the
Appeals cases. With BankXX/NT the reverse seems to hold: higher precision
values are achieved – with the exception of Meaty cases – on pro cases. However,
in BankXX/NT, the differences between the scores in the rows for aggregated-
pro-cases and aggregated-con-cases are not large. In all three configurations of
BankXX, these differences are greater on Meaty and Top20 cases than on Appeals
and All cases.

Recall: With respect to argument pieces, for all subsets and in all three BankXX
configurations, there is an overall pattern in recall scores. Recall on leading-cases
is higher than recall on either of the other two case categories, which, in turn, are
higher than recall on aggregated-theories:

r(leading) > r(con), r(pro) > r(theories)

This pattern holds no matter how undefined values are handled.
For the most part, the pattern can be refined in most cases to be higher recall on

aggregated-con-cases than on aggregated-pro-cases:

r(leading) > r(con) � r(pro) > r(theories)

There are no exceptions to this full pattern for Meaty and All cases regardless of
BankXX configuration and regardless of how undefined scores are handled. Under
BankXX/NT there are no exceptions at all. With BankXX/AP and BankXX/AF
there are few exceptions on Top20 and Appeals.

arti134.tex; 16/04/1997; 13:48; v.6; p.38

EVALUATING A LEGAL ARGUMENT PROGRAM 39

Summary for Section 3.4.2
Comparisons with respect to argument-pieces (“columns” in Table II)

For all configurations of BankXX, for all four subsets of cases, for both pre-
cision and recall, highest performance is achieved on leading-cases, lowest on
aggregated-theories, and in between on other cases (no matter how undefined
values are handled):

leading-cases >

both aggr’d-con-casesand aggr’d-pro-cases�

aggr’d-theories

For all configurations of BankXX on Meaty cases, there is a full four-fold pattern
of scores for both precision and recall (no matter how undefined values are
handled). With only one small exception, this pattern holds on All as well (no
matter how undefined values are handled):

leading-cases > aggr’d-con-cases� aggr’d-pro-cases� aggr’d-theories

There are many exceptions to this pattern in the Top20 and Appeals subsets.

3.4.3. Analysis with respect to configurations

Precision: For all four argument pieces and all four subsets of cases, there is a gen-
eral pattern that precision is lower with BankXX/NT than with either BankXX/AP
or BankXX/AF:?

p(BankXX/NT)� p(BankXX/AP), p(BankXX/AF).

Since there is not a consistent pattern between BankXX/AP and BankXX/AF, there
is no clear three-fold monotonic refinement of the pattern.

Recall: For all four argument pieces and all four subsets of cases, recall is
always higher on BankXX/NT than with either BankXX/AP or BankXX/AF:

r(BankXX/NT)� r(BankXX/AP), r(BankXX/AF).

Since there are several occasions where recall on BankXX/AF is higher than with
BankXX/AP, there is no clear three-fold monotonic pattern, although the pattern is
more prevalent than with precision.

? There are 2 exceptions to this pattern: in BankXX/AP, aggregated-theories with All and in
BankXX/AF, aggregated-theories on Top20 cases.

arti134.tex; 16/04/1997; 13:48; v.6; p.39

40 E.L. RISSLAND ET AL.

Summary for Section 3.4.3
Comparisons with respect to configurations (“blocks” in Table II)

It is a robust result – across all four argument pieces and all four subsets of
cases – that BankXX/NT achieves higher recall but lower precision than either
BankXX/AP or BankXX/AF:

p(BankXX/NT)� p(BankXX/AP), p(BankXX/AF)

r(BankXX/NT)� r(BankXX/AP), r(BankXX/AF)

Thus, there is a classic recall-precision trade-off between BankXX/NT and
BankXX/AP and between BankXX/NT and BankXX/AF.

3.5. CHASING DOWN THE EFFECT OF SPARSE CASES

After examining all the foregoing data, we decided to determine the effect of
sparsenesson BankXX performance. We had noticed that BankXX often performed
best on the meaty cases compared with other subsets of cases (see Section 3.4.1).
Our hypothesis was that BankXX performance was correlated with sparseness,
that is, BankXX performed better on cases having more items in the hand-coded
answers than on cases having fewer items.

To explore this idea, we defined a simple measure of sparseness for an individual
aggregated argument piece of an individual case as:

content-count= number of items in the hand-coded answer?

Meaty cases have a content-count of at least 3 in the three argument pieces con-
taining cases and at least 1 in aggregated-theories (see Section 3.4). With respect
to a particular argument piece, we can group cases into sets of equally sparse – or
contentful – answers. For instance, for the aggregated-pro-cases argument piece, 8
of the 55 cases in the BankXX case base have content-count of 2, that is, there are
2 same-side cases in their answers. The distribution of cases according to content-
count is given in Table III. It is the same, of course, regardless of which version of
BankXX is run since it only depends on the hand-coded answer.

We averaged precision and recall scores over cases at each content-count level,
argument piece by argument piece, that is, over sets of cases affiliated with each
cell in Table III, and then plotted these averaged scores against the content-count
level. Since level 0 – that is, where there are no items in the hand-coded answers
– results in an undefined recall ratio (i.e., 0/0), and thus distorts the averages, no
matter how one copes with it, we omitted it.?? This results in eight plots for each
version of BankXX (see Figure 12).

? Hand-coded answers only include items found in both the opinion and the BankXX knowledge-
base.
?? For the most part, it also results in precision of 0.

arti134.tex; 16/04/1997; 13:48; v.6; p.40

EVALUATING A LEGAL ARGUMENT PROGRAM 41

Table III. Distribution of cases according to content-count levels for each
aggregated argument piece.

content-count 0 1 2 3 4 5 6 7 8 9

pro 8 17 8 6 11 3 1 1 0 0
con 13 14 5 9 8 4 0 1 1 0
leading 12 17 10 1 15 0 na na na na
theories 4 11 17 10 6 4 2 1 0 0

Figure 12. Plots of precision and recall averaged over sets of equal sparseness for BankXX/AF
for all four aggregated argument pieces. Undefined values are excluded from the averages. The
y-axis gives the precision or recall scores; the x-axis, the sparseness levels.

While there are not a lot of data points on these plots, all plots show that overall
precision increases with increased content-level, and recall stays flat or falls off
slightly. That is, BankXX performs better on cases with more items in the hand-
coded answer. This is not a total surprise, of course, since BankXX was designed
to operate in exactly this sort of situation where there are too many items for each
to be explored, that is, one must judiciously pick and choose. BankXX was not
necessarily designed to operate in sparse situations where the challenge is to find
the needle-in-the-haystack.

Thus we have come full circle back to our underlying design assumptions. In
the context for which it was intended – an abundance of items to explore – BankXX
performs best. Of course, the circle we have traveled was somewhat long in that we
needed to find out just how well BankXX performed, and on which type of cases it
performed best. Just because a program is designed to perform in a certain manner

arti134.tex; 16/04/1997; 13:48; v.6; p.41

42 E.L. RISSLAND ET AL.

is no guarantee that it will. However in the case of BankXX we did indeed close
the loop.

4. Evaluation from Knowledge Representation and CBR Perspectives:
Comparing HYPO with BankXX

In this set of experiments we compare BankXX’s retrieval performance with that
of HYPO, a well-known and well-regarded case-based reasoning program, which
operated in the field of trade secrets law (Ashley, 1990; Rissland and Ashley, 1987).
We have not used the HYPO program itself in these comparisons in part because of
technical changes in operating system, source language, and hardware; but we have
re-implemented the core case-retrieval and case-selection methods of HYPO in a
small program we call �HYPO (micro-HYPO). �HYPO consists of HYPO’s core
methods to determine the applicability of dimensions to a fact situation, to create
claim lattices, and to extract most on-point and best cases for a given side from the
claim lattice. There are a number of functionalities of the original HYPO program
that are not present in our �HYPO re-implementation, all of which contributed
to the power of HYPO. These important features include a module to generate
three-ply arguments and the capacity to create telling hypotheticals that probe the
limits of a fact situation.

In this section we describe two experiments. The first experiment evaluates
the performance of �HYPO against the hand-coded court opinions. The second
experiment attempts to determine whether BankXX retrieves legal information that
is present in the hand-coded opinion, but which �HYPO does not retrieve. As the
baseline we always use the standard BankXX/AP configuration with the 10-term
evaluation function, given in the Technical Appendix, with Estus as start node and
limits of 30 closed nodes and 1000 billable seconds.

Before we describe these two experiments, some preparatory discussion is
required to describe our efforts to put BankXX and �HYPO on the same footing
so that their retrieval performance can be compared legitimately. There are two
parts to the preliminary discussion. (1) In Section 4.1 we detail how the definition
of a “best case” varies in the �HYPO, HYPO, and BankXX programs. These
differences are rather small on their face, and somewhat technical, but they are
one aspect that varies between the programs we compare, and therefore should at
least be noted. We doubt that they account for more than a small portion of the
observed differences in retrieval, however. (2) In the second part of the preliminary
discussion, Section 4.2, we describe our policy for putting the output of �HYPO
in a form that can be compared with the hand-coded opinion and with BankXX.
HYPO generated three-ply arguments, not instantiated argument frames like the
hand-coded arguments, and therefore some work must be done to capture�HYPO’s
output in a framework commensurate with the hand-coded arguments.

Unless two programs are very simple and use the same input and output repre-
sentations, trying to compare them can be fraught with caveats and compromises.

arti134.tex; 16/04/1997; 13:48; v.6; p.42

EVALUATING A LEGAL ARGUMENT PROGRAM 43

We shall note these compromises as we describe the experimental design. Part
of the difference in the programs stems from the distinct emphases of the two
projects. The BankXX project emphasizes the retrieval phase of case-based rea-
soning, whereas HYPO emphasizes the importance of inter-case comparison and
post-retrieval generation of 3-ply arguments and hypotheticals from the cases as
well.

On the other hand, putting one program in the framework of another can be
enlightening. For example, HYPO and �HYPO are not search programs; BankXX
is. �HYPO can be placed within the search paradigm, however. This mental exer-
cise reveals that �HYPO and BankXX have different biases when regarded from
the search perspective. By search bias, we mean each program’s preference for
what nodes representing items of legal knowledge to open and close and in what
particular order.

HYPO considers the intersection of dimensions that are present in both a prob-
lem case and retrieved case to sort retrieved cases into a claim lattice, which is
a directed, acyclic graph. If HYPO were regarded as a search program, it might
be thought of as representing the search space with respect to each problem case
– dynamically – as a claim lattice graph. In this view, HYPO uses breadth-first
search to locate the best and most-on point cases within the lattice and for the
most part terminates its search at depth one since it makes little use of cases that
are more than one edge away from the root, which represents the problem node.
Alternatively, all cases in the claim lattice can be considered opened in a search
space consisting of the entire case base, and only those at depth one are closed.
Either way, HYPO demonstrates a bias towards selecting (closing) most on-point
or best cases, that is, cases that have many applicable dimensions shared with a
problem case. These observations apply to �HYPO as well.

BankXX, on the other hand, reflects a different and complex retrieval bias that
is captured by the interaction between its neighbor methods (which determine what
nodes will be considered next), its evaluation functions (which order the nodes)
and its argument pieces (which determine how the information in closed nodes is
amalgamated). For BankXX/AP, there are additional biases stemming from the fill
limits. The search space includes the case-domain-graph but is notably larger than
it because the neighbor methods greatly expand these nodes when they are applied.

In the next section we continue our discussion preliminary to the experiments
by showing how the characterization of “best” and “most on-point” cases varies
between HYPO, �HYPO and BankXX.

4.1. �HYPO AND BANKXX’S HYPO SUBMODULE

As we just noted, BankXX contains certain key HYPO functionalities, such as the
ability to perform dimensional analysis, create a claim lattice, and extract most-on-
point and best cases. BankXX’s HYPO submodule is the same as �HYPO in all
respects except the definition of best case that is used. While �HYPO uses a slight

arti134.tex; 16/04/1997; 13:48; v.6; p.43

44 E.L. RISSLAND ET AL.

relaxation of the original HYPO definition, BankXX’s HYPO submodule applies
a definition that represents a more radical departure from HYPO’s definition.

The precise definition of best case is important to these BankXX experiments
because the aggregated-pro-cases and aggregated-contrary-cases argument pieces
include the best-same-side-cases and best-contrary-cases argument pieces, respec-
tively. The latter argument pieces depend on the definition of best case, of course.
Thus the definition of best case affects the retrieval performance of BankXX.

First, �HYPO and BankXX’s subHYPO module use the same definition as
HYPO for a most on-point case: a case whose applicable dimensions shared with
the problem situation are properly contained in no other case’s set of dimensions
shared with the problem (Ashley, 1990). That is, a most on-point case is a maximal
case in the on-point ordering of cases by set-inclusion on the sets of applicable
dimensions intersected with the dimensions applicable to a problem. The claim
lattice captures this ordering. A most on-point case is thus found in the root node,
which contains the current problem case, or in the first level below the root node.

However, the BankXX HYPO submodule and�HYPO differ in their definitions
of best case. A best case in �HYPO is a case that is: (1) a most on-point case and
(2) decided for the side that is citing the case as its best. This is a slightly different
sense of “best” case from that used in the HYPO. (HYPO also required that a best
case have at least one dimension whose applicability is tagged as advantageous to
the point-of-view taken in the analysis.) In both HYPO and �HYPO it is possible
for there to be no best cases according to this definition, since no most on-point
case may have been decided for the required side.

To ensure that there will be best cases in BankXX, we used a relaxed definition
of a best case. A best case for a given side in BankXX is (1) a maximal case in the
on-point ordering in a claim lattice that consists only of (2) cases decided for the
given side.? In other words, the best cases in BankXX are those decided for a given
side that are closest to the root node, even if they are not most on-point cases.

Thus �HYPO and HYPO use an absolute sense of best: a best case has to be
a most on-point case. BankXX’s HYPO submodule uses a relative sense of best:
no better case can be cited for this side, even if cases for the other side are strictly
better. The definitions are summarized in Figure 13.

�HYPO and BankXX’s HYPO submodule also differ in their computational
details from the original HYPO implementation in some aspects. For instance,
both �HYPO and BankXX use lattice-building algorithms that are derived from
recognizing that a claim lattice is an instance of a Hasse diagram, which is a

? This is tantamount to first restricting all the cases (in the claim lattice) to those for the desired
side and then selecting mopc’s from the restricted lattice. The�HYPO and original HYPO definitions
reverse the order of applying the restrictions: select mopc’s and select same-side cases. The problem
is that these two procedures do not necessarily commute. Note, the only way the BankXX HYPO
submodule’s definition yields no best cases is if there are no cases for the desired point of view. By
comparison, any time there are no same-side cases within the set of mopc’s, there will be no best
cases for HYPO or �HYPO. While this observation is something of a technicality, it does make a
difference in the retrieval of “best” cases.

arti134.tex; 16/04/1997; 13:48; v.6; p.44

EVALUATING A LEGAL ARGUMENT PROGRAM 45

Definitions in �HYPO and BankXX
�HYPO BankXX

Most On-
Point Case maximal case in claim lattice maximal case in claim lattice
Best Case 1. most on-point case maximal of those decided for

2. decided for side citing it the side citing it

Figure 13. Most on-point case and best case definitions in �HYPO and BankXX-HYPO.

aggregated-theories any theory promulgated in any �HYPO most on-point case

same-side-cases any case for the current viewpoint in the top three levels of
the claim lattice up to a limit (8, the sum of the fill limits on
supporting-cases and best-supporting-cases in BankXX/AP)

contrary-cases any case for the opposing viewpoint in the top three levels of
the claim lattice up to a limit (6, the sum of the fill limits for
contrary-cases and best-contrary-cases in BankXX/AP)

leading-cases any �HYPO most on-point case

Figure 14. Definitions of argument pieces applied to �HYPO output.

partial ordering of sets by the subset relation (Birkhoff, 1967). This observation
has enabled us to experiment with a number of algorithms for generating Hasse
diagrams to generate claim lattices. These implementation details do not affect the
comparisons.

In the next section we deal with the last preliminary step to be addressed before
giving the results of our experiments on �HYPO: how to place output of �HYPO
in an argument frame so that it might be compared with the hand-coded opinions
and with BankXX.

4.2. THE ARGUMENT RECORD IN THE BANKXX-�HYPO COMPARISONS

The BankXX-Court experiments required putting BankXX’s output and the court
opinions in a form suitable for comparison by an argument-comparing program.
This set of experiments requires putting �HYPO output, BankXX output, and
hand-coded court opinions into a common format amenable to direct comparison.

We use the same four aggregated argument pieces as we did before: aggregated-
theories, aggregated-pro-cases,aggregated-con-cases, and leading-cases (see Sec-
tion 3.1.1 Figures 1 and 2). The effect of the best case definitions is felt in the
aggregated-pro-cases and aggregated-con-cases. To use these argument pieces
with �HYPO, we had to decide what would count as a leading case or a theory
in �HYPO and how to limit the set of ordinary same-side and contrary cases. Our
definitions are shown in Figure 14.

arti134.tex; 16/04/1997; 13:48; v.6; p.45

46 E.L. RISSLAND ET AL.

These definitions are somewhat arbitrary, but some such commensurization is
necessary to make a �HYPO-BankXX comparison study possible. The argument
pieces used in these experiments make use of only about half of BankXX’s stan-
dard argument pieces, so there is some awkwardness in placing BankXX in this
framework as well. In the next paragraphs we describe the motivation behind these
definitions of argument pieces for �HYPO.

Aggregated-theories: �HYPO does not explicitly represent and reason with
legal theories. However, it seems reasonable to award to �HYPO any theory that is
promulgated by a most on-point case identified by �HYPO. It might be noted that
the same courtesy is not extended to BankXX, which must explicitly close a legal-
theory node and add it to the applicable-theories or nearly-applicable-theories
argument pieces in order to count it as “found.” For BankXX, finding the promul-
gating case (e.g., Estus) does not give the program credit for the corresponding
theory (Estus theory).

Same-side-cases: Perhaps the obvious choice for cases in a same-side-cases
argument piece for �HYPO is to use only �HYPO’s best cases for the current
viewpoint. In preliminary experiments, however, we found that there were very
few such best cases (according to �HYPO’s fairly strict definition of best) and this
made the recall of �HYPO unduly low when measured against the hand-coded
court opinions. Thus we chose to incorporate in �HYPO’s argument a larger set
of cases from the claim lattice than just the best cases. We decided to include
cases that were deeper in the claim lattice into the same-side-cases argument piece
definition. We did this even though the original HYPO emphasized the importance
of most on-point cases in legal argument and did not make much use of cases that
were lower down in the claim lattice.

On the other hand, it was not reasonable to include all the cases in the claim
lattice for the current side, since almost all cases appear in some level of the claim
lattice generally, and including all same-side cases would have severely lowered
�HYPO’s retrieval precision.

The question then arose as to how many additional cases to include with the best
cases. Since in a later set of experiments we compare BankXX/AP against�HYPO,
it would be fair to give the two programs the same number of potential cases that
could be selected for this argument piece. BankXX/AP, which has “fill limits” on
the argument pieces, is permitted a maximum of eight cases in its aggregated-pro-
cases argument piece. Thus we allowed �HYPO to select up to eight same-side
cases from the top three levels of the claim lattice, where the root node is at level
1. (Since the claim lattice is a graph, and not a tree, the term “level” does not really
apply, and by the top three levels we mean all cases that are in the root node or that
are within two edges of the lattice root node.)

Contrary-cases: The same considerations that applied to �HYPO’s defini-
tion of same-side-cases apply to contrary-cases. The fill limits for BankXX/AP’s
aggregated-con-cases argument piece is six, however, and that limit is incorporated
into �HYPO’s allotment.

arti134.tex; 16/04/1997; 13:48; v.6; p.46

EVALUATING A LEGAL ARGUMENT PROGRAM 47

Leading-cases:�HYPO does not provide a sense of leading case in the BankXX
sense of a case that is frequently cited. However in the BankXX-HYPO experi-
ments, it did seem reasonable to award to �HYPO as a leading case any most
on-point case, since these are the important (leading) cases that drive much of
�HYPO’s analysis.

Using these generous conventions for awarding theories, cases and leading cases
to �HYPO allows us to explore value-added questions, such as How do BankXX’s
methods compare with some obvious extensions to HYPO, like those for finding
theories and leading cases by reference to most on-point cases?

Although the fit between the simplified form of argument used to encode output
by both BankXX and �HYPO is tight in some places and too loose in others,
some common form of commensurable output was required for automatic compar-
ison. Other choices for an inter-program comparison might have been to create a
third argument interlingua for the two programs or to extend BankXX’s output to
conform to HYPO’s style of active point-counterpoint-rebuttal arguments, inven-
tive hypotheticals, etc. We felt that such an attempt to make a three-ply BankXX
argument would have taken this project too far afield from its focus of heuristic
retrieval.

Finally, we acknowledge that the BankXX-�HYPO comparison study obviously
required some compromises and that the comparison really is not between the orig-
inal HYPO and the full-scale version of BankXX but rather between scaled-back
versions of each. Thus, we must give an explicit caveat that the empirical results
cannot be accorded the status that a comparison between totally commensurate
systems would.

4.3. COMPARING �HYPO ARGUMENTS WITH HAND-CODED ARGUMENTS

Before comparing the relative performance of BankXX and �HYPO against
the hand-coded opinions, we performed a preliminary experiment to compare
�HYPO’s output with the hand-coded arguments of the court opinions, just as we
did with BankXX in the BankXX-Court comparisons. As the baseline we used the
standard BankXX/AP configuration.

�HYPO was run on each case in the BankXX case base and the outputs trans-
formed into an argument record for �HYPO output as just described. For each of
the four argument pieces we then computed the precision and recall averaged over
all the cases (Figure 15). In giving the precision and recall we used the policy that
where 0/0 arose in the computations, the result should be regarded as 1.

For the three aggregated argument pieces concerning cases, BankXX/AP
demonstrates higher precision and higher recall than �HYPO.

Surprisingly, �HYPO achieves a higher level of precision than BankXX/AP on
legal theories. On the other hand, BankXX/AP’s theory recall is substantially higher
than�HYPO’s. Our policy of which theories to award to a�HYPO argument seems
to be very precise but misses many that it should not. By comparison, BankXX is

arti134.tex; 16/04/1997; 13:48; v.6; p.47

48 E.L. RISSLAND ET AL.

Figure 15. Averaged precision and recall for �HYPO and BankXX/AP with respect to hand-
coded argument answer keys. The averages include the value of 1 for undefined precision or
recall quotients.

designed to be inclusive with respect to legal theories, and therefore achieves good
recall, even if at the expense of precision. The high precision achieved by �HYPO
suggests that relevant theories are often promulgated in most on-point cases. This
result reinforces our intuition that most on-point cases are indeed highly central to
argument. On the other hand, �HYPO’s lower recall tends to show that there are
other sources of relevant theories and that looking only to most on-point cases for
theories is not an adequate retrieval strategy in itself.

Summary for Section 4.3
Comparisons against hand-coded arguments

With respect to the hand-coded arguments, BankXX/AP outperforms �HYPO on
all four aggregated argument pieces for both precision and recall with one very
notable and surprising exception, precision on theories.

4.4. COMPARING ARGUMENTS – BANKXX, �HYPO, AND HAND-CODED
OPINIONS

Perhaps the most interesting way to compare the BankXX and �HYPO programs
is to determine for each case what items in the case-domain graph satisfy the
following three requirements:
1. they are cited in the actual case and represented in the BankXX case-domain-

graph, and thus are part of the hand-coded argument,
2. they are retrieved by BankXX,
3. they are not retrieved by �HYPO.

arti134.tex; 16/04/1997; 13:48; v.6; p.48

EVALUATING A LEGAL ARGUMENT PROGRAM 49

Figure 16. Region of particular interest in this experiment: instances found by BankXX, not
by �HYPO, but in the hand-coded arguments.

The number of items that meet these three requirements give one indication of the
“value-added” by BankXX over a HYPO-style analysis.

We ran an experiment to determine the average number of instances providing
such additional value. Our experimental procedure was first to input each of the
55 cases in the case base as a problem case to BankXX and to run �HYPO in the
usual de novo manner. An argument constituted by the four aggregated argument
pieces was created by each program. Then for each argument piece, we computed
the items that appeared in the BankXX and hand-coded arguments but not in the
�HYPO argument. As in the previous experiment, to create the BankXX argument
we used BankXX/AP in its standard configuration.

Table IV summarizes the experiments. The rows are defined as follows:

1. Court and BankXX/AP, not �HYPO: Average number of objects in the court
opinions, found by BankXX, but not by �HYPO.

2. BankXX/AP and Court: Average number of objects in the court opinions found
by BankXX.

3. Court and �HYPO, not BankXX/AP: Average number of objects in the court
opinions found by �HYPO that were not found by BankXX/AP.

4. Court: Average number of objects in the court opinions.

Several observations can be made:
(a) As shown in row 1, BankXX finds a substantial number of objects from the

court opinions not found by �HYPO. In fact, row 3 shows that no leading cases
(according to BankXX’s definition of “leading”) were found by �HYPO that were
not found by BankXX.

(b) By comparing rows 1 and 2, it can be seen that a majority of the items
found by BankXX that also appeared in the hand-coded opinion were not found
by �HYPO. BankXX’s retrieval biases leads to items of interest from the court
opinions that were typically not found by �HYPO. Thus, there is solid sense of
added value by BankXX when measured against �HYPO-style retrieval.

arti134.tex; 16/04/1997; 13:48; v.6; p.49

50 E.L. RISSLAND ET AL.

Table IV. Average number of objects found in each of the four aggregated argument pieces
satisfying certain conditions. The average is taken over 55 cases. Explanations of the rows
are given in the text.

Same side cases Contrary cases Leading cases Theories

Court and
BankXX/AP, 0.53 0.58 1.10 0.65
not �HYPO

BankXX/AP 0.93 1.04 1.80 0.95
and Court

Court and
�HYPO and 0.54 0.25 0 0.31
not BankXX/AP

Court 2.24 2.15 1.82 2.51

Given that BankXX uses HYPO-style dimensional analysis and claim lattice
creation, BankXX ought to perform at least as well as �HYPO, although it is con-
ceivable that it might not. But it is not surprising that the rest of BankXX’s machin-
ery yields additional retrieved items. BankXX has additional domain knowledge
in the form of neighbor methods and evaluation functions that are not present in
�HYPO, as well as more indexing information than �HYPO, particularly in the
form of inter-case citation links. By incorporating legal domain knowledge not
present in �HYPO on top of the HYPO-style case analysis framework, BankXX
retrieves items appearing in the judicial opinions that were not found by �HYPO.

(c) Row 3 shows�HYPO also finds some items not found by BankXX, although
usually fewer than the number found by BankXX but not by �HYPO. However,
�HYPO actually finds as many same-side-cases from the court opinions that were
not found by BankXX as BankXX finds same-side cases not found by �HYPO.
The limit on the �HYPO same-side argument piece (8 cases) was not frugal, but
the general lesson is that �HYPO and BankXX demonstrate complementary search
biases. One direction for future work would be how to combine the cases retrieved
by these two systems to get the benefit of this better combined coverage of the
search space without unduly diminishing precision.

arti134.tex; 16/04/1997; 13:48; v.6; p.50

EVALUATING A LEGAL ARGUMENT PROGRAM 51

Summary for Section 4.4
Value-added comparisons against hand-coded arguments

BankXX generally found information cited in judicial opinions that was not
retrieved by �HYPO. Thus, one can say that there is value added by BankXX’s
approach. BankXX provides a viable search technique for retrieval of cases and
legal theories complementary to that used by �HYPO.

5. Evaluation from a Search Perspective: Comparing BankXX’s
Performance under Different Parameter Settings

There is a large number of input parameters to BankXX, including the start node,
the evaluation function to use, the limit on the number of nodes that can be closed,
and a time limit. The question of how well BankXX works can be answered
in potentially many ways, depending on the input parameters to the program. We
have performed a series of experiments to control individual parameters, or in some
cases pairs of parameters, to give a sense of the efficiency and accuracy with which
BankXX performs its tasks. By running a configuration of BankXX with a given
input parameter setting on all the cases, and determining the average number of
instances filling the argument pieces, we can isolate the effect of various parameter
settings on the performance. In these experiments we only use 11 argument pieces;
we disabled the family-resemblance-prototype.

This section is quite specific to the particular implementation of BankXX. Read-
ers interested in the experimental results in a general way may want to read quickly
the boxed experimental set-up, scan the graphs and note the result summaries.
Experimental conclusions should not be taken out of their very specific context,
however. We have not investigated the effect of many aspects of this program.
Chief among such features are the legal domain, the size of the case base, the
representation languages and encodings for the cases and arguments, the particular
cases we have selected for the case base, and the links we have specified manu-
ally, such as the links between legal theories. Nevertheless, we expect that many
of our observations will be borne out by future symbolic AI programs that use a
combination of search and indexing to access legal knowledge.

As in all these experiments, each case and its links were excised from the case
graph when it was regarded as a de novo problem situation for the program. Thus,
as we did before, we followed a leave-one-out cross validation methodology. For
this set of experiments, we have relied primarily on one measure of evaluation:
counting objects found for each argument piece.

In the following experiments the parameter settings to BankXX that are not
specified in the Parameters Varied boxes are default values, which are:

arti134.tex; 16/04/1997; 13:48; v.6; p.51

52 E.L. RISSLAND ET AL.

Start Node: Estus,
Number of Nodes Closed: 30,
Number of Billable Seconds: 1000.

5.1. START NODE

One potential objection to the kind of automatic, knowledge-directed browsing that
BankXX performs is that, in a large knowledge base, one would not know where to
begin. Further, the objection proceeds, search might wander around in a small and
not very useful portion of the case base, without locating the information needed to
support an argument. The following experiments show that for our case base and
program implementation, this objection was not supported.

Parameters Varied:
Start Node (Estus, random, most on-point case)
Evaluation Function (node-type, argument-piece, argument-factor)

We varied the start node, which is an optional input parameter to BankXX.
Three different start node specifications were considered:
1. the Estus case,
2. a random case, and
3. a most on-point case.

Since In re Estus, 695 F.2d 311 (8th Cir. 1982) is a well-known case in this area
of bankruptcy law, we felt almost any research materials consulted by an attorney
would soon lead to it, and therefore Estus may be considered a realistic and useful
starting point. The second choice for the start node was a random case selected
according to a uniform distribution of cases in the case base. Starting at a most on-
point case requires creating a claim lattice before search commences, computing
the most on-point cases, and then randomly selecting one of them.

In this experiment for each of the three evaluation functions, the number of
instances filling each of the argument pieces was counted after 30 nodes were
closed. All 55 cases in the case base were used as de novo problems and the
average number of objects filling each argument piece was computed.

The results in Figures 17a, b, and c show that the choice of start node, which can
be considered an initial query to the case base, made little difference to retrieval. For
each evaluation function, the average number of objects found for each argument
piece is about the same for each of the three start nodes. The only exception to this
occurs for the leading-cited-cases argument piece with BankXX/NT: the number
of leading cases found when starting with Estus is almost twice the number found
when starting with the current problem or a random case. We believe this finding
reflects the common wisdom that starting with a good case makes it easier for a
researcher to locate the major cases. While the random and most on-point case start
nodes did often lead to Estus, they did not permit the examination of as many of

arti134.tex; 16/04/1997; 13:48; v.6; p.52

EVALUATING A LEGAL ARGUMENT PROGRAM 53

Figure 17a. Histograms of number of objects filling each argument piece with BankXX/NT.

Figure 17b. Histogram of number of objects filling each argument piece with BankXX/AP.

arti134.tex; 16/04/1997; 13:48; v.6; p.53

54 E.L. RISSLAND ET AL.

Figure 17c. Histogram of number of objects filling each argument piece with BankXX/AF.

Figure 18. A small subgraph of the case-domain graph.

the leading cases as did beginning with Estus, at least within the 30-closed-node
limit placed on the program.

We also examined search paths through the case-domain graph to understand
why the choice of start node made so little difference. As a broad generalization,
no matter which of the 55 cases were used as the starting point for the search in
this case-domain graph of approximately 250 nodes, the search soon leads to a
highly interconnected region which contains many useful cases and theories (see
Figure 18). For example Estus and Rimgale, 669 F.2d 4226 (7th Cir. 1982), and the

arti134.tex; 16/04/1997; 13:48; v.6; p.54

EVALUATING A LEGAL ARGUMENT PROGRAM 55

theories promulgated by these cases are part of this area of the graph. Informally
speaking, it does not matter where search starts because in this domain all roads
eventually lead to Estus. Thus, in browsing a case base of comparable size where
there is a sufficiently rich indexing fabric, the initial starting point in case memory
may not matter.

Summary for Section 5.1
Comparisons with respect to start node

In general, BankXX’s performance did not depend on the choice of the start node.

5.2. EVALUATION FUNCTION AND NUMBER OF CLOSED NODES

BankXX can be configured with any of three evaluation functions to assess the
worth of a piece of legal knowledge to an argument. The next set of experiments
compares the performance of BankXX/NT, BankXX/AP and BankXX/AF with
respect to resource limits from an internal perspective. (Section 3 performed an
external comparison with resource limits held constant.)

As we have noted, in real-world legal research there is no clear rule when to
terminate the discovery and analysis of legal materials. No objective standard exists
for when one has completed research or completed an argument. BankXX has two
termination parameters that may be set by the user: (1) the time limit (“billable
seconds”) spent by the program, and (2) the number of nodes that can be closed.
If the open list is emptied within the user’s time or space limits, the program also
halts.

Since the performance of each configuration of BankXX depends on the
resources that have been allocated to it, this experiment was explicitly designed as
a 3�3 experiment in which we varied both the evaluation function and the resource
allocation as measured by the number of nodes that can be closed.

Parameters Varied:
Number of Nodes Closed (10, 30, 60)
Evaluation Function (node-type, argument-piece, argument-factor)

As in the other experiments, the experimental procedure was to run each of the
cases in the case base in the de novo manner. We then averaged the number of
nodes filling each argument piece for each problem case. In this 3� 3 experiment
design, we compared the effects of the three different evaluation function at each of
three node closing levels. The technical appendix contains the terms and weights
for each of the three functions. Figures 19a, b, and c show the results.

Ten nodes closed is very few, but it does permit BankXX to make some initial
progress. While 10 nodes is too few for any version of BankXX to meaningfully
search the case-domain graph, several general patterns of behavior are apparent

arti134.tex; 16/04/1997; 13:48; v.6; p.55

56 E.L. RISSLAND ET AL.

Figure 19a. Average number of objects filling each argument piece for each configuration of
BankXX with a limit of 10 nodes closed.

Figure 19b. Average number of objects filling each argument piece for each configuration of
BankXX with a limit of 30 nodes closed.

arti134.tex; 16/04/1997; 13:48; v.6; p.56

EVALUATING A LEGAL ARGUMENT PROGRAM 57

Figure 19c. Average number of objects filling each argument piece for each configuration of
BankXX with a limit of 60 nodes closed.

in these short searches. With BankXX/NT, 10 nodes was too few to find any
items filling the domain-factor-analysis-significant-overlap, supporting-citations,
or factual-prototype-story argument pieces. By comparison, although BankXX/AP
barely got started on these argument pieces, it did find some items for them. More
notably, the number of leading-cited-cases harvested by BankXX/AP is on average
almost 5. Recall that there are only 5 leading cases. By contrast with the other two
evaluation functions BankXX manages to find approximately only one. A similar
difference in the number of supporting-best-cases and contrary-best-cases is also
apparent. On many argument pieces, BankXX/AF performed comparably to the
BankXX/NT.

At the level of 30 nodes closed, BankXX/NT, which does not have any limits
on the number of items that can fill any argument piece, finds many more contrary-
cases and same-side-cases than either BankXX/AP or BankXX/AF but at the
expense of finding information for other argument pieces. At 30 nodes, BankXX/NT
still has filled in no objects in the domain-factor-analysis-significant-overlap,
supporting-citations, and factual-prototype-story argument pieces. BankXX/AP
yields more cases whose factor analyses fill the domain-factor-analysis-significant-
overlap and supporting-citations argument pieces than the other two configurations.
In general BankXX/AP is much more balanced in harvesting items for the argument
pieces than BankXX/NT, which runs away on ordinary pro and con cases. This is a
direct result of the fill limits enforced by the argument piece evaluation function on

arti134.tex; 16/04/1997; 13:48; v.6; p.57

58 E.L. RISSLAND ET AL.

the numbers of items than can be harvested for each piece. Although BankXX/AF
does not harvest the same number of items as BankXX/AP, it is similar in that it
produces a fairly balanced profile.

At the level of 60 nodes closed, the observations made at the level of 30
nodes continue to hold. BankXX/NT concentrates on finding cases at the expense
of the other argument pieces and consequently locates many more contrary and
supporting cases and is even less balanced in its coverage of the argument pieces.
Visiting 60 nodes resulted in many cases being found by BankXX/NT that were
not particularly useful, but were merely added to the contrary-cases and same-
side-cases argument pieces. BankXX/NT found only a few supporting-citations,
however, in the 60-node run.

Since the total limit on objects filling the argument pieces is 39, BankXX/AP
shows no significant progress when the node level limit is raised to 60 nodes.
BankXX/AF also merely adds more supporting and contrary cases to the cor-
responding argument pieces. For each argument piece (except for factor-analysis,
which always contains only the factor analysis of the current problem), BankXX/AF
showed an increase in the number of items filling it, in a stair-step pattern, as the
number of nodes closed is increased from 10 to 30 to 60.

One lesson of comparing the results of the evaluation functions is the utility of
limiting the number of items that can fill any one piece, as is done with the argument
piece evaluation function. Such a limitation helps BankXX/AP to produce a more
balanced argument, as might be anticipated.

By contrast, BankXX/NT, which uses only the node type of each node, does not
limit the number of objects retrieved for any argument piece. To understand how
such a knowledge-poor function can produce satisfactory results, one can consider
search as just the first of a two-stage retrieval process for filling the argument pieces.
The second stage applies the argument piece predicates to the retrieved objects to
determine if they fulfill the requirements of the argument piece. We believe in a
program like ours that uses a two-phase retrieval that applying a knowledge-poor
function to generate candidates in the first phase may be sufficient, as long as
the performance criteria in the second phase are sufficiently rich. The efficacy
of the classic generate-and-test or “many-are-called/few-are-chosen” (MAC/FAC)
approach has been observed in other research as well (Gentner and Forbus, 1991).

For BankXX/AP with Estus as the start node, 10 nodes was too few to fill
up many of the argument pieces, and 60 was more than the fill limits allowed.
Thus, as a rough guide, 30 nodes seemed an appropriate compromise between
more exhaustive search and too shallow an examination of the case-domain graph.
Incremental benefits of more search decreased after about 30 nodes, especially
for BankXX/AP. From a case-based reasoning perspective, we conclude that the
decreased marginal utility of finding more cases causes there to be a point at which
additional search of the case base is not effective. This conclusion echoes the results
of Veloso and Carbonell (1991) regarding the optimal amount of time to devote to
searching a case base in a hybrid planner.

arti134.tex; 16/04/1997; 13:48; v.6; p.58

EVALUATING A LEGAL ARGUMENT PROGRAM 59

Summary for Section 5.2
Comparisons with respect to number of nodes closed

Limits on the number of objects that can be harvested for the argument pieces,
like the fill limits used in BankXX/AP, result in more balanced arguments than
those produced without them, as is the case with BankXX/NT and BankXX/AF.
With respect to the number of nodes closed, this set of experiments revealed that
there was a point after which additional node closings did not provide additional
benefit. In particular, 10 closed nodes is too few and 60 added little improvement
in performance; 30 provided a reasonable level.

5.3. NUMBER OF BILLABLE SECONDS

The usefulness of a heuristic evaluation function depends on its efficiency as
well as its accuracy. A perfect or near-perfect evaluation algorithm that runs in
exponential time in the number of features considered would be little use. That
the time to evaluate a node be short is important in information retrieval settings
where users expect fast retrieval in real time. In some production-level systems,
for example, design constraints require that responses to queries be made in fewer
than five seconds. In an automatic browsing system such as BankXX, while time
constraints are not as severe (especially since it is a research prototype and not a
production-level system), efficiency is still a concern.

In designing the three evaluation functions, we attempted to implement func-
tions that incorporated different levels of abstraction of knowledge about argument.
The node-type evaluation function only considered the lowest level of abstraction,
the type of knowledge that was under evaluation (case, theory, etc.). The argument
piece evaluation function captured a more abstract level, certain kinds of infor-
mation known to be useful for argument. The argument factor evaluation function
incorporated the highest level of abstraction, that of considering the quality of the
emerging argument.

But the time to compute each evaluation function also increases with the level of
abstraction. The node-type evaluation is quick and easy to apply, since it just checks
the type of node that is being evaluated. The argument-piece evaluation requires
a more complex computation, evaluating the predicate for each argument piece.
Finally, the argument factor evaluation function requires the most complex and
costly computation, since it involves evaluating the incremental argument along a
number of argument dimensions.

In order to test the efficiency of each evaluation method, we placed three differ-
ent limits on the amount of time the program was permitted to run, and compared
the effects of a time limitation on the three configurations of BankXX. The time
limitations include pre-processing performed by BankXX each time a new problem

arti134.tex; 16/04/1997; 13:48; v.6; p.59

60 E.L. RISSLAND ET AL.

Figure 20a. Average number of objects filling each argument piece for each configuration of
BankXX with a limit of 1 billable second.

is presented, which is independent of the evaluation function. At the commence-
ment of processing, the program performs dimensional analysis and creates a claim
lattice for the problem situation, for example.

Parameters Varied:
Number of Billable Seconds (1 2 10)
Evaluation Function (node-type, argument-piece, argument-factor)

As in the other experiments, each case was treated as a new problem situation and
analyzed by BankXX. Configured with each one of the three evaluation functions,
the program was run for 1, 2, and 10 billable seconds on a DEC Alpha running
Lispworks in 64 MB of physical memory. The average number of items filling
each argument piece was computed across the case base. The results are shown in
Figures 20a, b, and c.

BankXX/AF runs the slowest since it involves provisionally extending the exist-
ing argument by each node that is on the open list, and computing each of the
argument factors on that provisional argument. Creating a temporary, provisional
argument for each node evaluation is computationally expensive. When a time lim-
it is placed on BankXX, therefore, BankXX with the argument factor evaluation
tends to underperform the other two configurations.

arti134.tex; 16/04/1997; 13:48; v.6; p.60

EVALUATING A LEGAL ARGUMENT PROGRAM 61

Figure 20b. Average number of objects filling each argument piece for each configuration of
BankXX with a limit of 2 billable seconds.

This effect comports with our own experiences in doing legal research. If every
time a researcher comes across a new case or theory, she stops to assess exactly
where it will fit into the emerging argument, and then evaluates that argument,
research will be a time-consuming process. We speculate that researchers are more
apt to use heuristics, concerning when a case should be read or carefully studied.
These make good use of the often short amount of time available to produce an
argument.

Note that the overall shape of the 2-billable-seconds histogram in Figure 20b
is comparable to that of the 30 node limit histogram in Figure 19b. From these
experiments, we concluded that a limit of 1000 billable seconds is many orders of
magnitude more than enough for each evaluation function to run until the open list
is empty. Thus in the standard configuration of BankXX, we used a time limit of
1000 billable seconds.

Summary for Section 5.3
Comparisons with respect to billable seconds

BankXX with the current argument factor evaluation function was not efficient,
and required a large amount of time to determine whether a node was potentially
useful to an argument piece.

arti134.tex; 16/04/1997; 13:48; v.6; p.61

62 E.L. RISSLAND ET AL.

Figure 20c. Average number of objects filling each argument piece for each configuration
of BankXX with a limit of 10 billable seconds. The actual values for BankXX/NT for the
supporting cases, contrary cases and supporting citations argument pieces are all greater than
15.

6. Additional Experiments

In the course of a set of evaluation experiments of a complex program, tangential
questions arise that do not speak directly to how well a program works, but rather
to how a program works. Partly to satisfy our own curiosity about the program’s
behavior, we performed a handful of side experiments.

In this section we describe two additional experiments. In the first experiment,
we ask whether some portions of the search space can be distinguished by having
been searched more often than others. In the second experiment, we explore a
modified definition to traditional precision and recall.

6.1. PORTIONS OF THE SEARCH SPACE THAT WERE CLOSED

The first question we asked was: Are some nodes in the case-domain graph opened
and closed more often than others? The answer to this question generally may help
to represent the structure of a domain to facilitate retrieval and how to conduct the
search. From a jurisprudential perspective, the frequency and patterns of visitations
may give clues about the conceptual structure of an area of the law. From a technical
perspective, a legal retrieval program that automatically browses a large database
may not be able to fit the entire set of domain knowledge nodes in main memory.

arti134.tex; 16/04/1997; 13:48; v.6; p.62

EVALUATING A LEGAL ARGUMENT PROGRAM 63

Figure 21a. Cumulative number of node openings and closings with BankXX/NT for the 28
most frequently closed cases in the case base. The dark gray portion of each bar shows the
number of times a node was closed; the entire bar shows the number of times a node was
opened.

This situation is common in any production level information retrieval program
that deals potentially with gigabytes of data. Given this constraint, if a developer
knows that some portions of a search space are visited more frequently than others,
then it might be useful to cache frequently accessed nodes in main memory to avoid
thrashing through excessive paging of instances from disk.

To answer our question, for each of the three evaluation functions we compiled
a histogram that records the number of times each node was opened and closed
as we ran a version of BankXX through all 55 cases in the case base as de novo
problem cases. These runs were conducted using a randomly chosen most on-point
case as start node, 30 nodes closed per search, a time limit of 1000 billable seconds,
and no filtering for dates.

The histograms in Figure 21 show the numbers of openings and closings sorted
by the number of node closings and, within a given number of closings, by the
number of node openings. The dark gray portion of each bar represents the number
of times a node was closed; light gray gives the number of times a node was opened.

Figure 21a shows the cases in the case base most frequently opened and closed
by BankXX/NT. There is a sizable core of cases (27) that are opened for all of
the cases in the case base. However, nodes are closed with a steadily declining
frequency. Estus is closed the greatest number of times. Rimgale and Akin are next.

Note that with a fixed start node – which is not the case here since we randomly
picked a most on-point case for the problem case being run – BankXX/NT would
open and close the same cases in the same order regardless of problem case, when
no date filtering is used. This is because BankXX/NT’s evaluation function is not
sensitive to the problem case but only depends on node types, and if one always
starts from the same node, the nodes opened and closed do not change. So after

arti134.tex; 16/04/1997; 13:48; v.6; p.63

64 E.L. RISSLAND ET AL.

Figure 21b. The analogous histogram for BankXX/AP.

Figure 21c. The analogous histogram for BankXX/AF.

BankXX/NT gets to Estus – which it tends to do early since all routes lead to Estus
– the rest of the search is pretty much the same.

Figure 21b shows the pattern for BankXX/AP. Here there are five cases that are
very dominant with respect to node closings. These are in fact the five leading cases:
Deans, Iacovoni, Estus, Goeb and Rimgale. They are always opened and almost
always closed. This shows BankXX/AP indeed often considers leading cases as
potentially useful and attempts to incorporate them into the emerging argument.
Fewer cases (20) are opened on every run by BankXX/AP than with BankXX/NT.

Figure 21c shows that the results for BankXX/AF were qualitatively different.
First, whereas BankXX/NT and BankXX/AP both had many cases that were opened
in every problem case, BankXX/AF only opened two cases – Estus and Rimgale
– in every problem case. Second, there are very few cases that are closed almost
every time that they were opened; see the righthand tail of Figure 21c. In fact, there
are only two cases that are closed every time they are opened. These are the two
cases that are opened the fewest number of times – 2 or 3 – of all the 55 cases.
(These are not shown in Figure 21c, which is truncated, but would be pictured at
the extreme righthand tail of the complete 55-case histogram.)

arti134.tex; 16/04/1997; 13:48; v.6; p.64

EVALUATING A LEGAL ARGUMENT PROGRAM 65

Finally, we observed that in contrast to BankXX/NT, BankXX/AP and
BankXX/AF show great variation in the routes taken through the case-domain
graph. Their routes varied greatly across the problem cases.

Summary for Section 6.1
Heavily visited portions of the case-domain graph

BankXX/NT tended to open the same half of the case base on every run.
BankXX/AP exhibited more variation. BankXX/AF showed the greatest vari-
ation. All versions of BankXX exhibited a gradation in the number of node
closings.
With BankXX/AP, the nodes that were closed the greatest number of times were
the leading cases. These were closed nearly every time they were opened showing
that BankXX/AP paid them a high level of attention.

6.2. AN ALTERNATIVE APPROACH TO PRECISION-RECALL

In this section, we present an alternative approach to calculating precision and
recall. In all the other calculations in this paper, BankXX has been credited with
finding a case or a theory that appears in a legal opinion only if it finds that precise
case or theory, that is, the names match literally. In some circumstances a broader
sense of match might be preferable. For example, if a legal opinion contained a cite
to a particular case supporting a well-established proposition of law, but BankXX
retrieved a different but highly similar case supporting exactly the same proposition,
the highly similar cases ought to be considered a “match.” Sets of similar cases –
that in their argumentative value are essentially equivalent – are often presented
in so-called string cites. Similarly, if BankXX found a legal theory that referred
to exactly the same factors as another theory appearing in an opinion, then this is
tantamount to finding exactly the same theory. Thus, while the information retrieval
field has generally relied on an “exact match” to documents in the answer key to
gauge retrieval success, in some circumstances, there are good reasons for using an
alternative, slightly relaxed definition. In this section, we briefly explore the idea
of awarding full match credit for cases that are highly similar.

In order to use an extended notion of match based on high degree of similarity, we
require some measure of when two cases are sufficiently similar to be considered
equivalent. Fortunately, legal CBR programs provide just such a measure. For
instance, according to the model of case similarity provided by HYPO, two cases
are highly similar with respect to a problem case if they appear in the same node
of the standard claim lattice built for the problem case, which means that they are
equally on-point and address a common set of relevant legal issues.

arti134.tex; 16/04/1997; 13:48; v.6; p.65

66 E.L. RISSLAND ET AL.

We can extend the notion of a match by saying that two cases – one in the
BankXX output and one in the hand-coded answer – are an extended match if
either:

1. they are the same, or

2. they are highly similar, where two cases are considered highly similar if they
reside in the same node of the claim lattice for the problem case.

This particular definition of highly similar defines an equivalence relation on cases.
Motivated by this observation, we can generalize our definition to say that two
cases are considered an extended match if they are in the same equivalence class
of case similarity. Notice that we could add a third criterion to the extended match
definition: that the two cases must be decided for the same viewpoint. This happens
automatically in our application since we are matching only cases from aggregates
that already reflect the same viewpoint.

For example, suppose the problem case is Estus. (This case is presented as an
extended example in Section 5 of the companion paper (Rissland et al., 1996).)
Suppose Gunn is mentioned in the opinion as a pro case, and is therefore in
the answer key for aggregated-pro-cases. Suppose further that BankXX retrieves
another pro case, Gibson, which is not mentioned.? Under the usual exact match
criterion, Gunn would not match Gibson. However, since Gibson and Gunn appear
in the same node of the Estus claim lattice as most on-point cases decided for the
creditor, they are an extended match.?? (See the claim lattice for Estus given as
Figure 15 in the companion paper.)

This notion of extended match gives rise to an alternative way of computing
precision and recall, which was used in another set of experiments described here.
Essentially we proceeded as usual until we computed precision and recall. That is,
for each case in the case base, a version of BankXX was run on that case treated as
a new problem situation, with the default parameter settings for BankXX.

We then examined the output of the three aggregated argument pieces that
are filled with cases – aggregated-pro-cases, aggregated-con-cases, and leading-
cited-cases – and computed new OVERLAP, MISSED, and ADDITIONAL sets based on
extended matches. To do this, we first determined the standard sets of OVERLAP,
ADDITIONAL and MISSED cases as usual. Second, we examined the ADDITIONAL

and MISSED cases – the cases in the symmetric difference in Figure 22 – to see if
any pairs of cases – one from ADDITIONAL, one from MISSED – could be matched
using the extended match criterion. (Recall, a claim lattice for the problem case is
constructed as an initial step in BankXX’s processing, so it is readily available for
extended matching.)

? Note both Gunn and Gibson were decided after Estus, so they cannot appear in the hand-coded
opinion or in the BankXX output when date-filtering is in effect. They are used here simply for
illustration.
?? Modulo the technicality that Gunn had not already been “matched” with another ADDITIONAL

case retrieved by BankXX.

arti134.tex; 16/04/1997; 13:48; v.6; p.66

EVALUATING A LEGAL ARGUMENT PROGRAM 67

Figure 22. Schematic for extended match similarity between two cases A0 and A.

The exact procedure involves marking cases so as to not allow more than one
ADDITIONAL case to match a given MISSED case and vice versa. We want to maintain
a one-to-one correspondence between the items we match between the MISSED cases
and the ADDITIONAL cases so that BankXX does not receive too little or too much
credit, which could occur if we allowed unlimited matches. For instance, we did
not want to permit unlimited matches of a case appearing in the hand-coded answer
(i.e., a MISSED case) with multiple cases appearing only in BankXX’s answer (i.e.,
ADDITIONAL cases).

Once a pair is considered an extended match, it is moved to the new OVERLAP

(with the name used in the hand-coded answer) and each case of the pair is deleted
from its respective ADDITIONAL or MISSED category.

After all cases in the original ADDITIONAL and MISSED sets were examined, and
new, modified OVERLAP, MISSED and ADDITIONAL sets determined, we computed
modified precision and recall as usual:

p̃ = |new OVERLAP| / |new ADDITIONAL [new OVERLAP|
r̃ = |new OVERLAP| / |new MISSED [new OVERLAP|

For each version of BankXX, we computed average p̃ and r̃ over the entire case
base (see Table V). As before we use both options for dealing with 0/0 situations.

In Table V, we show data only for aggregated-same-side-cases and aggregated-
contrary-cases since for leading-cited-cases both methods of computing precision
and recall produce nearly identical scores. (See Table I or Table II for precision-
recall data computed in the usual way.) This is no surprise since there are only
five cases that can possibly be listed as a leading-cited-cases and BankXX does
very well on finding them, and thus there are few opportunities to use the extended
match criterion.

arti134.tex; 16/04/1997; 13:48; v.6; p.67

68 E.L. RISSLAND ET AL.

Table V. Averaged precision and recall values calculated as usual and with extended matching.
Values in boldface are computed with undefined ratios are set to 1. Average values computed only
with respect to defined values are given in parentheses; the number used in an average is shown in
the subscript.

Aggregated Pro Cases Aggregated Con Cases
p, r p̃ r̃ p, r p̃, r̃

BankXX/NT 24 (2354), 76 (7247) 25 (2454), 79 (7547) 23 (2355), 84 (7942) 25 (2555), 91 (8842)
BankXX/AP 32 (3053), 55 (4847) 34 (3153), 57 (4947) 42 (3348), 64 (5342) 44 (3648), 67 (5742)
BankXX/AF 30 (2652), 56 (4847) 38 (3452), 63 (5747) 33 (2650), 63 (5242) 37 (3050), 70 (6042)

For the most part, the differences between the usual and the extended method
are all within a few (absolute) percentage points for BankXX/NT and BankXX/AP.
The relative changes vary between 3.6 to 8.6% when 0/0 is set to 1, and 2 to 11.3%
when undefined values are excluded. With only one exception, the relative changes
are all less than 10%. Thus, the differences here are not always significant.

However the numbers do change significantly for BankXX/AF. The relative
differences range from 11 to 26.6% when 0/0 is set to 1, and from 15.3 to 38.3%,
when undefined values are excluded. There is a tremendous jump in precision for
aggregated-pro-cases. These relative changes can be considered significant.

The higher performance scores for BankXX/AF under the modified precision-
recall scheme show that BankXX/AF is actually finding cases that are dimensional-
ly highly similar to the ones cited in the opinions. This is evidence that BankXX/AF,
and the argument factors that drive it, are having greater success than meets the
eye under the usual precision-recall standard.

In situations where there are more cases that can be considered, there is a
greater difference between precision and recall scores based on the extended match
criterion and those based on the usual literal match criterion. In our experiments,
this occurs typically with later cases, where more cases survive date filtering.

We did not experiment with an extended match approach on aggregated-theories
because we had not defined a metric to measure similarity between theories. One
obvious approach is to sort theories according to the degree of overlap between
their sets of defining factors in a manner analogous to HYPO-style case similar-
ity. Another approach would be to measure theory similarity by measuring the
similarity of the cases applying the theory. There are many possibilities.

This experiment shows that more perspicacious means of computing retrieval
success may be available when additional domain knowledge is used to inform an
extended matching metric. The modified scheme discussed here is one of many
possibilities. It is, we believe, more in the spirit of the way arguments are probably
evaluated by legal professionals and law professors – sometimes one case is just as
good as another for supporting a legal proposition.

arti134.tex; 16/04/1997; 13:48; v.6; p.68

EVALUATING A LEGAL ARGUMENT PROGRAM 69

7. Concluding Remarks

There are some general lessons to be learned from our experiences in this evaluation
study. First, evaluation is a long, painstaking process. Second, using the evalua-
tion standards taken from some other area of computer science, like information
retrieval, has its pros and cons. On one hand, metrics like traditional precision and
recall are widely used. On the other hand, they may not be totally appropriate in
domains such as the law where the existence of an unassailable correct answer is
doubtful. We need new ways to assess performance. Furthermore, there is a tenden-
cy to lift performance measures out of context. Without context and comparable
data from other systems on commensurable problems and data sets, it is impossible
to say whether a particular level of precision or recall is “good” or “bad.” However,
we feel that evaluation is important and beneficial. We have tried to demonstrate
how the problem of evaluation can be tackled.

In general, we found that many of our original hypothesis were true, but some
in more qualified terms:
� BankXX/AP and BankXX/AF did perform better than BankXX/NT, but

only with regard to precision. In fact, we found a classic trade-off: The
knowledge-poorer BankXX/NT achieved higher recall but the knowledge-
richer BankXX/AP and BankXX/AF achieved higher precision.

� BankXX/AP did produce much more balanced arguments than BankXX/NT.
� BankXX did exhibit performance improvement over HYPO (re-implemented

as �HYPO) on the task of retrieval in the sense that BankXX retrieves infor-
mation used in the court opinions not found by HYPO. In direct comparison
with hand-coded answers, BankXX achieved higher precision and recall in
all categories with one surprising exception: HYPO was more precise than
BankXX on legal theories.

� With BankXX/NT and BankXX/AP, more resources did not appear to provide
much marginal benefit after a point. With BankXX/AF, additional time is a
help because the calculation of some of the argument factors is so slow.

Some additional specific lessons from our experiments are:
� There was variation in BankXX performance on different types of cases. In

particular, there was high performance on meaty and other contentful cases
and low performance on sparse cases. This suggests that in building future
case bases, we would bias our acquisition towards meatier cases and be aware
of the difficulties that can arise with sparse ones.

� As a corollary, statistics aggregated over different types of cases were quite
different. Understanding the statistics often required detailed examination of
the program’s product on individual problems, and even sometimes of its
internal data structures (e.g., open, closed lists). This reinforces the old wisdom
that averaging is no “excuse” for detailed examination of the data.

� There was a surprising amount of monotonicity for precision-recall scores cal-
culated with respect to various subsets of cases, different aggregated argument

arti134.tex; 16/04/1997; 13:48; v.6; p.69

70 E.L. RISSLAND ET AL.

pieces, and the three BankXX configurations. There were analogous nesting
relationships among the sets of OVERLAP, ADDITIONAL, and MISSED cases.
These pointed to various trade-offs (regarding the evaluation functions) and
correlations (regarding sparse and contentful cases) in performance.

� The fill limits used by BankXX/AP had profound effects. On the positive side,
they caused BankXX/AP to harvest a nicely balanced array of information.
On the negative side, they caused BankXX/AP to forgo harvesting some very
useful information.

� Surprisingly good performance can be achieved with BankXX’s two-stage
process of first retrieving objects and second amalgamating them into argument
pieces, even when the first stage is relatively knowledge-poor, as is the case
with BankXX/NT. This demonstrates the efficacy of the generate-and-test or
“many are called/few are chosen” (MAC/FAC) approach for legal information
retrieval.

� BankXX/AP and BankXX/AF were more sensitive to problem-solving context
than BankXX/NT. BankXX/NT was a rote, brute force retriever. BankXX/NT
did quite well – better in fact than the other two – on recall.

� Different versions of BankXX had different retrieval biases. These reflected
the biases of the evaluation functions.

� There was a trade-off in computational costs. The knowledge-rich BankXX/AF
was much slower than either BankXX/NT or BankXX/AP.

� The setting of some internal parameters did not make much difference. The
start node did not matter particularly (in our highly interconnected space of
information). But there was a point beyond which additional resources of time
and space did not provide additional benefits.

� BankXX and HYPO exhibited different and complementary retrieval biases.
One can say that there was value added by BankXX’s approach but more
importantly perhaps, BankXX and HYPO could complement each other in
some larger composite program.

As a general conclusion, we feel that BankXX/AP with its standard configuration
provides good value and is “well-behaved” from many points of view. BankXX/AP
imports an intermediate level of representation of argument into the process of
retrieval through its argument piece evaluation function. BankXX/NT uses a coarser
representation, and BankXX/AF, a finer one. BankXX/NT is a little too quick-and-
dirty and BankXX/AF is a little too thoughtful. BankXX/AP seems about right.

It may be a common experience for researchers to perform an extensive series of
experiments on a program, only to realize that they should have implemented some
features differently. Certainly that has been our experience. Small design decisions
long since made and forgotten were dredged up through close examination of the
product of the program.

For example, we would change our design decision not to add all the most
on-point cases to the open list when initializing the search. Currently, the systems
randomly select a most on-point case node to place on the initial open list, and the

arti134.tex; 16/04/1997; 13:48; v.6; p.70

EVALUATING A LEGAL ARGUMENT PROGRAM 71

other most on-point cases are thrown away. Including all the most on-point cases
on the open list would have made better use of the resources expended to create the
claim lattice, and would have probably provided additional fertile cases to initialize
the search.

Another is our decision not to reason about the date, jurisdiction, or pedigree of
a case. The rigors of evaluation forced us to address the date of a case even though
the problem of post-dated cases does not arise in the intended usage of BankXX
on truly new problem cases, where everything known by the program should be
available to it. These are examples of design decisions we would now modify.

Of course, there are always variations and extensions to a program that can
be made and evaluated. For instance, based on our experiences we would now
use a different set of weights and fill limits on certain items. In particular, we
would increase the limits on the numbers of ordinary pro and con cases that can be
harvested. We would also use a concomitant standard configuration of BankXX/AP
such that the limit on closed nodes is larger than sum total of the individual fill
limits.

In addition, introspection suggests that legal researchers change heuristic eval-
uation of legal information as search progresses. At the beginning of research, a
variety of cases may be read, to get a sense of the area. Once the skeleton of the
argument is formed, however, the researcher’s information needs (e.g., “the argu-
ment needs more applicable legal theories”) become more precise. As resources are
about to run out, the emerging argument might dictate very much more closely what
kinds of cases (e.g., “the argument needs a trumping appeals case from our circuit”)
and other support are needed. These observations suggest possible modifications
to the overall architecture of our system. For instance, our program could change
its evaluation function in mid-run after a certain threshold amount of time or space
has been searched, perhaps analogous to the opening, mid-game and end-game
stages in game-playing. In the “opening”, it could use the node type evaluation
function to get a quick-and-dirty start on retrieval. In the “mid-game” (probably,
the longest-lasting phase), it could use the argument piece evaluation to retrieve a
well-balanced set of information that is not overloaded in any one category or empty
in others. In the “end game”, it could use the judiciously deliberative BankXX/AF
to find just the right sort of information to strengthen the argument. Our program
might also use its runs with the less smart evaluation function (BankXX/NT) as a
“learning experience” for subsequent runs.

A future program might also try to combine different biases and performance
strengths of the three configurations of BankXX. For instance, the higher precision
of BankXX/AP could be combined with the higher recall of BankXX/NT. (One
could also use the so-called E-measure (van Rijsbergen, 1979), which allows for a
weighting of recall and precision, to produce a single score measuring performance
according to the given weighting.) The exact combination could depend on the
intended tasks and user preferences. For instance, although lawyers tend to prefer
high recall, Blair and Maron found that the systems they tested provided only a

arti134.tex; 16/04/1997; 13:48; v.6; p.71

72 E.L. RISSLAND ET AL.

modest level of recall (20%) although precision was fairly good (79%) (Blair and
Maron, 1985). All configurations of BankXX tend to achieve higher recall than
precision and thus can be thought of as fitting into the preference profile of a
typical lawyer. Of course, we would really like to enjoy good levels of both recall
and precision.

Although we performed a wide variety of experiments with the BankXX pro-
gram, it may well take future experiments with similar programs to extract the
BankXX-dependent and domain-dependent conclusions from more general lessons
about legal retrieval and argument.

General lessons that we would expect to see emphasized by work with other
programs and domains include the utility of incorporating a variety of types of
legal knowledge in a knowledge base, together with a rich vocabulary of inter-
connections. We would expect to see the benefit of retrieving information for
targeted categories, such as those captured in our argument pieces, since this
imports the high level purposes for doing the retrieval – the user’s information
needs – into the retrieval process itself. We would expect also to see in various
forms the domination of small sets of cases and the importance of leading cited
cases to structuring a legal area. Finally, we would expect to see that argument
creation involves the complex interaction of pieces of knowledge represented and
evaluated at various levels of abstraction.

Acknowledgments

This work was supported in part by the Air Force Office of Scientific Research
under contract 90-0359 and the National Science Foundation under grant EEC-
9209623, State/Industry/University Cooperative Research on Intelligent Infor-
mation Retrieval. For assistance we thank Matt Cornell and Kate Sanders, and
Elaine Whitlock and Barbara Fell-Johnson of the Hampshire County Law Library,
Northampton, Massachusetts. Jody Daniels wrote the claim lattice algorithms used
by BankXX. We thank the West Publishing Co. for providing access to their legal
databases through the University of Massachusetts Center for Intelligent Informa-
tion Retrieval.

Technical Appendix

Here we give for reference the weights and terms used by each evaluation method.
The companion article contains a full description of the evaluation functions and
the argument pieces and argument factors used in them.

arti134.tex; 16/04/1997; 13:48; v.6; p.72

EVALUATING A LEGAL ARGUMENT PROGRAM 73

1. Theory-nodes 8
2. Cases-as-facts nodes 6
3. Citation-bundle nodes 5
4. Domain-factor nodes 4
5. Story-prototype nodes 3

The terms and weights used in the node type evaluation function.

1. supporting cases: weight = 2 [limit = 3]
2. best supporting cases: 7 [5]
3. contrary cases: 1 [3]
4. best contrary cases: 5 [3]
5. leading cases: 6 [5]
6. supporting citations: 1 [5]
7. overlapping cases: 1 [5]
8. applicable legal theories: 8 [6]
9. nearly applicable legal theories: 6 [3]

10. factual prototype stories: 6 [1]

The terms, weights, and piece limits (given in brackets) used in
the argument piece evaluation function.

1. centrality-of-theory 8
2. win-record-of-theory 8
3. win-record-of-theory-for-factual-prototype 8
4. strength-of-best-case-analogies 5
5. centrality-of-best-cases 5
6. equally-on-point-cases 4
7. strength-of-citations 4
8. strength-of-factual-prototype 3

The terms and weights used in the argument factor evaluation function.

References

Ashley, K. D. (1990). Modeling Legal Argument: Reasoning with Cases and Hypotheticals. MIT
Press: Cambridge, MA.

Birkhoff, G. (1967). Lattice Theory. American Mathematical Society: Providence, RI.
Blair, D. C. & Maron, M. E. (1985). An Evaluation of Retrieval Effectiveness for a Full-Text

Document-Retrieval System. Communications of the ACM 28(3): 289–299. March 1985.
Branting, L. K. (1991). Building Explanations from Rules and Structured Cases. International Journal

of Man-Machine Studies 34: 797–837.

arti134.tex; 16/04/1997; 13:48; v.6; p.73

74 E.L. RISSLAND ET AL.

Eisenberg, M. A. (1982). Gilbert Law Summaries: Contracts. Harcourt Brace Jovanovich Legal and
Professional Publications: New York.

Fox, J. & Clarke, M. (1991). Towards a Formalisation of Arguments in Decision Making. In AAAI
Spring Symposium Series, 1991, Argument and Belief, 92–99. Palo Alto, CA.

Gardner, A. vdl. (1987). An Artificial Intelligence Approach to Legal Reasoning. MIT Press: Cam-
bridge, MA.

Gentner, D. & Forbus, K. D. (1991). MAC/FAC: A Model of Similarity-based Retrieval. In Proceed-
ings of The Thirteenth Annual Conference of the Cognitive Science Society, 504–509. Chicago,
IL. Lawrence Erlbaum: Hillsdale, NJ.

Harmon, D. K. (1995). Overview of the Third Text REtrieval Conference (TREC-3). In Harmon,
D. K. (ed.) Proceedings of the Third Text REtrieval Conference (TREC-3) National Institute of
Standards and Technology Special Publication 500-225. Washington, D.C.

Perelman, C. & Olbrechts-Tyteca, L. (1969). The New Rhetoric: A Treatise on Argumentation.
University of Notre Dame Press: Notre Dame, Indiana.

Rissland, E. L. (1990). Dimension-based Analysis of Hypotheticals from Supreme Court Oral Argu-
ment. In Proceedings of The Second International Conference on AI and Law, 111–120. Vancou-
ver, BC. ACM Press: New York.

Rissland, E. L. & Ashley, K. D. (1987). A Case-Based System for Trade Secrets Law. In Proceedings
of The First International Conference on Artificial Intelligence and Law, 60–66. Boston, MA.
ACM Press: New York.

Rissland, E. L., Daniels, J. J., Rubinstein, Z. B. & Skalak, D. B. (1993). Case-Based Diagnostic
Analysis in a Blackboard Architecture. Proceedings of the Eleventh National Conference on
Artificial Intelligence, 66–72. Washington, DC. AAAI Press/MIT Press.

Rissland, E. L., Skalak, D. B. & Friedman, M. T. (1996). BankXX: Supporting Legal Arguments
through Heurisitic Retrieval. Artificial Intelligence and Law: An International Journal 4: 1–71.

Rissland, E. L., Valcarce, E. M. & Ashley, K. D. (1984). Explaining and Arguing with Examples.
Proceedings of the Fourth National Conference on Artificial Intelligence. Austin, TX. AAAI
Press.

Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and Retrieval of Infor-
mation by Computer. Addison-Wesley: Reading, MA.

Salton, G. & McGill, M. J. (1983). Introduction to Modern Information Retrieval. McGraw-Hill:
New York.

Skalak, D. B. & Rissland, E. L. (1992). Arguments and Cases: An Inevitable Intertwining. Artificial
Intelligence and Law: An International Journal 1(1), 3–48.

Toulmin, S. E. (1958). The Uses of Argument. Cambridge University Press.
van Rijsbergen, C. J. (1979). Information Retrieval, Second Edition. Butterworths: London.
Veloso, M. M. & Carbonell, J. G. (1991). Variable-Precision Case Retrieval in Analogical Problem

Solving. In Proceedings of The Third Case-Based Reasoning Workshop, May 1991. Washington,
D.C. Morgan Kaufmann: San Mateo, CA.

arti134.tex; 16/04/1997; 13:48; v.6; p.74

