Accredited DomainKeys:

A Service Architecture for Improved Email Validation*

Michael T. Goodrich
Department of Computer Science
University of California
Trvine, CA 92697
goodrich(at)acm.org

Abstract

We present an architecture called Accred-
ited DomainKeys, which builds on the Do-
mainKeys email authentication infrastruc-
ture to address the following questions:

e “Did the sender actually send this

email?”
e “Is the sender of this email trustwor-
thy?”

The proposed DomainKeys architecture al-
ready addresses the first question but not the
second. Accredited DomainKeys strength-
ens the reliability of a positive answer to
the first question and provides a mecha-
nism to answer the second. In terms of
infrastructure requirements, Accredited Do-
mainKeys involves a modest additional use
of DNS over the existing DomainKeys pro-
posal. In addition, the specification of Ac-
credited DomainKeys provides a mechanism
for historical non-repudiation of email mes-
sages sent from a given domain, which is
useful for the enforcement of acceptable us-
age policies. Several compliant implementa-
tions of Accredited DomainKeys are possible.
This paper describes two implementations,
one based on time-stamped signatures, and
the other based on authenticated dictionar-
ies and the secure transaction management
system (STMS) architecture.

1 Introduction

As domain spoofing (a major contributor to spam,
spim, phishing and malware) becomes a billion-dollar
problem, several sender verification frameworks have

*This work was principally supported by a gift to
Brown University from TAM Registry, Inc. The work of the
first author was done primarily as a consultant to Brown
University supported by this gift.

Roberto Tamassia
Department of Computer Science
Brown University
Providence, RI 02912
rt(at)cs.brown.edu

Danfeng Yao
Department of Computer Science
Brown University
Providence, RI 02912
dyao(at)cs.brown.edu

been proposed for email [2, 3, 5, 8, 10, 16]. All such
schemes rely on the existing DNS infrastructure to
store authentication information on authorized email
sending servers.

These schemes can be classified primarily as being
either path-based or cryptographic. In path-based
schemes, such as SPF [9, 15] and Sender ID [12], a do-
main administrator places into DNS records the IP ad-
dresses of authorized email sending servers for the do-
main. Thus, receiving email servers can check whether
incoming email messages are being sent by an autho-
rized server. Path-based schemes are very simple to
implement and require minimal computing and com-
munication overhead. However, they do not work well
with forwarded email messages, since they are vulner-
able to “email laundering” attacks (see, e.g., [13]).

In cryptographic schemes, such as DomainKeys [3],
outgoing email messages are digitally signed by the
sending server using public-key cryptography. In or-
der to allow for signature verification by the receiv-
ing email server, the domain administrator places into
DNS TXT records the public keys used to sign email
messages sent by authorized email sending servers of
the domain. Cryptographic schemes provide strong as-
surances of the sender domain and message integrity
and are resilient to email laundering attacks. However,
they require a small computational overhead for sign-
ing messages at the senders and verifying signatures of
messages at the receivers.

Both the path-based and the cryptographic schemes,
however, are only as strong as DNS itself, which has
some known weaknesses. For example, DNS spoofing
(malicious cache poisoning) is an attack where forged
data is placed in the cache of the name servers. As a
consequence, the security of DomainKeys can compro-
mised. For instance, an attacker can generate a pub-
lic/private key pair, and launch a DNS spoofing attack
against a certain name server. The attack places the
public-key under namespace example.net in the cache
of the name server. The attacker then signs spam mes-

sages with his private key, and uses example.net as the
sender domain. Unfortunately, the domain with the
spoofed name server cannot identify the spams because
the email signatures are verified against the wrong
public key obtained from the poisoned DNS cache.

Furthermore, existing sender verification schemes are
directed at answering the following question:

“Did the sender actually send this email?”

where “the sender” is the email domain that a mes-
sage claims to be originated from. But answering this
sender-domain-authentication question only provides
the first part of an email assurance solution.

1.1 Sender Accreditation

An effective email assurance infrastructure should also
answer the following question:

“Is the sender trustworthy?”

Identities in the digital world have no explicit correla-
tions with behaviors. Knowing with certainty that an
email comes from a domain that is otherwise unfamil-
iar does not provide much information about the repu-
tation of the sender domain, or whether the sender do-
main can be trusted not to send spam or malware. In-
deed, many spammers have been early and consistent
adopters of path-based domain authentication mecha-
nisms, such as SPF and Sender ID, as a way to cloak
their emails in legitimacy [14]. Thus, if DomainKeys
is widely-deployed only as an authentication technol-
ogy, as it is currently proposed, we would naturally
expect that spammers would be early adopters of Do-
mainKeys as well. That is, performing domain au-
thentication alone seems to invite spammer adoption,
which does not address the trustworthiness question
and may even discourage trustworthy senders from
adopting domain authentication.

Thus, being able to answer the trustworthiness ques-
tion for a sender domain provides recipients with cru-
cial information about the credibility of message con-
tent. This is especially crucial to corporate and gov-
ernment communications and legitimate email senders
from countries with a reputation for being spam ori-
gins.

Therefore, given the risks of decoupling authentica-
tion and accreditation, there is a strong need for
the establishments of accreditation bureaus that main-
tain trusted domain registries, which are directories
of domain names whose administrators have agreed
to acceptable usage policies (AUPs) prohibiting spam,
phishing, and other email abuses. This approach of
coupling accreditation with sender domain authentica-
tion is advocated, for example, in the Lumos whitepa-

per [11], which details the kinds of statements that
belong in an email AUP, such as the one accepted by
the affiliated Email Service Provider Coalition. The
Lumos whitepaper also describes in general terms the
kinds of infrastructure requirements needed to enforce
an email AUP. In a nutshell, the main idea is that
domains adhering to such an AUP (allowing for pro-
bation for first offenses and minor infractions) would
be allowed to keep their domain names in the registry,
which is dynamically updated by the accreditation bu-
reau. The challenge in establishing an infrastructure
for domain accreditation, then, is to design a valida-
tion system that can quickly validate recipient emails
and utilize low-overhead solutions for email senders
and the accreditation bureaus.

Although the DNS spoofing attack described earlier
can be prevented by widely deploying DNSSEC on
the Internet, existing email authentication frameworks
still cannot provide the trust assurance needed for
email. Our proposed Accredited DomainKeys frame-
work is resilient to DNS spoofing attacks and provides
irrefutable trust assurance for mail recipients.

1.2 Summary of Contributions

In this paper, we present the Accredited DomainKeys
framework that addresses both of the above authen-
tication and accreditation questions. Accredited Do-
mainKeys is a low-overhead service architecture for
domain accreditation, which achieves its efficiency by
extending the DomainKeys framework [3] to add an
accreditation seal to emails. This seal is essentially
a time-stamped micro-certificate, which provides a
proof-of-membership of the sender’s domain in an ac-
creditation bureau’s registry at a certain time and
date. This seal provides additional evidence that a
public key used to sign a given domain’s outbound
email was correct and valid, and therefore eliminates
the security vulnerabilities caused by DNS spoofing at-
tacks. More importantly, the seal shows that the ad-
ministrator of this domain has agreed to an acceptable
usage policy (AUP) that specifically prohibits spam
and phishing. Thus, such an email carries a high level
of trust; and if it violates that trust, the email and its
accreditation seal can be used as nonrepudiable evi-
dence of an AUP violation.

We also describe several possible implementations of
accreditation seals and the architectures that support
them, including an implementation based on authen-
ticated dictionaries [1, 6, 7], where accreditation seals
are cached at a collection of responders deployed in
the network. Even when the responders are located in
insecure, untrusted locations, a client can easily iden-
tify a forged or tampered seal so that the integrity of
a trusted-domain registry is maintained.

Accredited DomainKeys extends the existing Do-
mainKeys framework [3] to easily accommodate ac-
creditation registries, so that not only the domain
name of a sender can be authenticated but also the
trustworthiness of that domain. Specifically, it in-
volves inserting one additional key-value pair to outgo-
ing email messages authenticated with DomainKeys,
and one additional DNS lookup and (usually light-
weight) signature verification for the receiving email
server. Thus, the design of Accredited DomainKeys
focuses on the usability, performance, and scalability
for both the sender and receiver mail systems.

The Accredited DomainKeys protocol is lightweight
and easy to adopt. It uses DNS records for stor-
ing both public keys and their accreditation seals.
It is compatible with existing DomainKeys-enabled
email systems, and there are no extra computa-
tion/communication costs if Accredited DomainKeys
is not supported by a sender or recipient mail system.
Thus, legacy systems will inter-operate smoothly while
accreditation bureaus (and their respective registries)
are established. Querying and verifying accreditation
seals are simple and fast to perform in Accredited Do-
mainKeys, using just one additional DNS lookup (for
the accreditation seal itself).

2 Preliminaries

In this section, we briefly summarize the DomainKeys
framework [3], including its architecture, syntax, and
related cryptography and DNS background.

DomainKeys is a framework for email sender authen-
tication recently-proposed by Yahoo! [3]. It combines
public-key cryptography and DNS to provide domain-
level authentication for email. Given an email message
that claims to be generated from a certain domain, Do-
mainKeys describes a mechanism for the recipient’s
mail transfer agent (MTA) to verify whether or not
the email originated from an MTA that is authorized
to send emails for that domain. Several open source
implementations of DomainKeys are available, includ-
ing the dk-milter plugin [4] for the popular Sendmail
MTA.

Under DomainKeys, a domain owner generates one
or more private/public key-pairs. The public-key is
placed in a DNS TXT record associated with that do-
main, and the private-key is used by the sender MTA
to sign messages originating from authorized users of
that domain. The signature is added as a header to
the email, and the message is transferred to its recip-
ients in the usual way. Upon receiving an email with
a DomainKeys signature header, the receiving MTA
authenticates the sender domain. It first extracts the
signature and claimed sending domain from the email.
Then the public-key is fetched from the claimed send-

ing domain namespace through a DNS lookup, and is
used to verify the signature.

Any type of signature schemes can be used to imple-
ment the DomainKeys framework. The most widely-
used signature scheme on the Internet is the RSA
signature scheme, whose current minimum public-key
size is 1024 bits. Public-keys are stored in DNS TXT
resource record (RR). The design of DomainKeys even
allows a 2048-bit RSA public-key to be transmitted in
a single DNS UDP packet with a 512-byte payload.
The limit on the payload size of the UDP packet is
due to the cache limits of some legacy DNS servers.

DomainKeys reserves the DNS namespace _domainkey
within the sending domain for storing public-keys. In
addition, to support multiple public keys per sending
domain, it specifies that the DNS namespace can be
further subdivided with selectors, which are arbitrary
names below the _domainkey. namespace. An exam-
ple of namespace using the selector brisbane is: bris-
bane._domainkey.example.net. This approach of storing
data in DNS is used in this paper to store accreditation
seals.

3 Accredited DomainKeys

Accredited DomainKeys supports both domain au-
thentication and accreditation registries. The domain
authentication is handled the same way as in the Do-
mainKeys framework [3] using a signature and a DNS
query. In addition, Accredited DomainKeys accom-
modates accreditation bureaus that issue accreditation
seals for their respective members. Next, we give the
definitions of the concepts used in the Accredited Do-
mainKeys framework and we then describe the opera-
tions and data storage in the framework.

e Acceptable usage policy (AUP): A policy
that prohibit spam, phishing, and other email
abuses, established from the best practices of like-
minded organizations acting in federation.

e Accreditation bureau and trusted domain
registries: An accreditation bureau maintains
trusted domain registries, which are directories of
domain names whose administrators have agreed
to an AUP.

e Accreditation seal: An accreditation seal pro-
vides a proof of membership of the sender’s do-
main in an accreditation bureau’s registry. The
accreditation seal of a domain is generated and pe-
riodically refreshed by the accreditation bureau.
This seal provides additional evidence that a pub-
lic key used to sign a given domain’s outbound
email is correct and valid. More importantly, the
seal shows that the managers of this domain have
agreed to an AUP. The accreditation seal of a do-

main is stored in a DNS TXT record under the do-
main’s namespace, and a recipient MTA obtains
the seal through a DNS query for the TXT record
under that namespace.

Under Accredited DomainKeys, a qualified domain
registers its public-key with the Accreditation Bureau,
which then sends an accreditation seal to the registered
domain. The seal is stored as a DNS TXT record on
the authoritative name server of the domain. Out-
bound emails from the domain are signed with the
domain’s private-key. The recipient MTA first queries
the sender’s name server for its public-key to verify the
signature, and then queries for its accreditation seal to
verify the sender’s membership in the trusted domain
registry. The long-term public-key of the Accredita-
tion Bureau is needed to authenticate the accredita-
tion seal.

In the rest of this section we describe the Accredited
DomainKeys framework and discuss in detail the fol-
lowing topics: key setup and registration, storage of
accreditation seals, sending an email message, domain
authentication, and seal verification. The registration
and processing of outgoing email messages are shown
in Figure 1. The processing of incoming email mes-
sages is shown in Figure 2.

3.1 Key Setup and Registration

As in DomainKeys, a domain owner or commercial cer-
tificate authority (CCA) generates one or more pub-
lic/private key pairs for the domain, where each public
key is stored in a DNS TXT record associated with
that domain, under a certain selector. The syntax for
the public-key in the TXT record is the same as in
DomainKeys [3]. The following is an example.

brisbane._domainkey IN TXT "k=rsa; p=MHww ...
IDAQAB;"

In the above, brisbane is the selector, _.domainkeys is
the namespace for the domain public-key, k represents
the key type, and p represents the public-key data.

To register in an accreditation bureau’s registry, a
domain has to agree to an acceptable usage policy
(AUP). Once joined, the accreditation seal of the do-
main is issued by the bureau. The accreditation seal
is stored in a DNS TXT record under the namespace
of the domain. The accreditation seal is periodically
refreshed by the accreditation bureau, and the TXT
record on the name server is updated. The storage of
accreditation seals in DNS is described next.

3.2 Storage of an Accreditation Seal

As with the domain public-key, the accreditation seal
of a domain is stored in the namespace _domainkey

within that domain. To distinguish the TXT record
storing the accreditation seal from the one stor-
ing the domain public-key, Accredited DomainKeys
uses a seal-selector. For example, the seal-selector
for example.net may be adelaide, so the accredita-
tion seal would be stored in the namespace ade-
laide._domainkey.example.net.

The seal-selector also allows to distinguish among mul-
tiple accreditation seals, each of them corresponding
to a registered public-key of the domain. The seal-
selector must be different from the selector for the
public key.

The DNS TXT record stores the accreditation seal and
its attributes as tag=value pairs separated by semi-
colons. Accredited DomainKeys defines tags f and i
for accreditation seal data.

e f: the attribute field that stores the accreditation
seal data of a domain.

e i: a time-stamp indicating when the accreditation
seal is generated.

For example,

adelaide._domainkey IN TXT "a=rsa;
i=2005.03.21.1700:f=wMDw ... IQDAAH;"

In the above example, a represents the signing algo-
rithm (which should be used to validate this seal), f
represents Base64-encoded seal data, and i is the time
when the seal is generated. This TXT record should
be transmitted in one DNS UDP packet with a 512-
byte payload. In Section 4, several implementations
of Accredited DomainKeys are given that satisfy this
size requirement.

3.3 Sending an Email Message

In order to authenticate a sender domain and verify
its accreditation registry membership, the email has
to provide information for a recipient MTA to locate
the sender’s domain public-key and accreditation seal.
This information is given by the sender MTA in the
signature header of an email as follows.

The sender MTA signs an outbound email with its
domain private-key, as in DomainKeys: the signa-
ture and its attribute data are stored in the header
DomainKey-Signature of an email. Accredited Do-
main inherits the header DomainKey-Signature, and
all the attribute fields of DomainKeys [3], such as
field b for the signature data. In addition, Accred-
ited DomainKeys introduces a new header Accredited-
DomainKeys and an attribute field v for locating the
accreditation seal:

e Accredited-DomainKeys: the email header that
stores the information of an accreditation seal.

(6) Input: private-key for
brisbane._domainkey.example.net
seal-selector: adelaide , message

Sender domain
(example.net)

(1) Generate public/private-key pair for
brisbane._domainkey.example.net

(3) Register and agree to AUP

(4) Update seals
at each time
quantum

Accreditation Bureau
ins

accreditation registry)

(2) Put public key for
brisbane._domainkey.example.net

Authoritative Name
Server

Domainkey-Signature:

(7) Sign a=rsa-shal ;s=brishane ;
d=example.net ;g=dns;
c=simple ; b=dzdVvyO... ;
Accredited-DomainKeys:
v=adelaide ;

Accredited
Sender MTA

(5) Store seal in
adelaide._domainkey.example.net
at each time quantum

Receiver
MTA

Figure 1: A schematic drawing of the registration and signature generation process of the sender domain and
related organizations. Components that Accredited DomainKeys adds to the DomainKeys framework are shown
in green and red, where red indicates operations performed at each time quantum.

e v: attribute field for a seal-selector in the
Accredited-DomainKeys header. The seal-selector
is used to identify the namespace that stores the
accreditation seal of the domain.

Headers contain attribute data in tag=value pairs sep-
arated by semicolons. For example:
DomainKey-Signature: a=rsa-shal; s=brisbane;
d=example.net; q=dns;
b=dzdVyO.. ;

Accredited-DomainKeys: v=adelaide;

In the above, the header Accredited-DomainKeys and
tag v are introduced by Accredited DomainKeys. The
header DomainKey-Signature and tags a, s, d, q, and
b are inherited from DomainKeys [3]. These tags rep-
resent the signing algorithm, selector, sending domain
name, query method for retrieving public-key, and the
signature data, respectively. A picture that illustrates
the sending process is shown in Figure 1.

3.4 Domain Authentication

Under the Accredited DomainKeys framework, when
an MTA receives an email, it has two tasks to accom-
plish before accepting the mail. The first task is to
authenticate the sender domain, and the second task
is to verify the sender’s membership in the accredita-
tion registry. A schematic drawing of the operations
by the recipient MTA is shown in Figure 2.

Domain authentication is done as in DomainKeys,
which is briefly described as follows. The re-
cipient MTA extracts the domain name from the
From header of the email, and extracts the se-
lector from the field s in the DomainKey-Signature
header. The namespace for the domain public-
key is the concatenation of the selector, string
._domainkey., and the domain name. For example,

brisbane._domainkey.example.net. Then, the recipient
MTA queries for the DNS TXT record stored in
the namespace brisbane._domainkey.example.net. The
public-key data in the TXT record is then extracted,
and the signature extracted from the DomainKey-
Signature header is verified as in DomainKeys.

If the signature verification does not succeed, the email
is not accepted. DomainKeys specifies how the recipi-
ent MTA may contact the sender DNS server for more
information about its sending policies [3]. This is not
repeated here. If the signature is successfully verified,
the recipient MTA proceeds to membership verifica-
tion, which is described next.

3.5 Seal Verification

If the sender domain has been successfully authenti-
cated, the recipient MTA extracts the attribute value
from field v in the Accredited-DomainKeys header of
the email. If the header or the field does not exist or
is null, this means the sender does not support Accred-
ited DomainKeys. Then the membership verification
is not performed by the recipient MTA. It is up to the
recipient domain’s policies to decide how to process the
email in this case. Here, we consider the case where
field v exists and is not null.

The recipient MTA extracts the seal-selector from field
v in the Accredited-DomainKeys header of an email.
The namespace that stores the accreditation seal is
obtained by concatenating the seal-selector, string
._domainkey., and the sender domain. For example,
adelaide._domainkey.example.net. The MTA queries for
the DNS TXT record stored in that namespace, and
the accreditation seal data is extracted.

Once the recipient MTA has obtained the accredi-
tation seal, the membership of the sender domain

Domainkey-Signature: (1) DNS query for TXT RR in

a=rsa-shal ; s=brisbane ;

brisbane._domainkey.example.net

d=example.net ;qg=dns; |

c=simple ; b=dzdvyO... ;

Accredited-DomainKeys:

TXT Record
v=adelaide ;)

Public-key

%

Zone file for example.net

‘ Authoritative
Name Server

(3) Authenticate sender
domain

Receiver MTA
(supports Accredited
DomainKeys)

(6) Verify acceditation
registry membership

(4) DNS query for TXT RRin

adelaide._domainkey.example.net I

—

brisbane._domainkey IN TXT
“g=; k= rsa; p= MHww ... IDAQAB ©

adelaide._domainkey IN TXT
“a=rsa; i= 2005.03.21.1700 ;
f=FxA... "

~

Updates on
accreditation seal at
each time quantum

Figure 2: Schematic illustration of the operations performed by a recipient MTA to authenticate the sender

domain and verify the sender’s registry membership.

in the accreditation registry can be verified. Sev-
eral cryptographic implementations of accreditation
seals for Accredited DomainKeys are presented in the
next section. Accreditation seals in these implemen-
tations typically contain a special time-stamped sig-
nature signed by the accreditation bureau on registry
information. A recipient MTA needs to obtain the
public-key of the accreditation bureau to verify this
signature. We assume that existing public-key in-
frastructure can be employed for this task. The recip-
ient MTA obtains a long-term public-key certificate of
the accreditation bureau. Once this key is obtained
and accepted, it can be locally cached. The opera-
tions of a recipient MTA in Accredited DomainKeys
are illustrated in Figure 2.

4 Implementation of Accredited
DomainKeys

In this section, we describe two possible architectures
for implementing Accredited DomainKeys. These ar-
chitectures are specified simply by using different key-
words in the a field of an accreditation seal record to
indicate the algorithm to use to validate the given
seal. Both architectures can be deployed in two dif-
ferent ways—either the domain can manage its own
_domainkeys subdomain or it can delegate this task to
authoritative name servers managed by the accredita-
tion bureau (or an affiliated entity of the accreditation
bureau).

4.1 Simple Time-Stamped Signatures

One possible solution for accreditation seals is for an
accreditation bureau to individually sign every pos-
sible pair of a domain name and an affiliated Do-

mainKeys public key for that domain, and publish
these signatures in DNS using the associated accred-
itation seal selectors. These signatures can be very
short—they only need to store the actual signature
data, an identifier for the accreditation bureau (since
we assume the bureau’s public key is obtained out-
of-band), and a time stamp. The publication of
this signature can either be done at the domain’s
name server (e.g. seal._domainkey.example.net), or on
the accreditation bureau’s DNS server network (e.g.
seal.example_net._domainkey.bureau.org), depending on
the management structure chosen for the seals.

This solution requires the accreditation bureau to sign
all of its client’s public keys at every time quantum
dictated by its AUP validity guarantee, e.g., every day
or every several hours. Thus, this solution is only re-
alistic for accreditation bureaus with a small number
of clients (e.g., during the initial deployment phase
of Accredited DomainKeys) or accreditation bureaus
with significant computational resources. The imple-
mentation we describe next is more scalable.

4.2 Secure Transaction Management
System (STMS)

In Accredited DomainKeys, we can use STMS to
implement a scalable trusted-domain registry. The
computing abstraction underlying STMS is a data
structure called an authenticated dictionary (see, e.g.,
[1, 7, 17]), which is a system for publishing data and
supporting authenticated responses to queries about
the data. In an authenticated dictionary, the data
originates at a secure central site the STMS source and
is distributed to servers scattered across the network
STMS responders. The responders answer queries

about the data made by clients on behalf of the source.
It is desirable to delegate query answering to the re-
sponders for two reasons: (1) The source is subject to
risks such as denial-of-service attacks if it provides ser-
vices directly on the network (2) The large volume and
diverse geographic origination of the queries require
distributed servers to provide responses efficiently.

The main feature of STMS is that it maintains trust
even when responders are located in insecure, un-
trusted locations. That is, when a client makes a query
to an STMS responder, it gets back not only an answer
but also a proof of the answer. The client can easily
validate the answer and determine that the responder
has not been tampered with, while relying solely on
trusted statements signed by the source. The design
of STMS allows untrusted responders, which do not
store private keys, to provide verifiable authentication
services on behalf of a trusted source. This nonintu-
itive yet mathematically provable fact is the key to
achieve cost effectiveness.

Figure 3 shows a high-level description of the STMS
parties and protocol. The source sends periodic up-
dates to the responders together with a special signed
time-stamped fingerprint of the database called the
basis. A responder replies to a query with an au-
thenticated response, consisting of the answer to the
query, the proof of the answer and the basis. Infor-
mally speaking, the proof is a partial fingerprint of the
database that, combined with the subject of the query,
should yield the fingerprint of the entire database. A
proof consists of a very small amount of data (less than
300 bytes for most applications) and can be validated
quickly. The client finally evaluates the risk associ-
ated with trusting the answer using the freshness of
the time-stamp.

In applying the STMS framework to Accredited Do-
mainKeys, we would publish the proof-basis pair to

WD
o~

AX234H3

e

Proof
| Basis
S signature
Basis Answer
Source Signature Responder Proof > User
g >
Update

P N Query

bt | Contains?
PQ765F3 AX234H3
Figure 3: An overview of the protocol for STMS. The
source pushes updates containing a signed basis to the
responder. The responder then answers user queries

with a proof of the answer, and a copy of the signed
basis from the source.

DNS, either using the domain’s DNS server or the DNS
responder network of the accreditation bureau. In ei-
ther case, the overhead for the accreditation bureau is
much reduced. In addition, recipient email servers can
also have reduced costs, by caching verified bases. This
caching allows recipient email servers to verify accred-
itation seals using a small number of cryptographic
hashes.

If the number of public-key/domain pairs associated
with a single basis is less than 1,000, the proof-basis
pair can fit in a single UDP 512-bit packet, which
satisfies the caching requirements for DNS. Thus, a
centralized accreditation bureau will be able to scale
to millions of proof-basis pairs simply by subdividing
its managed data across multiple bases. Therefore,
there is no technical limit to the number of public-
key/domain pairs a registry can manage under Ac-
credited DomainKeys. Thus, the STMS solution is
efficient for modest size domain communities and it is
extensible for larger communities as well.

4.3 Auditability and Nonrepudiation

The accreditation seal used in the Accredited Do-
mainKeys framework can further be used a historic
“audit stamp” that assures non-repudiation of mes-
sages and their historical verification. This property
adds a critical element for global regulatory compli-
ance. The STMS implementation uses an optimal
compression technique for storing historical informa-
tion [1], which allows responders to efficiently answer
queries about seals at arbitrary times in the past.

5 Related and Alternative Solu-
tions

The market is currently served by a handful of ac-
creditation registries, which reactively query a list, as
in IronPort’s Bonded Sender Program, with accredita-
tion provided by Truste and the Habeas Registry. In
addition, the Email Service Provider Coalition (ESPC)
has proposed a registry framework in their Lumos
whitepaper [11].

One alternative approach to domain accreditation one
could naturally imagine is to use PKI certificates, such
as SSL X.509 certificates, issued by trusted third-party
certification authorities (CAs), as accreditation seals.
In this case, a domain agreeing to an AUP could obtain
a trusted-domain certificate from a CA, and the cer-
tificate would then sent along with emails or could be
retrieved from DNS. The recipient mail system verifies
the certificate against the CA’s public-key.

There are several practical concerns with this ap-
proach, however. The first concern is that PKI cer-

tificates are much larger than standard DNS TXT
records, which, for caching purposes, are preferred to
be less than 512 bytes. Thus, delivering these certifi-
cates in DNS poses problems with fragmentation and
truncation. More importantly, however, PKI certifi-
cates are meant to have long-term validity, whereas ac-
creditation seals are to be used for time-specific valida-
tion of an email AUP. Thus, with PKI certificates used
to validate adherence to an AUP, a trusted-domain
certificate may be revoked by CA before it expires.
This could happen if there are complaints against the
domain or the domain changes it owner. Therefore,
the recipient MTA has to query the issuer CA to en-
sure the validity of the certificate. Using traditional
CRLs for validity-checking in this case poses serious
scalability issues and performing OCSP queries to test
validity adds extra unnecessary overheads to the email
validation. Alternatively, attaching a digital certificate
to each outbound email significantly increases Internet
traffic and email caching overhead. For those recipient
mail systems that do not support trusted-domain cer-
tificates, this increased traffic and storage costs have
no benefit.

6 Conclusions and Future Di-
rections

In this paper, we propose the use of a trusted-domain
registry for managing the trustworthiness of a sender
domain in email. We describe a service architecture for
accrediting domains through an extension of Yahoo!
DomainKeys. We also describe two possible compli-
ant implementations of Accredited DomainKeys, one
based on simple signatures and one based on the exist-
ing Secure Transaction Management System (STMS),
which gives rise to a scalable trusted-domain registry
system. An interesting direction for future work would
be to design a similar service architecture to integrate
accreditation with path-based domain authentication,
such as Sender ID [12] or SPF [9]. Another interest-
ing research topic is to investigate how to integrate
different accreditation results from multiple accredi-
tation bureaus in evaulating the trustworthiness of a
domain.

Acknowledgments

We are grateful to David Croston, of IAM Registry,
Inc., for his helpful suggestions and support regarding
the topics of this paper. We would also like to thank
Eric Allman, Jon Callas, and Jim Fenton for several
useful conversations concerning the topics of this pa-
per. This work was principally supported by IAM Reg-
istry, Inc. Additional partial support was provided
by NSF grants CCR-0225642, CCR-0311720, CCF-
0311510, CCR-0312760, and I1S-0324846.

References

[1] A. Anagnostopoulos, M. T. Goodrich, and R. Tamas-
sia. Persistent authenticated dictionaries and their ap-
plications. In Proc. Information Security Conference
(ISC 2001), volume 2200 of LNCS, pages 379-393.
Springer-Verlag, 2001.

[2] H. Danisch. @~ The RMX DNS RR and method
for lightweight SMTP sender authorization, May
2004. http://wuw.watersprings.org/pub/id/
draft-danisch-dns-rr-smtp-04.txt.

[3] M. Delany, Yahoo!, Inc. Domain-based
email authentication wusing public-keys adver-
tised in the DNS (DomainKeys), February

2005. http://wuw.watersprings.org/pub/id/
draft-delany-domainkeys-base-01.txt.

[4] dk-milter. A DomainKeys implementation. http://
sendmail.net/dk-milter/.

[5] J. Fenton and M. Thomas. Identified internet mail,
October 2004. http://www.watersprings.org/pub/
id/draft-fenton-identified-mail-01.txt.

[6] M. T. Goodrich and R. Tamassia. Efficient authen-
ticated dictionaries with skip lists and commutative
hashing. Technical report, Johns Hopkins Informa-
tion Security Institute, 2000. Available from http://
www.cs.brown.edu/cgc/stms/papers/hashskip.pdf.

[7] M. T. Goodrich, R. Tamassia, and A. Schwerin. Im-
plementation of an authenticated dictionary with skip
lists and commutative hashing. In Proc. 2001 DARPA
Information Survivability Conference and Ezposition,
volume 2, pages 68-82, 2001.

[8] Identified Internet Mail. http://wuw.
identifiedmail.com/IIM/20WP_v3.pdf.
[9] M. Lentczner and M. W. Wong. Sender pol-

icy framework (SPF) a convention to describe
hosts authorized to send SMTP traffic, May
2004. http://www.watersprings.org/pub/id/
draft-mengwong-spf-01.txt.

[10] J. R. Levine. A flexible method to validate
SMTP senders in DNS, April 2004. http://wuw.
watersprings.org/pub/id/draft-levine-£fsv-01.
txt.

[11] Project Lumos white paper. http://www.
espcoalition.org/lumos_white_paper.php.

[12] Microsoft Sender ID Framework. http://www.
microsoft.com/mscorp/safety/technologies/
senderid/default.mspx.

[13] E-Mail Authentication Via Sender ID.
http://wuw.networkmagazine.com/shared/
article/showArticle. jhtml?articleld=
47903211&classroom=.

[14] Spammers use sender authentication too, study says.
http://www.computerworld.com/printthis/2004/
0,4814,95617,00.html.

[15] SPF: Sender Policy Framework . http://spf.pobox.
com/.

[16] M. Stumpf and S. Hoehne. Marking mail trans-
fer agents in reverse DNS with TXT RRs, Octo-
ber 2004. http://www.watersprings.org/pub/id/
draft-stumpf-dns-mtamark-03.txt.

[17] R. Tamassia. Authenticated data structures. In Proc.
European Symp. on Algorithms, volume 2832 of Lec-
ture Notes in Computer Science, pages 2—5. Springer-
Verlag, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

