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Abstract

We introduce a collaborative anti-spam sys-
tem that is based on pervasive global social
email networks. Essentially, we provide a so-
lution to this open research problem: given a
network of N users who are willing to share
information collaboratively (e.g. the digests
or �ngerprints of known spams), how do we
search for each user's content e�ciently and
reliably in a distributed manner with minimal
tra�c cost on the network? As a solution to
this open problem, our proposed system em-
ploys the percolation search process, which
makes the tra�c generated due to queries for
spam digests scale sublinearly as a function of
N . However, in order to reap the bene�ts of
this novel percolation search algorithm, the
node degree distribution of the underlying
network must be heavy-tailed. Interestingly,
latent global social email networks compris-
ing of personal contacts possess a power-law
heavy-tailed degree distribution, which ren-
ders itself an ideal natural platform to em-
ploy the percolation search algorithm. As a
result, our proposed distributed spam �lter
requires no dedicated peer-to-peer (P2P) sys-
tems or centralized server-based systems. We
have performed large-scale simulations and
we �nd that the system achieves a spam de-
tection rate close to 100%, while the false pos-
itive rate is kept around zero. The bandwidth
cost per user as well as the system-wide band-
width cost are shown to be very low.
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1 Introduction

Spam, or Unsolicited Bulk Email, is plaguing internet
users around the world. It has been estimated that ap-
proximately 68% of the worldwide email tra�c today is
spam and up to 87% of the emails directed to US users
is spam[3]. For the past few years, numerous spam �l-
ters have been proposed and deployed, and as brie
y
reviewed in the following section, while these �lters
hold considerable promise, they also su�er from sev-
eral drawbacks, which render them inadequate to serve
as the sole defense against the growing onslaught of the
spam menace. The primary contribution of this paper
is to introduce a collective spam �ltering system
that exploits the pervasive and already-existing
social email networking system, and harnesses it
e�ciently and reliably to provide a multi-layered de-
fense against spams. In particular, we demonstrate
(i) how one can leverage the topological proper-
ties of the underlying social email networks and use
recent advances in network-based search algo-
rithms, to make global searches and queries scalable,
(ii) how trust and reputation implied by social
email interactions can be harvested from these email
networks, and (iii) how amulti-layered system that
parallels decision making at the societal scale
can be designed to e�ectively combat spam. That
is, such a system utilizes existing content-based and
personal information-based schemes as the �rst-line of
defense at the individual level, and then utilizes com-
munal trust metrics and reliable searches at the higher
levels, to e�ectively identify and eliminate spams. This
work builds on the recent pioneering work by Boykin
and Roychowdhury[7] that showed how the topologi-
cal properties of personal email networks can be used
to automatically generate highly accurate white lists
and black lists at the level of individual users to �lter
spams.



1.1 Prior Work, Challenges, and Motivation

Of all the existing anti-spam solutions, two classes of
spam �lters have emerged as the most e�ective and
widely-deployed: Bayesian/rule-based spam �lters and
collaborative spam �lters. A Bayesian �lter uses the
entire context of an e-mail in looking for words or
phrases that will identify the e-mail as spam based on
the experience gained from the user's sets of legitimate
emails and spams. One example of a widely deployed
Bayesian spam �lter is SpamAssassin[4]. Although the
Bayesian anti-spam solutions o�er very impressive per-
formances, they su�er from several serious drawbacks:
�rst, Bayesian �lters require an initial training period
and exhibit a lower performance in classifying mes-
sages composed of previously unknown words; second,
Bayesian �lters are unable to block messages that do
not look like a typical spam such as messages that is
consist of only a URL or messages that are padded
with random words. Most recently a number of mul-
tifaceted approaches have been proposed[15, 6]. They
consider combining various forms of �ltering with in-
frastructure changes, �nancial changes, legal recourse,
and more, to address shortcomings of regular statisti-
cal �lters.
The increasing realization that the dynamic of spam
constitutes a complex phenomenon brewed, fostered
and propagated in the interconnected realm of the cy-
berspace, has prompted the use of collaborative spam
�lters, where the basic idea is to use the collective
memory of, and feedback from, the users to reliably
identify spams. That is, for every new spam that is
sent out, some user must be the �rst one to identify
it upon receiving this spam (e.g., by using a Bayesian
�lter or locally generated white and black lists); now,
any subsequent user that receives a suspect email can
query the community of email users to �nd out if it
has been already tagged as spam or not. In con-
trast to Bayesian type �lters, collaborative spam �l-
ters do not su�er from the drawbacks just mentioned
above, and it has been shown that they are also ca-
pable of superior spam detection performance. The
existing collaborative �ltering schemes mostly
ignore the already present and pervasive social
communities in the cyberspace and try to create
new communities of their own to facilitate the shar-
ing of information. This unenviable task of creating
new social communities is beset with several di�cul-
ties that have limited the deployment and e�ective use
of most collaborative �ltering schemes proposed so far.
The challenges include:
(i) How to �nd users to participate?: In order for a
collaborative spam �lter to be highly e�ective, a large
number of users (on the order of hundreds of thou-
sands or millions) must participate. However, e�ec-

tively �nding and interconnecting a large number of
willing participants is non-trivial. In other words mak-
ing any arti�cially established community acceptable
and popular is an unpredictable and di�cult task at
best, and impossible at worst.
(ii) How to make the search scalable? : The power of
a collaborative spam �lter lies in the fact that spam
databases from a large number of users are pooled to-
gether and utilized to �ght spam. In order to avoid
high server cost, the spam databases are typically
stored locally on users' computer. Finding a way to do
e�cient searches on a network of distributed databases
is very challenging.
(iii) Who to trust : Inevitably, there would be mali-
cious users who try to subvert the collaborative anti-
spam system by providing false information regarding
spam. Therefore, a trust scheme must be devised to
place more weights on the opinions of some provably
trustworthy users than on some unknown users who
can be potentially malicious.
The di�erent proposed schemes for collaborative �lter-
ing attempt to address the above challenges to di�er-
ent degrees of e�ectiveness. For example, SpamNet[5]
employs the following mechanisms to address the chal-
lenges stated above: It uses a central server model to
connect all the willing participants of this collaborative
spam �lter. The central server solution is not scalable
as the system scales and the server becomes a single
point of attack or failure. SpamWatch[18] is a totally
distributed spam �lter based on the Distributed Hash
Table (DHT) system Tapestry[17]. Most recently Gray
et. al. have proposed CASSANDRA, a collaborative
spam �lter where the network is formed as clusters of
trusted and similar peers. Finally a new reputation
analysis have been proposed by Golbeck et. al. [11]
where reputation relationships are inferred from the
structure and are used as a method to score emails.

1.2 Harnessing The Global Social Email
Network

Recently, Boykin and Roychowdhury investigated
the notion of utilizing social networks to do spam
�ltering[7]. In their work, it was shown that just by
looking at the clustering coe�cient of an email user's
personal contact networks, their algorithm is able to
achieve a spam detection rate of 53% with zero false
positives. Although this algorithm is very attractive,
it ignores the larger social email network and focuses
only on a projection as witnessed by an individual user,
and it begs the question whether the larger social email
networks can be harnessed. In this paper, we show
that a high-performance, scalable and secure spam �l-
ter that exploits global email networks can indeed be
designed. The fundamental idea is as follows: every



user of the system is connected to each other through
a chain of email contact links; for every new spam that
is sent out, some user of the system must be the �rst
one to identify it upon receiving this spam; now, any
subsequent user that receives the same spam can query
the network by following personal email contact links
to locate a user that has already identi�ed the mes-
sage as spam, since all users are connected through
the global social email network.
The main contributions of this paper lie in showing
that the three challenges outlined in the preceding dis-
cussions can be e�ectively addressed using the topo-
logical properties of the underlying social email net-
works and recent advances in complex networks the-
ory. First, no specially designed network has to
be created for collaborative �ltering. Hence, one of
the main features of this system is that all queries
and communications are exchanged via email through
personal contacts and that no server or a traditional
P2P system with TCP/IP connections is needed. Sec-
ond, we observe that social email networks correspond
to Power-Law (PL) graphs[10], with a PL coe�cient
around 2. So the underlying network naturally pos-
sesses a scale-free structure that is a key hall-mark of
many unstructured P2P systems that have organically
grown for �le-sharing on the Internet. One can then
utilize a scalable global search query recently
proposed by Sarshar et. al. [16] on this nat-
urally scale-free graph of social contacts to enable
peers to exchange their spam signature data. Finally,
the third main feature of the system is that we can
harvest and utilize the trust that is embedded
in the web of email contacts. By regarding con-
tact links as local measures of trust and using a dis-
tributed Power Iteration algorithm, we can obtain a
trust score calledmailtrust. In fact, the famous Google
PageRank[8] is computed in a similar fashion.
We then show that our proposed system not only
has innovative and interesting structural features, but
is also capable of delivering high performances
while incurring minimal costs. Under the assump-
tion that there would be a large number of users (on
the order of hundreds of thousands or millions), the
system can o�er a spam detection rate around 99%; in
fact, the detection rate can reach close to 100% when
the number of users approach the internet scale. At
the same time, the number of false positives in our sys-
tem can be tightly controlled to a level very close to
zero. Meanwhile, as the number of users of the system
scales, the communication cost of the system would
be kept at a sublinear scale and the memory storage
cost would grow only at a logarithmic scale. In addi-
tion, due to the fact that no TCP/IP connection
is required and all communications in the sys-

tem is done via background email exchanges,
less computational and networking burden would be
placed on local computers. Lastly, the system is de-
signed to be secure and rigorously protective of users'
privacy and con�dentiality.
The rest of the paper is organized as follows. In section
2, we present the background theory and the impor-
tant concepts vital to this paper, such as email net-
work theory and the percolation search algorithm. In
section 3, we describe the protocol of our social net-
work based collaborative anti-spam system in detail.
In section 4, we use a real world email network to per-
form large-scale simulations of the system. Finally, in
section 5, we address several important topics such as
the protection of privacy and the system's resilience
against random user failure.

2 Background Theory

Our system is motivated by a number of recent
advances in complex networks theory and systems,
Eigen-methods based computation of trust and rele-
vance, and the proven e�cacy of the spam digest sys-
tem as signatures of emails.
Topology of Social Email Networks: A particu-
lar email network comprising 56,969 nodes (i.e., email
addresses) has been studied by Ebel et. al.[10] Based
on the statistics reported in Ebel's work, we identify
three desirable properties that would make social email
networks an attractive platform for building a collab-
orative spam �lter:
(i) An email network has been found to possess a
scale-free topology. More precisely, for the email net-
work examined in [10], the node degree distribution
follows a power law (PL): P (k) / k�1:81; where k
is the node degree, and P (k) denotes the probabil-
ity that a randomly chosen node has degree equal to
k. One of the consequences of this property is that
of very low percolation threhold[16]; in other words,
the network is extremely resilient to random deletions
of nodes. One can also show that even if high-degree
nodes are deleted preferentially, one has to remove al-
most all the high-degree nodes, before the network gets
fragmented.
(ii) A large fraction of the nodes (~95:2%) in a so-
cial email network is connected to the giant connected
component (GCC). This means that any node can
reach almost any other arbitrary node by simply fol-
lowing email links.
(iii) The email network has a low diameter (i.e. there
exist short paths between almost any pair of two nodes
in the network). In fact, for the email network inves-
tigated by Ebel et. al.[10], the mean shortest path
length in the giant connected component was found



to be l = 4:95 for a component size of 56; 969 nodes.
This short-diameter property allows any email user to
e�ciently communicate with any other email user in
the network by crossing only a few email contact links.
The above properties of the social email network
should not come as a surprise, since it re
ects the same
social dynamics that we practice in our everyday life.
Scalability via Percolation Search: We can uti-
lize the percolation search algorithm on a Power Law
(PL) network proposed by Sarshar et. al.[16], which is
based on the classical percolation theory. It is shown
that unstructured search in PL networks can
be made highly scalable using the percolation
search. The key steps of the algorithm are as follows:
(i) Caching or Content Implantation: Each node per-
forms a short random walk in the network and caches
its content list on each of the visited nodes. The
length of this short random walk is speci�ed later. (ii)
Query Implantation: When a node intends to make a
query, it �rst executes a short random walk of the
same length as step 1 and implants its query requests
on the nodes visited. (iii) Bond Percolation: All the
implanted query requests are propagated through the
network in a probabilistic manner; upon receiving the
query, a node would relay to each of its neighboring
nodes with percolation probability p, which is vanish-
ingly greater than the percolation threshold, pc, of the
underlying PL network.
It is shown in [16] that the percolation threshold of any
random network is given as pc = hki=hk2i. For a PL
network with exponent � and maximum degree kmax,
we have hk2i = O(k3��max) and hki = O(k2��max), and
hence, we get a percolation threshold of pc = O(k�1max),
which is vanishingly small if kmax increases with the
size of the network, which is usually the case. Thus, if
we percolate at a multiple 
 of pc, then the total tra�c
generated would be, C� = 
pchkiN = O( hki2Nhk2i ) =
O �k��+1max N�. In real world networks, kmax typically
scales sublinearly as a function of the network size.
For kmax = O(N1=� ), we have: C� = O �k��+1max N� =
O(N 1

� ). For a detailed analysis of the hit rate and how
it behaves as one performs multiple searches see [16].
The simulation plots for performing percolation search
on a real email dataset [10, 1] are provided in Fig. 1(a)
and Fig. 1(b).
The MailTrust Algorithm
Just as in the case of WWW, where the PageRank cap-
tures the relevance of a particular web page, the topo-
logical structure of the social email networks can be
used to assign trust or reputation to individual users.
First, we model each email contact as placing a unit
of trust on the recipient. Thus, for a node that con-
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Figure 1: Percolation On Social Email Networks:
(a)The hit rate, fraction of links and fraction of nodes tra-
versed as a function of the percolation probability. No-
tice that there is a sudden jump in the hit rate above
the percolation threshold, while the fraction of links and
nodes processing the search query increases only linearly.
The network used in this percolation search simulation is a
real-world email contact network. The number of nodes is
56,969, � � 1:81, the TTL is 50 for both query and content
implants and only one unique content exists in the network.
(b) Hit rate for percolation on email contact network with
TTL of 50. Repeating the percolation trial multiple times
pushes the hit rate exponentially closed to 1.

tacts kout other nodes, we can compute the fraction of
trust that this node places on each of his out-neighbors
as followed: the trust for neighbor i, ti, is equal to
the number of emails sent to neighbor i divided by
the total number of emails sent. Note that the col-
lection of ti's forms a probability vector, called the
personal trust vector �!t . Thus, if we model the entire
email network as a discrete time Markov chain, the lo-
cal trust vector, �!t , becomes the transition probability
function for each node. We then compute the steady
state probability vector using Power Iteration method
which is the the same algorithm adopted to compute
pagerank score of documents on web [12, 8]. As dis-
cussed in the literature, one needs to make sure that
this Markov chain is ergodic and this can be achieved
by having nodes with zero out-degree assign uniform
trust to a set of pre-trusted nodes who have been care-
fully picked. We will refer to this trust score as Mail-
Trust in the rest of this paper. A plot of the MailTrust
scores obtained from [10, 1] is shown in Fig. 3. It is
evident that the distribution of the MailTrust scores
is heavy-tailed, which is in good agreement with the
distribution the web documents' PageRank scores [14].
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Figure 2: MailTrust: A simple illustration of the Mail-
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bors. The MailTrust scores for each node is then obtained
by computing steady state probability vector of the Markov
chain.
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Figure 3: MailTrust Distribution: The probability
density function of MailTrust scores using 104 bins. These
scores are obtained by applying the MailTrust algorithm on
a real-world email contact dataset. Notice that this prob-
ability density function is heavy-tailed, indicating that a
few nodes are much more trustworthy than most nodes.

distributed fashion can be found in [12], along with a
scheme on how the trust scores can be kept securely in
the system even with the presence of malicious users.
Digest-based Spam Indexing In a collabo-
rative spam �ltering system, it is important to have
an e�ective mechanism to index known spams so that
subsequent arrivals of the same spam can be correctly
identi�ed. The collaborative design of the system does
not depend on any speci�c algorithm but for initial
experimental results we have adopted the well known
digest-based indexing mechanism [9] to share spam in-
formation between users. Damiani et. al. have rig-
orously demonstrated that the digest algorithm de-
scribed in [9] is highly resilient against possible forms
of automatic modi�cations such as randomizing the
spam content by switching the order of words and
sentences. The digest algorithm is further shown to
satisfy both the privacy preserving and zero positive
requirements. There are also other mechanisms to in-
dex spams such as the Approximate Text Addressing
technique used by SpamWatch [18] and the �ngerprint
generation algorithm used by SpamNet [5].

We are aware that �nding an e�ective mechanism to
index spam that is resilient to all forms of automatic
modi�cations still remains to be an open research
problem. However, one has to acknowledge that the
accuracy and popularity of existing collaborative spam
�ltering systems such as SpamNet [5] proves that cur-
rent spam indexing solutions are already e�ective and
sophisticated enough to be deployed in large scale.

3 Implementation and System
Protocol

In order to use our proposed collaborative spam �lter-
ing system, an interested individual must �rst obtain
a simple client program that works as a plug-in to an
email program such as MS Outlook, Eudora, Send-
mail, etc1. This simple client will only need to provide
the following features: �rst, the client must come with
a digest-generating function as speci�ed in section 2;
second, the client is reponsible for keeping a personal
blacklist of spams for the end-user as well as caching
blacklists of spams for other nodes as described in the
section on the percolation search algorithm, (see sec-
tion 2); third, the client would have access to the list
of social email contacts (both inbound and outbound)
of the end-user. The pseudo code of the distributed
client is given in Algorithm 1.

Algorithm 1 PROCESS-MAIL(Email E)
1: if E:From is in Contact list then
2: Mark E as no Spam detected
3: else
4: De = Digest(E);
5: Implant percolation of De on a random walk of

length l
6: Wait(T);
7: He = HitScore();
8: if He < threshold then
9: Mark E as no Spam detected
10: else
11: Mark E as spam
12: end if
13: end if

Algorithm 2 Publish-Spam(Email E)
1: De = Digest(E);
2: Implant De on a random walk of length l

System Maintenance: If the EigenTrust algorithm
from section 2 is implemented, we would need to up-

1However, implementing the client program as an email
program plug-in is not the only option; large email
providers can also implement this system on the email
server ends.



Figure 4: An illustration of the protocol of the system.

Algorithm 3 HitScore(Hits)
1: if Using MailTrust then
2: HitScore = �h2Hitsmailtrust(h)
3: else
4: HitScore = jHitsj
5: end if
6: Return HitScore;

date the trust scores of the nodes on a periodic basis.
Since most people's amount of email contacts change
more or less on a daily basis, we propose that the dis-
tributed EigenTrust computation should be performed
about once a day to obtain new trust scores for all
nodes.
Whenever a client program logs on or logs o� from
the system, a simple background message declaring
join/leave should be sent to each of the user's contacts.
In addition, every node in the network should send a
periodic ping message to each of its neighbors to ensure
that all contacts are online and available.

4 Simulation and System Performance
Network Model: In this section, all simulations are
performed on a real-world email network investigated
in Ebel et.al.'s work[10]. (The email network data
can be obtained via this url [1].) In the following
simulations, only the giant connected component is
used, which contains 95.2% of all nodes in the orig-
inal dataset2. Thus, all nodes are interconnected in

2Only the giant connected component of the network is
of interest, since all participants of this collaborative sys-
tem can join the giant component through simple mecha-

this email network. Please see table 1 for the speci�c
values of this email network's parameters.
Spam Arrival Model: The spam detection perfor-
mance of a collaborate spam �lter is usually a function
of the number of copies of the same spam message
that arrive to the system. It can be easily demon-
strated that holding all other parameters constant, the
greater is the number of identical copies arrived at the
system, the better will the system performs in spam
detection. On the other hand, in the extreme case
that every spam arrived to the system is unique, one
can easily see that a collaborative �lter would be to-
tally futile, since no user can bene�t from the prior
identi�cations of others. Assuming every unique spam
is sent to approximately 5 million internet users uni-
formly at random among about 600 million internet
users worldwide[2], the probability that any individual
would receive a copy of a given spam is 0.8%. Thus
about 500 replicas of a unique spam come uniformly
at random to our network of 56,969 users.
Speci�cation of Percolation Probabilities: In or-
der to ensure a high hit rate for queries and a low
communication cost for the system, we propose the fol-
lowing scheme to perform query searches: we start the
�rst query with very low percolation probability; if not
enough hits are returned, we send out a second query
with a percolation probability that is twice of the �rst
one; if still not enough hits are routed back, we repeat
the searches by increasing the percolation probabil-
ity in this two-fold fashion until the probability value
reaches a maximum value, pmax; once this maximum
is reached, we repeat the query with the maximum
nisms, e.g. sending dummy emails to a group of designated
system nodes



percolation probability for a constant number of tri-
als and stop. We want to re-emphasize that the query
search is terminated as soon as the total number of
distinct hits routed back reaches the threshold after
any given trial. The exact values for these parameters
are up to the system designer to decide.
Scaling of System Bandwidth Cost: One main
criticism of a collaborative spam �ltering system is its
tra�c cost on the internet. In this section, we will
show that the total query tra�c cost caused by users
receiving multiple copies of the same spam is upper
bounded by a constant value. As speci�ed in Algo-
rithm 2 in section 3, each email that is �ltered as spam
is published in the system on a random walk of length
ttl, which is O(log N) with N being the number of
nodes in the system. Given the assumption that copies
of the same spam email E arrive at nodes of the sys-
tem uniformly randomly, all nodes in the system will
have cached at least one digest of E almost surely af-
ter O( Nttl ) or O( NlogN ) copies of E have arrived. Using
the same assumption from the Spam Arrival Model
section above that the number of copies of each dis-
tinct spam arrived at the system is N �0:8%, it is easy
to see that the total bandwidth cost is bounded by
a constant as long as the inequality O( 1ttl ) < 0:8% is
satis�ed. In contrast, central server solutions such as
SpamNet[5] has a total bandwith cost that is directly
proportional to the number of copies received by sys-
tem users, which is highly unscalable.
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Figure 5: Spam Detection Performance: This �gure
plots the simulated spam detection rate (in percentage) as
a function of the number of query trials repeated with per-
colation probability set at pmax before declaring failure.
Note that all the average detection rates are well above
99%. The results are averaged over 30 runs and the er-
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5 Concluding Remarks
Our fairly comprehensive simulation results show that
global social email networks possess several properties
that can be exploited using recent advances in complex
networks theory to provide an e�cient collaborative
spam �lter. Due to space limitations, we could not
present more detailed simulation results where
we have implemented our MailTrust scheme,
and showed that malicious attacks can indeed be
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Figure 7: Communication Cost As A Function of
The Degree of a Node: The data points show the av-
erage number of messages processed per percolation query
for a node with degree k (i.e. it is the total number of
messages processed per query for all nodes in the network
with degree k divided by the number of nodes with degree
k.) This plot is obtained by using an nreps value of 3 for
every percolation query. The slope of the linear �t is 0.0019
query/degree. Since each node forwards a query to a link
with a �xed percolation probability, we naturally expect
that high-degree nodes handle more messages.

thwarted, and false positives can be cut down to a bare
minimum. Clearly, the bare-bones and proof-of-concept
systems discussed here can be vastly improved and
augmented with schemes that have proven successful
at various levels. For example, one can use white lists
and black lists as well as Bayesian �lters at local levels
to decide whether an incoming message is a spam or
not. Only if the message is found to be suspicious and
not resolvable by local means then it is searched for
in the global system. Similarly, an email client can
use its local schemes to tag an email as a spam and
publish its digest. As mentioned, in our work we have
done extensive simulations of attacks by malicious users
and shown that the trust scheme can be used to keep
their attempts to tag non-spam emails as spam under
control. We end the paper by noting that all omitted
simulation results as well as detail discussion on several
important topics, such as the system's measure of privacy
protection and the system's resilience against user unrelia-
bility, are presented in the journal version of the paper [13].



Network # of nodes 56,969
# of edges 84,190
Node degree distribution Power-Law (PL)
PL exponent � 1.8
mean node degree < k > 2.96
node degree 2nd moment < k2 > 174.937
approximate percolation threshold (qc) � <k><k2> .0169
time-to-live (ttl) 50

Simulation Param. # of arrivals of the same spam 500
threshold (# of hits needed to identify spam) 2
percolation probability trials [.00625 .0125 .025 .05 .05 : : :]
# of runs 30

Threat Model # of time steps 25
# of malicious nodes inserted per time step 10
total # of mailing lists 50,000
Zipf coe�cient 0.8
# of non-spams queried per time step (x) 1,000
m, number of items on a blacklist 10
% of user's non-spam to be queried 5%

Table 1: Simulation Settings
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