
Improving the Representation of Legal Case Texts with
Information Extraction Methods

Stefanie Brüninghaus and Kevin D. Ashley
Learning Research and Development Center

Intelligent Systems Program and School of Law
University of Pittsburgh, Pittsburgh PA 15260

steffi@pitt.edu, ashley@pitt.edu

ABSTRACT
The prohibitive cost of assigning indices to textual cases is a ma-
jor obstacle for the practical use of AI and Law systems supporting
reasoning and arguing with cases. While progress has been made
toward extracting certain facts from well-structured case texts or
classifying case abstracts under Key Number concepts, these meth-
ods still do not suffice for the complexity of indexing concepts in
CBR systems.

In this paper, we lay out how a better example representation
may facilitate classification-based indexing. Our hypotheses are
that (1) abstracting from the individual actors and events in cases,
(2) capturing actions in multi-word features, and (3) recognizing
negation, can lead to a better representation of legal case texts for
automatic indexing. We discuss how to implement these techniques
with state-of-the-art NLP tools. Preliminary experimental results
suggest that a combination of domain-specific knowledge and in-
formation extraction techniques can be used to generalize from the
examples and derive more powerful features.

1. INTRODUCTION
AI and Law research has produced numerous sophisticated mod-

els and formalizations for reasoning and arguing with cases (Ashley
1990; Aleven 1997; Rissland, Skalak, & Friedman 1996; Branting
1999); see also (Prakken & Sartor 1998). Despite their potential
benefits, however, none of these approaches has lead to systems
used in legal practice, for instance as intelligent assistants that help
in exploring case law or in generating arguments with cases.

One of the major obstacles for the use of those models in law
offices is the prohibitive cost of representing cases in a form that
allows an AI program to reason with them. Up to now, case index-
ing and information extraction (IE) for case-based reasoning (CBR)
has been a manual effort. Unless methods are developed that sup-
port creating and maintaining large casebases, these systems will
remain restricted to the research world.

This problem can be addressed by automatically extracting fea-
tures from textual cases. The Salomon (Moens 2000) and Prudentia
(Weber 1999) projects demonstrated how relevant facts, like names,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIL-2001St. Louis, Missouri USA
Copyright 2001 ACM 1-58113-368-5/01/0005$5.00.

dates or references to statutes, can be gleaned from civil law crim-
inal cases and used to perform some basic case retrieval. Where
the cases are as well-structured as in these applications, key infor-
mation can be easily spotted, using for instance location and cue-
words. For many CBR domains, like trade secret law, however,
case structure differs significantly across cases. In addition, the in-
formation extracted in both systems was more concrete and easier
to find than the abstract indexing concepts typical for CBR systems.

Our SMILE1 project explores new methods to extract informa-
tion from and index textual cases. It uses a set of marked-up case
summaries as examples in a machine learning approach to classify
new cases under indexing concepts. In this paper, we illustrate how
a better example representation may help improve this classifica-
tion. We hypothesize that (1) abstracting from the individual actors
and events of a case to generic roles, (2) capturing actions in multi-
word features, and (3) determining the presence and scope of nega-
tion support a more powerful representation enabling classifiers to
generalize accurately from training examples.

In designing SMILE we set out to combine state-of-the-art NLP
tools and domain-specific knowledge, which has not been done
in previous work. For instance, the goal of the SPIRE system
(Daniels & Rissland 1997) also was to overcome the knowledge-
engineering bottleneck of indexing cases for a HYPO-style CBR
system. SPIRE successfully used a small collection of marked-up
text segments to help direct a human indexer to relevant passages
in long cases. For this, SPIRE employed the relevance feedback
and passage retrieval mechanisms of an existing information re-
trieval (IR) system. It did not, however, integrate any additional
background knowledge or linguistic information.

The rest of this paper is organized as follows. In Section 2, we
show an example case and introduce our case-based argumentation
program CATO. In Section 3, we present the learning approach
for assigning indices in SMILE. In Section 4, we discuss why the
three techniques for an improved case representation may lead to
better indexing for legal cases. In Sections 5, we introduce the NLP
tools we are using. In Section 6, we demonstrate our approach to
using NLP methods and background knowledge to implement these
measures, and present some preliminary results. In Section 7, we
summarize the most important issues raised.

2. REASONING WITH FACTORS IN CATO
In order to illustrate our ideas with a single textual example, we

present the hypothetical case ofSteffi v. Vincentin Figure 1. This
example is patterned after theMasoncase, see (Aleven 1997). The
text is comparable to the factual summaries, or squibs, that law

1SMart Index LEarner

42

Steffi has developed a method for indexing text
cases in her PhD research. The method is unique
in that it integrates a machine learning approach
with background knowledge. Steffi tells the method
to her friend Vincent. She asks whether she can
test it on his data, and suggests they can write a
research paper about the results. Vincent tells
Steffi that he will treat her method as confidential.
Because they are friends, Vincent does not sign a
written agreement. Vincent, however, uses Steffi’s
indexing method for his educational software
start-up company. When Steffi finds out, she wants
to sue Vincent for trade secret misappropriation.

F15, Unique-
Product (π)

F1, Disclosure-
In-Negotia-
tions (δ)

F21, Knew-
Info-Con-
fidential (π)

¬F4, Non-
Disclosure-
Agreement (δ)

Figure 1: The Steffi v. Vincenthypothetical problem

students typically prepare. The facts are kept simple to fit space
restrictions while at the same time allowing for all techniques to be
demonstrated. The description related to the Factors reflects the rel-
evant language used in trade secret cases. This example will serve
to illustrate our techniques, which we hope ultimately to apply to
real case opinions.

In a written argument for the plaintiff, her lawyer would ad-
dress the issues whether the information qualifies as a trade secret,
whether there was a confidential relationship, and whether defen-
dant misappropriated the information. For each issue, he would cite
favorable cases that share relevant factual strengths or weaknesses
with the problem.

In the CATO model, such stereotypical strengths and weaknesses
are represented withFactors. CATO is an intelligent tutoring envi-
ronment for teaching law students skills of making arguments with
cases (Aleven 1997). It dynamically generates arguments favoring
either side’s claim by analogizing or distinguishing precedents. In
so doing, it compares cases in terms of its 26 Factors. Each Factor
is binary (i.e., it is either present in a case or not), and favors either
plaintiff or defendant. The Factor Hierarchy represents higher-level
legal knowledge and relates the Factors to more abstract issues. It
helps CATO organize arguments by issues and reason with partially
matched cases (Ashley & Aleven 1997). The Case Database com-
prises 150 trade secret cases with squibs, and the full-text opinions.

In the hypothetical case, plaintiff’s claim is strengthened to the
degree that her method was unique, and that defendant knew the in-
formation was confidential. The corresponding sentences are itali-
cized and marked with� and the relevant pro-plaintiff Factor from
the CATO program. Defendant’s position is supported by the ab-
sence of a non-disclosure agreement and by plaintiff’s voluntary
disclosure of information, marked withÆ and the respective Factor.

Figure 2 shows how CATO could be used in theSteffi v. Vincent
problem. In the upper left, the case is expressed in terms of CATO’s
Factors. The large window in the front shows CATO’s argument for
the plaintiff, which uses cases retrieved by a query displayed in the
lower left.

3. INDEXING CASES WITH SMILE
Although empirical evidence has shown that CATO’s instruction

compared well with that of an accomplished legal writing instruc-
tor (Aleven 1997), CATO is not part of the law school curriculum.
Similarly, despite its potential benefits for legal practice, the pro-
gram has not made it to law offices yet. One of the main obstacles
for a wider use is the cost associated with adding new cases to the
Case Database. The law is a continuously evolving domain, where
new cases are decided every day, and decisions may be overturned

Figure 2: Using CATO for making arguments about the
Steffi v. Vincenthypothetical problem

Learning from
Examples

Indexing of
New Cases

Classifier
Factor

Applies?

Annotated Case
Summaries

Learning
Algorithm

New Case
Document

Classifier

Figure 3: Overview of the learning approach and how new
cases are indexed in SMILE

or questioned on appeal. Developments like these have to be incor-
porated into the casebase. For pedagogical reasons it is desirable
to keep a tutoring system’s casebase up-to-date, or to expand it to
other legal domains. Our research attempts to address this problem
with methods for automatically assigning Factors to new cases.

SMILE’s machine learning (ML) approach was inspired by re-
cent successful research in text classification in ML and IR (Mc-
Callumet al. 1998; Joachims 1998). Instead of applying advanced
statistical models developed for very large sets of training exam-
ples, however, SMILE uses a symbolic ML approach; see (Thomp-
son 2001) for a similar approach. This is more suitable for our
relatively small case collection. It also facilitates the integration of
background knowledge for a better representation of the training
examples (Br¨uninghaus & Ashley 1997; 1999).

An overview of SMILE is given in Figure 3. In theLearning from
Examplesphase, SMILE takes as input a set of annotated squibs,
similar to theSteffi v. Vincentcase. The marked-up sentences are
positive training instances for a Factor, and all unmarked sentences
are negative instances, whether they come from a case where the
Factor applies or not. The sentences are represented as a set of fea-
tures. SMILE uses the symbolic learning algorithm ID3 to induce
rules or a classifier from which rules can be easily extracted.

The classifier can then be used forIndexing of New Cases. This
includes classifying sentences from squibs, like those it was trained

43

F15 F21 F1 F6 F16 F18
0

0.1

0.2

0.3

0.4

0.5

0.6

ID3

Factor name, AND

Factor name, OR

F15 F21 F1 F6 F16 F18
-0.4

-0.2

0

0.2

0.4

0.6

Recall

Precision

Machine Learning

F1.5-Measure Rel. Change

Keyword Recall
Precision

Figure 4: Results of the first evaluation of SMILE

on, and labeling sentences from the full-text opinions. The Factor is
assigned to a new case text, if at least one sentence in the document
was classified as a positive instance.

In initial experiments reported in (Br¨uninghaus & Ashley 1999),
we compared classifiers learned with ID3 to two different strate-
gies, which humans tend to use to search for Factors in case texts.
Humans familiar with CATO often try to find all or at least one
of the keywords from the Factors’ descriptive names, see Figure 1
for some examples. Figure 4 (left) shows the results of theMa-
chine LearningandKeywordapproaches. We compared the results
across Factors using the F1:5 measure, which combines precision
and recall in a single number, similar to a weighted geometric aver-
age with a slight preference for recall. Apart from the particularly
difficult Factor F1, the learning algorithm scored better than the
keyword strategy.

The second part of the experiment tested the integration of back-
ground knowledge in the form of an online thesaurus from West-
Law. The goal was to overcome the negative effects of overfitting.
The implemented learning algorithm ID3 tends to learn overly spe-
cific trees; in particular it tries to cover all synonyms for one con-
cept in individual branches, which can hurt performance. With the
thesaurus, all variants referring to the same concept are covered by
one decision tree node. Figure 4 (right) shows the relative improve-
ments of precision and recall. We found considerable performance
improvements for some of the Factors (F15, F21, and F1), effects
likely to offset each other for some Factors (F16 and F18), and for
one Factor (F6) a minor performance decrease.

The experiments indicate that the ML approach is promising and
that adding background knowledge can improve performance. The
results also show that the problem is far from being solved, and that
further research has to be carried out before the classifiers learned
from case squibs will measure up to the complexity of legal case
opinions. A more detailed analysis of the data suggests that a more
powerful representation of the examples is needed. The legal con-
cepts underlying the Factors require a linguistic analysis of the ex-
amples and a better representation of knowledge about the language
used in legal case texts.

4. TOWARD AN IMPROVED
REPRESENTATION FOR LEGAL TEXT

Where large amounts of training data are available, remarkable
performance can be accomplished by using advanced statistical learn-
ing algorithms. These methods typically employ a bag-of-words
representation. The text is split up into single words or word pairs;
word order is ignored. Recent research by West Group (Yang-
Stephenset al. 1999) shows these statistical learning methods can
be beneficial in the legal domain, for indexing case abstracts un-
der West’s Key Number classification scheme. In the West Group
experiments, massive amounts of training data were available, as
many as 20,000,000 already indexed abstracts.

For finding Factors, however, with much smaller numbers of
training examples, the statistical learning methods did not work
well (Brüninghaus & Ashley 1997). We have hundreds of exam-
ples, not millions. Moreover, assigning Factors to cases is a harder
problem than finding Key Numbers. The concepts underlying the
Factors are significantly more fact-specific and capture more of the
contents of the individual case. The most relevant West Key Num-
ber for trade secret law, 376k10(5), is defined as “Misuse of or
interference with trade secrets, inventions or patent rights”, which
is much more general than the Factors.

In order to classify legal texts by complex concepts using com-
paratively few training instances, we believe it is necessary to de-
velop a more powerful text representation, one which allows the
learning algorithm to better generalize from training examples. In
the following section, we discuss how abstracting from the par-
ticular actors and events to their roles, capturing actions in more
meaningful multi-word patterns and representing negation can help
toward that goal.

4.1 Abstracting from Names to Roles
In legal cases, the parties, products, locations, etc., are usually

referred to by their names. This is appropriate in court documents,
but often prevents a classifier from generalizing from the examples,
because names are specific to each case.2 In the example sentence
“Steffi tells the method to her friend Vincent.”, the names of both
parties, Steffi and Vincent, would at best be ignored by a learning
algorithm because they do not occur in any other cases. However, if
this relevant information is discarded, the sentence becomes fairly
worthless as an example of Factor F1. A better solution is to pre-
serve this information, while at the same time making sure that the
unique names are replaced by more general information. Abstract-
ing from the specific actors and events of a case to their roles in the
lawsuit will alleviate this problem. CATO’s squibs provide many
examples of sentences where unique names obscure similarities:

� Mason disclosed part of the recipe to Randle.

� Goldberg discussed and demonstrated his screw-in lead at
Medtronic’s headquarters.

� Hisel sent a letter to Chrysler explaining his idea for a glass-
covered holder for license plates.

With the original names, it is hard to find a general pattern in
these examples. However, if we know more about the cases, we
can substitute Mason, Goldberg, and Hisel with “plaintiff”; Ran-
dle, Medtronic, and Chrysler with “defendant”; and recipe, screw-
in lead, and idea-for-a glass-covered-holder-for-license-plates with
“information”. Then, the sentences look as follows:

� Plaintiff disclosed the information to defendant.

� Plaintiff discussed and demonstrated the information at de-
fendant’s headquarters.

� Plaintiff sent a letter to defendant explaining the information.

Now, having abstracted names and substituted roles, a very im-
portant pattern becomes obvious. In each of these sentences the
plaintiff discloses information to the defendant. In fact, these sen-
tences are all examples for Factor F1 in CATO.

While trade secret opinions do not adhere to a standard format,
the underlying fact situations follow a basic pattern and always con-
tain certain elements. There are always plaintiff, defendant, and

2Exceptions include very common names, like Smith, or large,
research-oriented companies, like DuPont, which tend to be the tar-
get of industrial espionage.

44

product-related information, the trade secret. This information be-
longs to plaintiff, and was allegedly learned in some way and used
by defendant.

From an information-theoretic point of view, abstracting from
names and substituting roles confers an advantage, especially where,
as in SMILE, single sentences are used as examples. Substituting
names by generic roles imports some of the overall case context
into the examples, thereby adding information content to them.

In the first SMILE experiments, we also found empirical evi-
dence why it is useful to substitute party names with their roles.
In these experiments, overfitting was a major problem with the
learning algorithm. The trees became overly sparse and unbal-
anced when ID3 picked (non-replaced) party or product names as
attributes to distinguish positive and negative instances. This is an
example of how individual names can even hurt performance.

4.2 Capturing Actions in Multi-word Features
For a human to decide whether a sentence should be a positive in-

stance of a Factor, it is crucial to knowwhodid something, orwhat
was done by a particular person. Prevalent text learning methods
do not support the linguistic analysis required to determine these
facts and to capture them in more powerful, multi-word features.
With a bag-of-words representation, there is no meaningful way to
distinguish between the positive example of Factor F1, Disclosure-
In-Negotiations, “Plaintiff tells her information to her friend defen-
dant” and the negative example “Defendant told plaintiff he would
treat her information as confidential.” The sentences would be rep-
resented as (defendant plaintiff tell information friend) and (defen-
dant plaintiff information tell confidential treat), respectively. The
only words not shared in this representation, “friend”, “confiden-
tial”, and “treat”, are not very decisive for the goal concept and
should therefore not be considered by a classifier.

A better representation would capture the Factor’s meaning: Fac-
tor F1 applies if plaintiff disclosed the information. Since one can
imagine various ways of disclosing or communicating something,3

one good feature for the positive example would therefore be (�

disclose),4 where the italics indicate it is present whenever a syn-
onym of disclose is found. It captures that plaintiff was the actor,
and that she communicated or disclosed something. Further good
features are (disclose�) and (disclose-toÆ). The negative exam-
ple would have, among others, the feature (Æ disclose). With this
more meaningful representation, it should be easier to distinguish
the examples and determine whether F1 applies.

We call these featurespropositional patterns(ProPs). The ProPs
only capture meaningful syntactic relationships between the words,
which can be derived reliably and efficiently with a state-of-the-art
NLP tool; see Section 6. We are using fairly shallow techniques
and do not attempt to do natural language understanding, which
involves an in-depth semantic analysis to derive a logical represen-
tation (Allen 1994). The ProPs can be generated more efficiently
and presumably better support generalizing from the examples.

4.3 Dealing with Negation
Negation is another important feature for determining whether a

legally relevant concept is present in a legal text. It has been shown
(Riloff 1995) that small words, in particular “no” and “not”, should
not be removed as stopwords for text classification, because their
presence can be relevant for certain concepts. These results are
even more relevant for the law than for other domains, because le-

3(Rodale 1978) lists for instance reveal, tell, utter.
4In the remainder of this paper, we will use�, Æ and� to refer to
theplaintiff, the defendant and thetrade-secret-related information
respectively.

gal discourse has an adversarial character. The court may consider
evidence for and against a Factor in an opinion before presenting its
conclusion. For instance, in theNational Rejectorscase, after dis-
cussing arguments presented by both parties whether the defendant
knew that plaintiff’s information was confidential, which is repre-
sented by Factor F21 in CATO, the court concludes “There isno
evidence that defendant knew that plaintiff had or claimed to have
any trade secrets with respect to its marketed devices.” (emphasis
added and names substituted)

Furthermore some Factors are defined to apply if certain facts
are absent. Consider Factor, F15, Unique-Product, which applies
when plaintiff’s product is unique and not known in the industry.
The definition of the Factor already indicates that the presence of
negation can be decisive.

Negation becomes even more crucial if we also consider another
Factor in CATO, F20, Info-Known-to-Competitors. This Factor
represents a complementary situation to F15. When the product is
not known to competitors, Factor F15 applies; when it is generally
known, Factor F20 applies.

In order to correctly distinguish between examples of Factors
F15 and F20, negation has to be represented in the examples. This
can be illustrated by the sentences “Plaintiff’s customers were well
known to others in the trade.”, which provides evidence for Fac-
tor F20 inSpringfield, and “The information in the customer list
was not known.”, which provides evidence for F15 inZoecon. The
relevant difference between the sentences is the word “not”.

We also found empirical evidence for the need to represent nega-
tion in our previous experiments with SMILE. For Factor F15, we
analyzed for which subsets of training examples the learning algo-
rithm could not find a good way to distinguish between positive
and negative instances while it was constructing the decision tree.
Quite often, the problem was that ID3 did not know about negation.
We then added the words “no” and “not” to the representation and
observed that the algorithm used these features in places where pre-
viously it had run out of useful features. While we did not formally
evaluate these experiments, the observations suggest that adding
negation is important.

4.4 Illustration: Better Classification with Im-
proved Representation

To illustrate how a better representation could lead to better clas-
sification, consider CATO’s Factor F1, Disclosure-In-Negotiations.
It applies when plaintiff voluntarily disclosed the information to
defendant, typically in business negotiations. In past experiments,
F1 was particularly hard to find; overfitting occurred more often
than for other Factors.

Figure 5 shows how an ideal (or at least close to ideal) classi-
fication tree would look. This particular tree was constructed by
hand from the positive examples, including those presented in Sec-
tion 4.1.

The example representation in this tree includes the improve-
ments suggested above. First, names of and references to plaintiff,
defendant and the trade-secret-related information were substituted
by role identifiers�, Æ, and� , respectively. Then, the sentences
were reduced to simple patterns, for instance “� disclosed� to Æ.”
from which the corresponding ProPs were derived. From this list,
identifying four typical disclosure scenarios and constructing the
classification tree in Figure 5 were straight-forward.

To show how this tree works for classifying sentences, consider a
sentence from theSteffi v. Vincentexample. “Steffi tells the method
to her friend Vincent.” is a positive example for the Factor F1,
Disclosure-In-Negotiations. In this example, the specific names
would be replaced by their roles, resulting in “� tells � to Æ.” As-

45

Disclosure by Plaintiff π
(π is subject)

π disclose

π show

π send_lettershow τ

F1 not F1 π explain

explain τ

F1 not F1

Disclosure of Information τ
(τ is subject, passive mode)

τ disclosed_
passive

disclosed_
passive_to δ

F1 not F1

Defendant δ finds out about
trade secret τ (δ is subject)

π give

give τ not F1

δ received

received τ δ visited

visited π δ access

access_to τ

not F1F1

F1 not F1

F1 not F1

not F1

Disclosure in Course
of Business Contacts

not F1

Factor F1

Roles :
π plaintiff
δ defendant
τ trade secret information

π and δ
get_involved_in

negotiations

F1 licensing

F1 not F1

not F1disclose τ

disclose_to δ

F1 not F1

not F1

send_letter_to δ

not F1F1

give_to δ

not F1F1

not F1

Figure 5: Manually derived classification tree for Factor F1, Disclosure-In-Negotiations

sume we have a representation of semantics which contains that the
communicative act of telling something is a disclosure of what one
knows.5 Next, we can use this generalization to derive the ProPs
(� disclose), (disclose�) and (tell-to Æ) as features for the example.
Because the subject is plaintiff, we focus on the leftmost branch.
The example will pass the first test, because it has the features (�

disclose) and (disclose�). Therefore, the example will be correctly
classified as an instance for Factor F1. The sentence ‘Vincent tells
Steffi that he will treat her method as confidential.” would be clas-
sified as negative. It has the subject defendantÆ; we therefore focus
on the third branch of Figure 5. Because this example has the fea-
ture (Æ disclose), it will be handed down to the right through this
branch and classified correctly as a negative instance for F1.

The resulting tree is compact and, as the example shows, fairly
easy to understand. While it has not undergone a formative eval-
uation, this classifier can be expected to perform better than the
decision trees learned in past experiments, which were much larger
and harder to interpret. On unseen sentences, it should accomplish
high recall. Because the features are specific for Factor F1, one can
expect fewer false positives, resulting in higher precision.

5. APPLYING NLP/IE TOOLS
In order to learn the ideal classification tree discussed above, an

implementation of the methods for abstracting from name to roles
in the examples, for capturing multi-word features and for analyz-
ing negation is required. While finding the parties or the product
and abstracting from a sentence to word patterns is fairly easy for a
human, automatically generating these features is a hard problem,
because it requires background knowledge and a linguistic analysis
of the documents.

Up to now, NLP techniques have been considered inappropriate
for legal case texts (see (Al-Kofahi, Grom, & Jackson 1999) for a
notable exception), because the language used in legal documents
is too complex. Sentences in the court’s opinions are exceptionally

5We applied this assumption in constructing the tree.

CLAUSE
 NP SEGMENT (SUBJ):
 [Plaintiff (LEX)(N SINGULAR(PLAINTIFF PERSON))]

 VP SEGMENT (ACTIVE_VERB):
 [developed (root: develop) (MOR)(V PAST(MANUFACTURE))]

 NP SEGMENT (DOBJ):
 [a (LEX)(ART)]
 [method (LEX)(N SINGULAR(HOW-TO))]

 PP SEGMENT (PREP):
 [for (LEX)(PREP)]
 NP SEGMENT:
 [indexing (INF-MOR)(GER)]
 [text (LEX)(N SINGULAR)]
 [cases (root: case) (MOR)(N PLURAL)]
 [>PERIOD (LEX)(PUNC)]

Figure 6: Sundance’s output for the sentence “Plaintiff devel-
oped a method for indexing text cases.”

long and often have a very complex structure. Consider for instance
“After a complete evidentiary hearing on plaintiff’s claim for in-
junctive relief, the trial court concluded that Televation’s schemat-
ics of its analog circuitry and the manner in which its analog cir-
cuitry interfaces with its digital circuitry are trade secrets.” (from
theTelevationcase). Even for an English teacher, parsing this sen-
tence will not be easy. While many problems are still far from being
solved, recent progress in NLP has yielded tools that measure up to
some of the complexities of legal texts. We found that the Sundance
segmenter and the AutoSlog/AutoSlog-TS IE program, developed
by Ellen Riloff of the University of Utah, can handle most of the
problems raised by legal cases. The following section focuses on
the most important functions of AutoSlog; a more in-depth discus-
sion can be found in (Riloff 1996).

Given a sentence as input, the Sundance segmenter generates a
(partial) parse. It has very efficient heuristics to first break up a
sentence into clauses, and then find the subject, verb, object and
prepositional phrases. For an example of Sundance’s output, see
Figure 6.

Sundance is exceptionally robust and efficient. As with all parsers,

46

Plaintiff developed a
method for indexing
text cases.

AutoSlog:
developed_<dobj>

"a method"
[HOW-TO]

filler string

semantic label (from dictionary)

Figure 7: From output of AutoSlog in extraction mode

its syntactic analysis of a sentence is often not absolutely correct.
However, even where the parse contains a mistake, Sundance’s out-
put is usually still useful. In particular for the long sentences in le-
gal cases, the segmenter tends to “recover” on a later clause, which
is not the case with many other parsers. A minor disadvantage of
Sundance is the fact that the currently implemented heuristics were
not designed for the rather long noun phrases in legal cases, which
is the reason for most of the errors we encountered.

However, the most remarkable functionality of AutoSlog is its
IE module. Given a target word, the program can find all linguis-
tic contexts in which this word occurs in a document. To illustrate
this, assume that the target word is “method” and that the text is
“Plaintiff developed a method for indexing text cases.” As we can
see from the Sundance output in Figure 6, in the example sentence,
“method” is the direct object. The verb of the sentence is “devel-
oped”. The context for the word “method” in the example sentence
is “direct-object of the verb developed”. AutoSlog has heuristics to
discover these linguistic contexts, calledcaseframes, from the out-
put of Sundance. We will follow the notation in (Riloff 1996), and
usedeveloped hdobj i to refer to the caseframe “direct-object
of the verb developed”.

AutoSlog’s caseframes can be used to extract information from
new texts. To illustrate how AutoSlog’s extraction mode works,
consider the caseframedeveloped hdobj i (‘direct-object of the
word developed’) and the sentence “Plaintiff developed a method
for indexing text cases.” As we know from Figure 6, the verb in the
sentence is “developed” and the direct object is “method”.

In its extraction mode, AutoSlog first checks whether the case-
frame is triggered by the input sentence. That is in our example, the
program tests whether the verb in the caseframe is the same as the
verb of the sentence. Because both have the verb “developed”, the
caseframe is triggered by the sentence. In the next step, Autoslog
extracts from the sentence the target indicated byhi. In the example
caseframe, the target ishdobj i, the direct object. Therefore, the
direct object “method” would be extracted from the input sentence.
The extracted information is also called the filler.

Summarizing, given a caseframe and a sentence as input, Au-
toSlog extracts the target filler if the caseframe is triggered by the
sentence. If the input sentence were “Plaintiff developed after de-
termined research a computer program”, “computer program” would
be extracted as filler because the caseframe is triggered by the sen-
tence.

Moreover, AutoSlog determines the semantic category of the
filler. See Figure 7 for the output when the caseframedevel-
oped hdobj i is triggered by the sentence “Plaintiff developed a
method for indexing text cases.” After the word “method” is ex-
tracted, AutoSlog infers from the semantic annotation in its dictio-
nary that the filler is knowledge how to do something.

With this functionality, AutoSlog is a perfect tool for identify-
ing and extracting information from CATO’s case texts. The courts
tend to repeat certain phrases. For instance, there are not too many
ways to describe that a person, the plaintiff, developed a trade se-
cret. Thus, from a representative training set of trade-secret-related

Training Sentence Product Caseframe

SDRC began developing a
computer program called
NIESA.

computer
program

developing
hdobj i

NIESA called:passive
hdobj i

The plaintiff manufactures
adhesive tape, including a
“masking tape”

adhesive
tape

manufactures
hdobj i

masking
tape

including
hdpbj i

Table 1: Examples of caseframes generated from squibs. The
caseframes read: Extracthsyntactic-rolei if the sentence has
the trigger verb .

information, like “method”, together with the sentences in which
the product is referred to, like “Plaintiff developed a method for
indexing text cases.”, one can derive a set of prototypical linguis-
tic contexts, or caseframes, for the product, includingdevel-
oped hdobj i. Other typical caseframes for the product are listed
in Table 1. If one of those caseframes is found in a new case, it is
reasonable to assume that the extracted filler information is a prod-
uct.

Of course, sometimes a caseframe extracts a filler one was not
looking for. Consider the sentence “Plaintiff [aka Steffi] has a
friend called defendant [aka Vincent].” Table 1 contains the case-
framecalled:passive hdobj i, which is actually very effec-
tive for extracting product names. However, this caseframe would
extract “defendant”, who is certainly not a product. The semantic
analysis of the extracted filler from Figure 7 can help reduce these
errors. It would have labeled “defendant” as[PERSON]. Vari-
ous statistical analyses over the training set can also help detecting
overly general caseframes.

6. IMPLEMENTING AND TESTING AN
IMPROVED TEXT REPRESENTATION

In Section 4.1, we motivated the proposed measures for an im-
proved text representation with three examples sentences. In the
last section, we introduced the AutoSlog/Sundance NLP/IE tools.
Here, we demonstrate how to construct the improved text represen-
tation by applying the tools, and report experiences and preliminary
experiments with these techniques.

6.1 Finding the Parties in a Lawsuit
As mentioned above, trade secret cases always have a party who

owns the trade secret, and a party who allegedly misappropriated
the secret. With respect to the trade secret claim (and for CATO),
they are plaintiff and defendant, respectively. If the case is an ap-
peal, the additional roles for the appeal may appear, but they will
not affect the initial trade secrets claim.6

To find the parties from the full-text opinions, a number of clues
from the cases can be used to infer the roles of the persons. If
the opinion follows a standard format, the header will read “Steffi,
Plaintiff, v. Vincent, Defendant”. Half of the cases in CATO’s
Case Database have this pattern. Here, trivial pattern matching
techniques suffice. Unfortunately, the other half of the cases re-

6We will not consider exceptions where the parties’ roles are re-
versed, for instance a declaratory judgement or a trade secret
counter-claim within a lawsuit, which are fairly rare.

47

$list-of-names : ($name,)*$name(,? and $name)?
$name : $person-namej $company-name
$person-name : $title? $first-name? $last-namej : : :
$company-name : $capitalized, $organizationj

$person-name& Sonsj : : :
$first-name : read from file
$last-name : [A-Z][a-Z]*j [A-Z][a-Z]*-[A-Z][a-Z]*
$organization : Inc.j Co. j Ltd. j : : :

Figure 8: Sample grammar for names. $ indicates a variable;
other meta-characters have the usual meaning (Friedl 1997).

quires more work. Various courts follow different stylistic guide-
lines. Similarly, when the case is an appeal, the parties are often not
referred to as plaintiff and defendant in the header. In the majority
of these cases, the court uses appositions to ascertain the parties
roles somewhere in the body of the case; for instance, “Plaintiff,
Telerate Systems, Inc. (‘Telerate’), ...”, from theTeleratecase. If it
is possible to infer that “Plaintiff” is the same as “Telerate System,
Inc.” and “Telerate” in the parentheses, the names of the parties can
be ascertained.

Appositions are fairly difficult to handle correctly for an NLP
program, because without additional clues, their attachment and
scope may be ambiguous. For our task, however, the scope of the
apposition is known, because the names of the parties are given in
the header of an opinion; we only need to figure out who is plaintiff
and who is defendant. We also know that the head noun of the
apposition is plaintiff or defendant, so we know the attachment.
This makes the problem much easier to solve. We have identified
and formalized three general patterns to cover appositions like in
theTelerateexample using the following sentence patterns:

� The plaintiff,$list-of-names , : : :
� $list-of-names , plaintiff, : : :
� Plaintiff $list-of-names : : :

These patterns are appropriate for single names and lists of names.
Our implementation can also recognize potential members of a
party, which were only mentioned aset al. in the header of the
case.

We used Perl (Wall, Christiansen, & Schwartz 1996) to imple-
ment the heuristics. This language offers particularly powerful and
efficient regular expressions for dealing with strings and text (Friedl
1997). In Perl, patterns for various types of names and for apposi-
tions can be expressed easily in a rule-based grammar, which also
facilitates matching name variations, for instance “Mr. T. Smith”
and “Tom Smith”. Figure 8 is intended to give a flavor for the kind
of rules and regular expressions we developed for names. These
rules are not taken from the actual grammar, which is more com-
plicated. We also use the grammar to guess whether a name refers
to a person or a company.

Name recognition and matching has long been a focus in IE and
IR research, and sophisticated methods have been developed, see
(Thompson & Dozier 1999) for a study in the legal domain. These
methods go beyond what is needed for SMILE, where the names
are usually given in the opinion header. They not only have to ex-
tract personal names, but also more general information like “U.S.
Fish and Wildlife Service” or “the 2000-2001 academic year” in
the MUC evaluations .

In this first implementation, the heuristics work fairly well. For
only a small number of cases, it is not possible to automatically
determine the identity of the parties. In most of these cases, it is
also quite difficult for a human to determine the roles of the par-
ties. The only explicit evidence for identifying the parties may be

Product-
Names

Training-
Squibs

AutoSlog
(generation) Test-

Squibs

Product-
Caseframes AutoSlog

(extraction)
Extracted-
Products

Figure 9: Experiment to extract product names and product-
related information

sections where the court focuses on procedural issues. In those
cases, a deeper syntactic analysis is required and AutoSlog may
be used to increase coverage. In a trade secret claim, the plaintiff
(by definition) sues, or brings suit against, the defendant. For in-
stance, in theAmococase, the header does not identify the plaintiff
or the defendant, but we have a sentence “Amoco [plaintiff] brought
suit : : : against Lindley [defendant].” Intuitively, a very indicative
caseframe to determine the parties’s roles ishsubj i brought-
suit (subject of a sentence that has the trigger “brought” and the
direct-object “suit”), which should extract the plaintiff with very
high precision. When we tested this, all fillers (apart from a few
parser errors caused by punctuation) extracted with this caseframe
referred to the plaintiff. While most of the fillers were names, about
40% fillers are of the form “Owner of computer software”, which
does not identify the name of the plaintiff. However, this filler can
be used to improve upon the methods for inferring the product in
this case, discussed below.

We are planning to set up a more in-depth evaluation, where we
hope to achieve precision and recall comparable to the results re-
ported in Solomon (Moens 2000) for simpler structured cases.

6.2 Finding the Product
Another technique to improve the representation is to replace the

name of products and product-related information by a more gen-
eral term. In this section, we discuss why finding product-related
information is hard, and how we use an IE program to overcome
these problems.

Finding the alleged trade secret and product-related information
is very difficult. First, there may be multiple aspects to the trade
secret. For instance, the product sold in the market may be a car,
while the trade secret is a unique machine to produce the car, and
the information stolen by the defendant were the design drawings
for that machine. For the purpose of finding Factors, all these as-
pects of the trade secret are relevant. Second, depending on the
kind of secret, the way it is referred to can vary widely. The pattern
matching methods used to find the parties would not be appropriate
here, a deeper syntactic analysis of the cases is necessary.

For extracting the product information, we plan to use AutoSlog.
Given a set of target nouns, the program can generate the case-
frames related to those nouns from input text. Examples of input
sentences and product names with the corresponding caseframes
are in Table 1. As mentioned above, caseframes can be interpreted
as a form of extraction rule: if the trigger is present, extract the
filler role. This extraction is not based on simple word matching,
but on a linguistic analysis of the input case.

6.3 Evaluation and Experiments
for Finding the Product

To determine whether we can use caseframes derived from a
(training) set of examples to extract product information from un-
seen (test) cases, we conducted an experiment outlined in Figure 9.
The training set comprised squibs and the product names men-
tioned in them. The experiment was carried out as 2-fold cross-
validation (Cohen 1995).

48

First, we manually extracted the trade secret-related noun phrases,
or Product-Names, from every squib. For each training case, we
gave the respective Product-Names and Training-Squib as input to
AutoSlog. The program generated the Product-Caseframes for ev-
ery training case. For examples of sentences from the Squibs, the
manually extracted Product-Names and the Product-Caseframes,
see Table 1. Most Product-Caseframes were very useful; however,
parsing errors also lead to some unwanted instances. For instance,
we got a caseframe which extracts the subject triggered by the verb
“signed”, which will almost always return a person.

We then used the Product-Caseframes generated from the train-
ing set, as well as the Test-Squibs for the cases in the test set
as input to AutoSlog in extraction mode. The outputs were the
Extracted-Products. To catch some of the parser errors mentioned
above, we filtered out all Extracted-Names that were automatically
labeled by AutoSlog as a person, a contract or a date. To save time,
we also removed extracted pronouns.

It should be pointed out that we did not delete any of the case-
frames that were generated automatically from the training set. We
used neither statistical thresholding nor did we manually go through
the caseframes to make sure those generated by parsing errors would
be removed. We only used information about the semantic category
of the extracted noun phrase generated by the program where avail-
able.

From the cleaned-up list of Extracted-Products, we calculated
recall as the percentage of products from a manually extracted list
of trade-secret related information that were found by the program.
We did not count it as a mistake when part of the noun phrase was
chopped off by the segmenter. Recall was defined as the percent-
age of correct references to the trade secret in the set of Product-
Names extracted from a squib. We scored as correct the extraction
of generic terms, like machine or appliance, as well as references
to defendant’s products. Even though manual scoring has always a
certain bias, we tried to be as objective as possible in this evalua-
tion.

In this experiment, precision and recall, macroaveraged over the
cases, reached 66.15% (� = 0.12) and 64.82% (� = 0.05). Given
that only half of the cases were in each training set split and that
we performed no manual fine-tuning or statistical analysis to detect
overly general or incorrect caseframes, we feel this is a positive
result. Finding product information is difficult, the language used
depends on the type of trade secret, whether it is a compilation of
information or a marketed product. We hope to increase precision
with further measures to filter out less useful caseframes.

6.4 Generating Propositional Patterns
After the references to parties and products have been substituted

with their roles in the lawsuit, propositional patterns (ProPs) can be
generated. The ProPs can make the goal concepts in the textual
examples more explicit. For instance, the manually constructed
tree in Figure 5 has a node (� show), which represents sentences
with “plaintiff” as subject and a synonym of “to show” as verb.
This feature is powerful because it captures a relevant aspect of the
target concept, Factor F1. For F1 to apply, the disclosure has to be
made by plaintiff or somebody acting on his behalf.

In a first step, we used AutoSlog to generate all possible case-
frames for the sentences marked-up for F1 in the squibs. Table 2
lists the most frequent patterns from the squibs related to Factor F1.
It also lists the ProPs corresponding to those caseframes, which can
all be found in the manually generated decision tree in Figure 5.
This table provides evidence how useful the caseframes can be for
deriving the targeted features.

In order to generate the ProPs from the caseframes, we will use

Caseframe Corresponding pattern

hsubj i gain (Æ gain) [access]
hsubj i give (� give)
hsubj i show (� show)
letter to hppi (letter to Æ)

Table 2: Most frequent caseframes from examples for F1 with
the corresponding ProPs

Trade Secret

Thing Design How to makeInformation
device, implement,
instrument, invention,
machine, model,
product, tool

architecture, blueprint,
construction, design,
diagram, drawing, plan

dimension, formula,
ingredients, know-how,
materials, method,
process. recipe,
technique, workings

book, compliation,
concept, data,
development, files,
idea, information, list,
manual, report.
research

dimension, formula,
ingredients, know-how,
materials, method,
process. recipe,
technique, workings

Figure 10: Semantic hierarchy for trade-secret-related infor-
mation

those caseframes and extract the filler noun phrases from the ex-
ample sentences. Then, we will generalize from the fillers to more
general concepts, using the semantic analysis performed by Au-
toSlog. In Figure 7 for instance, the semantic label[HOW-TO] for
the filler “method” was inferred automatically by the program. We
are in the process of representing the relevant language in a seman-
tic hierarchy, so that it can be used to determine the best semantic
label for the filler by AutoSlog. Figure 10 shows part of the seman-
tic hierarchy for trade-secret-related information, which we derived
combining our analysis the cases and from a legal thesaurus (Bur-
ton 1992; Statski 1985).

6.5 Determining the Scope of Negation
The last technique to improve the representation of examples for

finding Factors is the detection and representation of negation.
Negation is one of the harder problems in NLP. The presence

or absence of the words “no” or “not” in a sentence is not equiva-
lent with the presence or absence of negation. Furthermore, even if
“no” or “not” are spotted, this does not indicate what was negated.
To illustrate why the scope of negation is important, consider a
sentence from theSteffi v. Vincentexample, “Because they were
friends, the defendant did not sign a non-disclosure agreement.”
For deciding that this sentence should not be classified under Fac-
tor F4, Non-Disclosure-Agreement, it is important to know what is
negated. Only a linguistic analysis of the sentence can determine
the scope of the negation. Consider a variation of the example,
where we move the “not” five words to the left: “Because they
were not friends, the defendant did sign a non-disclosure agree-
ment.” This sentence has to be classified under F4. Unless we can
ascertain not only that there is negation, but what is negated, it is
impossible to correctly classify the two examples.

Our proposed solution is to use Sundance to determine the likely
scope of the negation in the examples. The Sundance segmenter
reliably splits a sentence into clauses before analyzing it syntac-
tically. The example would be split into the clauses “they were
friends” and “the defendant did not sign a non-disclosure agree-
ment”. These clauses are the typical scope of negation in the squibs.
Therefore, we can assume that all features, in particular the ProPs,
derived from a clause which contains a negation are negated.

Currently, we are only focussing on simple instances of negation.
Depending the results of the planned experiments, we will continue

49

to explore indirect speech and expressions of probability and doubt.

7. SUMMARY
In this paper, we have reported on our research toward automati-

cally indexing legal case texts using ML methods. We have argued
that existing methods, both for extracting information from legal
texts and for document classification are not powerful enough for
finding indexing concepts in cases. From the analysis of our past
experiments, we identified three hypotheses how a more powerful
representation of the text cases will lead to improved indexing.

We predict that a learning algorithm will better generalize from
examples and classify new cases if the representation (1) abstracts
from the specific names of the parties and products to their roles in
the lawsuit, (2) captures events and actions in multi-word features,
and (3) recognizes negation. In a hand simulation, we showed how
these methods can lead to a more powerful classifier. We have pre-
sented the design for an implementation, and evaluated the first
modules. The experiments suggest that domain-specific heuristics
are appropriate for finding the parties and that a state-of-the-art IE
tool can be applied to detect the product. We are continuing to im-
plement the outlined methods for deriving multi-word features and
representing negation.

If successful, the methods presented here could be beneficial for
other applications, beyond case indexing. For instance, if the cases
in a full-text retrieval system were represented as suggested here,
more abstract and powerful queries and quasi-conceptual retrieval
would be possible. For instance, instead of submitting a query for
“disclos*” (all words beginning with disclos) and “plaintiff”, which
would return almost every trade secret case, one could ask for cases
where plaintiff did disclose something, that is, for cases with the
ProP (� disclose).

It has long been recognized that a better text representation could
lead to significantly improved information retrieval systems (Tur-
tle 1995), yet all approaches that integrated NLP tools to derive
phrases or used thesauri to find synonyms did not lead to the ex-
pected, consistent performance improvements; see for instance
(Voorhees 1998). We believe that the improved text representa-
tion outlined above is more likely to lead to improvements than the
domain-independent methods tried in the past, which were often
too general. The methods discussed here were developed specif-
ically for legal cases and for the kind of concepts relevant in the
legal domain.

ACKNOWLEDGEMENTS
We are very grateful to Ellen Riloff from the University of Utah for
letting us use her AutoSlog program. We also thank Vincent Aleven
from Carnegie Mellon University for his comments on this paper
and for being a friend who would never missapropriate a trade se-
cret. This research has been supported by the National Science
Foundation under Grants IRI96-19713 and IRI99-87869.

REFERENCES
Al-Kofahi, K.; Grom, B.; and Jackson, P. 1999. Anaphora reso-
lution in the extraction of treatment history language from court
opinions by partial parsing. InProceedings of the Seventh Inter-
national Conference on Artificial Intelligence and Law, 138–146.

Aleven, V. 1997. Teaching Case-Based Argumentation through
a Model and Examples. Ph.D. Dissertation, University of Pitts-
burgh.

Allen, J. 1994. Natural Language Understanding. Ben-
jamin/Cummings Publishing.

Ashley, K., and Aleven, V. 1997. Reasoning Symbolically about
Partially Matched Cases. InProceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence, 335–341.

Ashley, K. 1990. Modeling Legal Argument, Reasoning with
Cases and Hypotheticals. MIT-Press.

Branting, L. 1999. Reasoning with Rules and Precedents - A
Computational Model of Legal Analysis. Kluwer Academic Pub-
lishers.

Brüninghaus, S., and Ashley, K. 1997. Using Machine Learning
for Assigning Indices to Textual Cases. InProceedings of the
Second International Conference on Case-Based Reasoning, 303–
314.

Brüninghaus, S., and Ashley, K. 1999. Toward Adding Knowl-
edge to Learning Algorithms for Indexing Legal Cases. InPro-
ceedings of the Seventh International Conference on Artificial In-
telligence and Law, 9–17.

Burton, W. 1992.Legal Thesaurus. Simon & Schuster Macmillan.

Cohen, P. 1995.Empirical Methods for Artificial Intelligence.
MIT Press.

Daniels, J., and Rissland, E. 1997. Finding Legally Relevant Pas-
sages in Case Opinions. InProceedings of the Sixth International
Conference on AI and Law, 39–46.

Friedl, J. 1997. Mastering Regular Expressions. O’Reilly &
Associates, Inc.

Joachims, T. 1998. Text Categorization with Support Vector Ma-
chines: Learning with many relevant Features. InProceedings of
the European Conference on Machine Learning (ECML-98).

McCallum, A.; Rosenfeld, R.; Mitchell, T.; and Ng, A. 1998.
Improving Text Classification by Shrinkage in a Hierarchy of
Classes. InProceedings of the Fourteenth International Confer-
ence on Machine Learning, 359–367.

Moens, M.-F. 2000.Automatic Indexing and Abstracting of Doc-
ument Texts. Kluwer Academic Publishers.

Prakken, H., and Sartor, G. 1998. Modelling Reasoning with
Precedents in a Formal Dialogue Game.Artificial Intelligence
and Law6:231–287.

Riloff, E. 1995. Little Words Can Make a Big Difference for
Text Classification. InProceedings of the 18th Annual Interna-
tional ACM SIGIR Conference on Research and Development in
Information Retrieval.

Riloff, E. 1996. Automatically Generating Extraction Patterns
from Untagged Text. InProceedings of the Thirteenth National
Conference on Artificial Intelligence, 1044–1049.

Rissland, E.; Skalak, D.; and Friedman, T. 1996. BankXX: Sup-
porting Legal Arguments through Heuristic Retrieval.Artificial
Intelligence Review10:1–71.

Rodale, J. 1978.The Synonym Finder. Warner Books.

Statski, W. 1985.West’s Legal Thesaurus and Dictionary. St.
Paul, MN: West Publishing.

Thompson, P., and Dozier, C. 1999. Name Recognition and Re-
trieval Performance. In Strzalkowski, T., ed.,Natural Language
Information Retrieval. Kluwer Academic Publishers. 261–272.

Thompson, P. 2001. Automatic Categorization of Case Law. In
Proceedings of the Seventh International Conference on AI and
Law.

50

Turtle, H. 1995. Text Retrieval in the Legal Word.Artificial
Intelligence and Law2(1):5–54.

Voorhees, E. 1998. Using WordNet for Text Retrieval. InWord-
Net: An Electronic Lexical Database. MIT Press. 285–303.

Wall, L.; Christiansen, T.; and Schwartz, R. 1996.Programming
Perl, 2nd Ed.O’Reilly & Associates.

Weber, R. 1999. Intelligent Jurisprudence Research: a new con-
cept. InProceedings of the Seventh International Conference on
AI and Law, 164–172.

Yang-Stephens, B.; Swope, M.; Locke, J.; and Moulinier, I. 1999.
Computer-Assisted Classification of Legal Abstracts. InProceed-
ings of the Third International Symposium on Advances in Intelli-
gent Data Analysis, 437–448.

51

