
Generating Exception Structures
for Legal Information Serving

R. Winkels, D.J.B. Bosscher, A.W.F. Boer, J.A. Breuker
Dept. of Computer Science & Law, University of Amsterdam

PO Box 1030, 1000 BA Amsterdam
Netherlands

Tel: +31 20 525.3485

{winkels,bosscher,aboer,breuker}@Iri.jur.uva.nl

ABSTRACT
More and more legal information is available in electronic form,
but traditional retrieval mechanisms are insufficient to answer
questions and legal problems of most users. In the ESPRIT
project CLIME we are building a “Legal Information Server”
(LIS), that not only retrieves all relevant norms for a user’s query,
but also applies them, giving the normative consequences of the
‘situation’ presented in the query. Typically, these queries
represent very general and underspecilied cases.
Underspecification may lead to ‘overlooking’ of relevant norms,
in particular those norms that directly change the legal status of a
case: exceptions. Most exceptions in legislation however, are
implicit, i.e. will only be detected afrer trying all norms for a
particular case and resolving conflicts between applicable norms.
For LISs we suggest to make the exception relations between
norms explicit in off-line mode, so that we can use these exception
structures to warn users about potential exceptions to their
queries.

Keywords
Legal Information Serving, legal database, exceptions.

1. INTRODUCTION
Regulations, laws and precedent cases grow in number and
complexity, and become more and more available in electronic
form. Access to electronic legal sources has thus far been handled
in the same way as - or rather following - information retrieval in
general by using databases or (structured) text bases (see e.g. [141
for an overview). The search engines at the WWW are a good
example of the state of the art of this kind of information retrieval.
For answering legal questions or solving legal problems, key word
matching has serious limitations, even if supported by conceptual
retrieval techniques. Typically, the input query combines key
words through Boolean and proximity operators, and the output is
a list of (ranked) (parts of) documents. The user will have to read
and interpret the output himself to answer the question. Moreover,
the quantity and quality of the search result leaves much to be
desired. One may find a lot of irrelevant documents (low

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICAIL-99 Oslo, Norway Copyright (c) 1999 ACM I-
58113-165-8/99/6 $5.00

precision) and probably not all relevant ones (low recall).’ These
techniques are directly borrowed from information retrieval, but
miss out what is the crucial issue in legal information serving:
reasoning about the legal consequences of the query [2]. In legal
information serving the user is interested in the question whether
some situation is allowed or required.

The LIS presented in this paper is under construction as part of
the ESPRIT project CLIME (“Computerized Legal Information
Management and Explanation”, Esprit P25.414; for more
information on the project see e.g. [173* and [IS]). Besides
delivering a generic architecture for LIS, a demonstrator will be
delivered for the domain of ship classification, a requirement for
access to ports, insurance etc. Every ship classification society
maintains a set of rules for assessing ships. These regulations
cover a few thousand of pages of text and are available in
electronic form to the society’s employees, who are spread world
wide, and their clients (ship owners).3 Besides these regulations,
international treaties, e.g. on safety (SOLAS) and preventing
maritime pollution (MARPOL) are applicable. Typical LIS
requests are “What is the minimal number of bilge pumps that is
required on a cargo-ship”, “Are passengers allowed on a bulk-
carrier?” Answering these questions involves assessing the
normative status of the request, i.e. matching norms to a situation
description, in the same way as in the assessing the legal
consequences in a legal case. However, legal information servjng
generally differs from the legal assessment of cases because a LlS
query may be incomplete and underspecified. Exactly what we
mean with incompleteness and underspecilication will be
explained later. It should be noted that this incomplete and non-
specific nature of LIS queries is often explicitly intended. If one
asks about passengers, one is not interested in bilge pumps.
Moreover, if bilge pumps happen to be related to passengers in
(one of) the norms, the LIS should make this explicit to the user.

’ Blair & Maron [11 found that ‘full-text’ databases provided only
15% of all relevant documents and 30% of critically relevant
documents, while at the same time the users thought they had
found 80% or more of all relevant documents.

2 This paper is also available on-line at:
http:/lwww.lri.jur.uva.nl/-winkels/papers/
AIL98~Clime~Paper,html

’ The classification regulations in CLlME are those of Bureau
Veritas, one of the oldest classification societies. The
regulations are electronically accessible on CD-ROM or via
internet, coded in SGML.

182

The normative nature of these requests transpires in the
appropriate answer, e.g. for the first question the LIS may explain
that a bulk carrier is a cargo ship. and that cargo ships may carry a
limited number of passengers according to rule so-and-so.

In order for the LIS to retrieve relevant norms for a user’s query
and apply them - i.e. assess the normative status of the situation
put forward in the query - the content of the legislation has to be
represented in an appropriate way. Not only the concepts that are
used (as in conceptual retrieval), but also the normative content.
We will describe our way of modeling the legal knowLedge in
legislation in the next section.

2. MODELLING LEGISLATION
Any regulation refers to objects in the real world. Hence there is a
need to represent these objects and the way in which they are
related. This conceptualization of what we call ‘world knowledge’
is the starting point of legal modeling. An example:

Art &I - the first article of book eight of the Dutch civil code -
starts with the definition of a ship: “In this book ships are all
goods, which are not aircrafts, that are constructed to float, jloat,
or havefloated. ”

This gives rise to a number of concepts and relations which have
to be taken into account. E.g. a ship is a ‘good’, it is not an
‘aircraft’, it is ‘constructed to float’, etc. In order to model articles
in the civil code, which use the word ‘ship’, the knowledge base of
the LIS must contain these notions. In a class hierarchy the ship is
subclass of good, and so is aircraft, and they are mutually
exclusive in the context of the civil code. Once we have modelled
the concept ship, we can say that an object is a ship, a good or an
aircraft.

Of course, ‘world knowledge’ does not (cannot) represent the
world in all its aspects; it is a (legal) abstraction of the world.
Moreover, it is incomplete and not self-contained, but refers to
and depends on a large amount of common-sense knowledge.4
Legal sources may define numerous concepts and their relations,
but in the end these will be defined in terms of primitives that
have to be interpreted by humans (the typical ‘end-users’ of
legislation). In the ship classification domain for instance, many
types of ships are defined, based on their constituent parts, cargo,
etc., but the term ‘ship’ itself is not, neither the terms ‘cargo’ or
‘repair’. These are left to common-sense interpretation by
humans. In this sense, the world knowledge, and the models that it
constitutes, are an interface between the ‘real world’ and the
‘legal world’.

The LIS reasons about queries. Queries are descriptions of
situations phrased in terms of the world knowledge. E.g. once the
notions relating to a ship are modelled, one can present a query to
the LIS of a ship which is in a harbor (maybe to check port
regulations). Of course the LIS operates on a formalized

4 Part of this ‘incompleteness’ of world knowledge is due to what
is known in legal theory as the ‘open texture’ of legal concepts
(cf. [4]). We do not offer any (new) solutions to that problem.
We model what is available in the legal sources and leave the
rest to the users of the LIS - which in our case are no novices in
the domain. The quality of the things we do model obviously
has implications for the quality of the reasoning of the LIS; see
the Discussion.

representation and not on natural language; an input query could
be something iike:’

Query1 : (ship (“HMS Amsterdam”) A in-location(“HMS
Amsterdam”, harbor)}

World knowledge is prerequisite for modeling norms. Norms are
the smallest entities in legal information serving which give a
normative status to a situation, i.e. state whether a situation is
allowed or disallowed. We discern two main aspects of a norm.
First, a norm obliges, forbids or permits situations. We call this
the normative function of a norm. Second, a norm refers to one or
more situations, Here lies the connection to world knowledge. The
collection of situations to which the norm refers is phrased in
terms of the world knowledge. An example: Suppose that there is
a (mock) regulation: “It is permitted for a ship to be in a harbor”.
The norm is a permission and refers to any situation with a ship in
the harbor. It presupposes a representation of ship, locations and
harbor in world knowledge. A situation with a ship in the harbor,
is thus explicitly permitted by this norm. For the purpose of this
paper, we will represent this as:

Norml: P(ship(X) A in-location(X, harbor)}

where ‘P’ stands for ‘Permission’. We call the general situation to
which the norm applies the ‘generic case’ of the norm. When a
user’s query matches the generic case of a norm, or to put it
differently, when the truth of the generic case can be derived from
the situation presented in the query, given the world knowledge,
the norm is applicable. It can easily be seen that ‘Query1 ’ above
matches ‘Norm1 ’ above and the resulting normative qualification
will be ‘allowed’. Most of the time however, the LIS will have to
do a lot of reasoning with the world knowledge to be able to
decide whether a case matches a norm.’ This is because the terms
used in queries (or legal cases in a straightforward legal
assessment task) are seldom at the same level of abstraction as the
terms used in the norms. In the example query about whether
passengers are allowed on a bulk carrier (see Introduction), the
relevant norm refers to cargo ships, not to bulk carriers. Norms
are formulated abstractly to provide a large coverage of situations.
It is i.a. for that reason that the use of database technology or text-
retrieval methods leads to low precision and low recall scores.
Conceptual front-ends’ may improve the matching with the
abstractions in legal sources, but they do not cover in a principled
way how implied knowledge is handled.

When more than one norm is applicable and their resulting
qualifications conflict (i.e. allowed versus disallowed), meta-
norms are tried to resolve the conflict (see below).

In the case of Norm1 above there can be a direct correspondence
between the regulation (“It is permitted . ..“) and the norm in the

’ For the purpose of readability, we keep all representations in this
paper semi-formal.

’ We use a description classifier to see whether a query matches
the generic case of a norm. Currently we use LOOM (see:
http:Nwww.isi.edulisd/LOOM/LOOM-HOME.html), but we are
also investigating other systems.

’ As e.g. in the FLEXLAW system [131.

183

legal information server. In legal text, regulations usually give rise
to several norms. The connection between the norms and the
regulations they are modelled after, is kept in referential linksx

Note that we label the entire generic case as being permitted,
contrary to most approaches that would represent the regulation as
‘concluding’ that some aspect of the situation is permitted given
some condition(s), e.g.:

Normlb: Ship(x) -+ P{in-location(X, harbor)}’

As we will see later, this difference has repercussions when
distinguishing and representing exceptions.

3. ASSESSING SITUATIONS IN QUERIES
In assessing a legal case, the assumption is-that the case
description is fully specified and complete. With complete we
mean that all legally relevant facts have been described.
However, in a typical query to a LIS the user may not be
interested in a full description of the case, but only in some
aspect, e.g. how many bilge pumps are needed. Therefore, queries
are almost by definition incomplete cases. Besides, queries may
lack detail. Because in a case things have (hypothetically)
happened, i.e. the facts of a case are instantiated facts, the case
can be described at the lowest level of specificity. Describing a
case in too general or incomplete terms may easily lead to a
different outcome. For instance, when we state in the query that it
concerns ‘a ship’, instead of the ‘HMS Amsterdam’ which is a
liquid-gas carrier of a gross tonnage of 10,000 etc., we will miss
out all norms which are applicable to liquid-gas carriers, tankers,
and cargo ships, and only norms about ships in general will be
applied. Of course, we could have the LIS infer all possible
specifications of the abstract case description, but this would be
combinatorial and it would also be infeasible for a user to handle
all these largely non-relevant extensions of the case presented.

As we stated in the Introduction, in legal information serving the
specification of complete cases is hardly ever relevant. Therefore
almost by definition the situations in a LIS query are incomplete,
or rather: focussed on only one or a few topics. Moreover, many
typical LIS questions may not be specific at all. The user, who
asks whether it is allowed to have passengers on board a bulk
carrier, may not have a specific bulk carrier in mind, but as owner
of a fleet of bulk carriers, he may consider additional exploitation
of this fleet. Therefore, most LIS queries refer to general
situations rather than to fully instantiated cases. As we have seen
above, to assess the normative consequences of a legal case, the
terms in the case description normally have to be abstracted to the
level of the terms used in norms. Now in assessing the normative
consequences of situations described in LIS queries, we see that
the user may use too general terms in his query, which suggests
we have to specialize the terms used in the query in order for the
right norms to match. Of course, this is much more of a problem,
since abduction does not guarantee correctness,

’ These links are not only handy for maintaining the LIS, hut are
also used for explaining the answers to queries by referring to,
or stating the original sources.

‘) We could also write our representation as: (ship(X) A in-
location(X, harbor)] -> P to show that we only ‘conclude’ that
the situation is permitted, not which aspect(s) of it.

To indicate this crucial difference between legal case assessment
and legal information serving, we will use the term ijuer~> rather
than ‘case’ for the incomplete and underspecified cases presented
to LISS.

That LIS queries are limited to only a few topics is an advantage
rather than a problem for the assessment algorithm: in general, the
time spent on abstraction and matching of a case is exponential
with respect to the size of a case description. Underspecification is
not a problem either: it means less steps in the algorithm to find
matching norms. However, underspecification may give rise to
another kind of problem. The user may not understand: (1) what
the required level of specificity is given his intentions and the
general problem situation at hand, and (2) that the outcome
should be interpreted with the caution that it is only correct with
respect to his specified request.

To prevent the first problem, the CLIME user interface is
constructed in such a way that the user, who inputs his request in
a structured natural language format, is shown more specific
options for the terms he uses.“’ Moreover, the user may start a
follow up dialogue, when the answer to his request is not what he
thinks he requested or needs. However, the user may be too easily
satisfied with an answer, and in particular he may not be aware
that further specification may trigger exceptions. Therefore, in co-
operative legal information serving, the user should be warned
about potential exceptions.

A simple example may illustrate what is meant. Assume we have
the following two norms: Cargo ships are not allowed to have
more than 13 passengers aboard; A cargo ship in harbor may have
more than I3 passengers aboard. In our more formal notation:

Norm2: F(cargo-ship(X) A nr-passengers(X,Y) I\ Y>13)
Norm3: P(cargo-ship(X) A nr-passengers(X,Y) A Y213 A

location(X, harbor))

Obviously, the second norm is an exception to the first - though
this is not stated in the norms. Let us further assume we have an
explicit meta-norm that states that Norm 3 is stronger than Norm
2. This meta-norm is an expression of the general ‘lex specialis
derogat legi generali’ principle.

Now a user enters the query:

Query.?: { cargo-ship(“HMS Amsterdam”) h nr-passengers(“HMS
Amsterdam”, 15)]

and wants to know whether this situation is allowed. The query
matches the generic case of the first norm and will be assigned the
qualification ‘disallowed’. In this case the LIS may correctly
inform the user that the situation is disallowed because of Norm2,
and refer to the original text. This may however, not be the most
useful answer. He or she may be helped more with an answer like:
“That is not allowed unless your cargo ship is in a harbor”. In
order to provide the second answer, the LIS has to: (a) recognize
that Norm3 is an exception to Norm2, and (b) compute the

I” This is achieved by the “What You See Is What You Meant”
technology, developed by the University of Brighton [9]).
Basically, users are directly editing a ‘knowledge base’, but the
results are constantly shown in structured natural language.

184

difference between the generic cases of the two norms. In the
example these two steps are rather straightforward: The meta-
norm indicates that Norm3 is an exception to Norm2 and the
generic cases are identical except for the ‘location’ predicate. In
must cases, however, it is not as simple. Exceptions come in many
ibrms, and generic cases may be very different.

4. IDENTIFYING EXCEPTIONS
BETWEEN NORMS
An exception is an instance that does not conform to a rule or
definition that apparently applies to it. In a legal context, we
assume that (most) exceptions to rules result from deliberate acts
of exclusion on the part of the legislator. Using exceptions has a
pragmatic, not a principled reason. It is possible to re-phrase any
otherwise consistent piece of legislation containing exceptions in
one without exceptions. However, the result is a far less abstract
and almost unreadable version of the regulation: the ‘qualification
model’ [31. A legal case is an exception to a norm if the norm
apparently applies to it, but the case does not conform to the
norm. The idea is that there is an exception rule that applies to
the case in a more specific way and defeats the more general
norm. Thus, the more general norm and its exception are in
conflict with respect to the case and the LIS has to choose.

Following Pollock [IO], many researchers distinguish ‘rebutting
defeaters’ from ‘undercutting defeaters’. The first type is an
exception that explicitly negates the ‘conclusion’ of the ‘rule’ it is
an exception to. The second type just states that some other
‘rule(s)’ is/are not applicable, without itself giving a different
‘conclusion’. An example of a rebutting defeater in our domain of
ship classification is Norm3 given in the previous section. An
example of an undercutting defeater might be a statement like
“The provisions in this section do not apply to passenger ships”.
One way to see these undercutting defeaters is that they ‘defeat’
an assumption or implicit ‘condition’ in the rule(s) they
‘undercut’ (cf. [1 Z]), e.g. the assumption that “the provisions in
this section apply to all ships”. This could be represented by
making the ‘corrected’ assumption explicit. In the example given,
all rules in the section have an additional condition that the ship at
hand is not a passenger ship. Most researchers agree that this is
not an elegant solution (cf. [11, 161). Another way to handle them,
is to represent this kind of scope restrictions for the applicability
of norms as meta-norms. We do not consider these type of
‘undercutter’ defeaters to be exceptions, since there is no conflict,
i.e. opposing normative qualification of a case (see next section
for a formal definition of what we consider to be an exception).
What we are looking for are exceptions of the ‘rebuttal’ type, and
only between norms (e.g. not between defintions in the world
knowledge). How do we detect these in legislation?

Sometimes, regulations explicitly state that a particular norm is an
exception to another norm with phrases like “in contrast to
article...” or “...unless article X is applicable”. Most exceptions
however, are left implicit, i.e. will only be detected after trying all
norms for a particular case and resolving conflicts between
applicable norms. Take the example from the previous section
again. The fact that Norm3 is an exception to Norm2 will be
detected after a case with a cargo ship in a harbor with more than
13 passengers has been judged. In that case, both norms are
applicable, but their normative qualifications (‘conclusions’)

conflict. The meta-norm has to be used to decide that Norm3 is
stronger and the final qualification is ‘allowed’.

A slightly more complicated example will show that detecting
exceptions may also need additional, non-normative, i.e. ‘world
knowledge’: Suppose we have a fourth norm that states that “Bulk
carriers are allowed to have more than 13 passengers”. This norm
is an exception to Norm2, if we know (from the world knowledge)
that a bulk carrier is a specific type of cargo ship. In our
representation:

Norm4: PIbulk-carrier(X) A nr-passenger.s(X,Y) A Y>13)
World Knowledge: bulk-carrier(X) --f cargo-ship(X)

That Norm4 is an exception to Norm2, can again be seen when we
assess a case of a particular bulk-carrier that has 15 passengers.
Given that a bulk-carrier is also a cargo-ship, Norm2 will qualify
this case as disallowed, while Norm 4 will qualify it as allowed.
Conflict resolution will have to be applied. In this case there is no
explicit meta-norm, so we have to resort to general principles.
Since there is no information that one norm is from a ‘superior’
law than the other, or from a later date than the other, the
principle of ‘lex specialis derogat legi general? will be used. This
leads to the conclusion that Norm4 is more specific than Norm2
and the final qualification will be ‘allowed’. Norm4 is more
specific than Norm2 because all situations that are covered by it
are also covered by Norm2, but not the other way around. In other
words, the generic case of Norm4 ‘implies’ the generic case of
Norm2.”

From these examples it can already be seen that an important
heuristic or clue to trace exceptions is the use of P(ermissions) as
normative qualification: Most P-norms are exceptions to some O-
or F-norm.‘* However, not all exceptions are P-norms. For
instance:

Norm5 F{liquid-gas-carrier(X) A nr-passengers(X,Y) n Y>13)

is an exception to Norm4 if we know that a ‘liquid gas carrier’ is a
kind of ‘bulk carrier’.

5. A METHOD FOR MAKING
EXCEPTIONS EXPLICIT
The typical way to detect exceptions is by finding conflicts
between two norms that apply to a case. When this conflict can be
resolved by the specificity principle we say that one norm - the
prevailing one - is the exception to the other one. Exceptions are
not specific to the legal domain: the non-flying penguin is an

I’ This resembles the definitions of specificity of Poole [8] and its
adaptation by P&ken [1 I], but the representations on which
they work are very different. They do not distinguish ‘world’
from ‘normative’ knowledge as we do, and therefore. their
conflicts can be about either type, while we are only interested
in normative conflicts (cf. the difference in representation
discussed in Section 2).

‘* There are also ‘inactive permissions’, not linked to any existing
obligations or prohibitions, that are part of so called ‘liberty-
rights’ (Bentham as stated by Hart [5]).

185

exception to birds that are supposed to fly, and therefore, sets of
norms are as ‘non-monotonic’as any other kind of knowledge.

Note that we define exceptions as a specific type of conflict, i.e.
that type of conflict where one norm is more specific than another
and the norms qualify the ‘case’ in opposition (disallowed versus
allowed). Other types of normative conflicts that can only be
resolved by the ‘lex superior’ or the ‘lex posterior’ principle, are
not considered as exceptions. These principles deal with the
validity of a regulation, respectively the limitation of the scope of
lex specialis notions. The distinction should be evident from the
nature of these conflicts. We do not think that a more recent norm
is an exception to an older norm: the older one is simply outdated.
Similarly, a norm that dominates another norm is a more
dominant one and not an exception. One may argue that lex
superior has been ‘invented’ by the legal system to counteract the
all pervasive predominance of the lex specialis principle. In this
way, we can protect important norms or principles from being
‘violated’ by less important, but more specific ones and protect
the integrity of the legal system.”

In fact, as humans draft the law, it can also contain conflicts that
are not solvable by principles: ‘genuine’ logical conflicts (e.g. due
to error).

Usually, exceptions are identified on line, i.e. a case is presented,
conflicting norms match the case and the conflict is resolved by
the specificity principle. However, this is not very cost effective.
Whether two norms conflict is independent of a case:14 cases help
us to make us aware of the conflict. Therefore, we can try to infer
all exceptions in a regulation off-line. This has important benefits.
For us, the most important one is that it speeds up the on line
assessment of the query, but an explicit exception structure may
also be inspected to separate intended ones from not intended
ones (cf. [3]).15 Moreover, these explicit exceptions can be used to
warn users about potential exceptions to their abstractly specified
request in legal information serving as was stated earlier.

Above we have defined a norm as a normative function that maps
the instances of some generic world description, i.e. the generic
case, to a normative qualification. We can write a norm as a tuple
(@,F), where 0 E (P,FJ, and the generic case, F, is some first
order formula. ‘P’ stands for ‘Permission’ and ‘F’ for
‘Forbidden’, see below for more details. To indicate norms we use
the letters N, e.g. Nl, N2 ,...

A norm is more specific than another norm - NI=($l,yl) is more
specific than N2(@2,@) - if yl or 112, where T stands for the
shared world knowledge according to the model. Now Nl is an
exception to N2 if the normative functions are different, but the
(generic cases of the) norms imply one another:

exception(Nl,N2) = implies(yl,y2) A @I# $2

‘s This is why we often find civil rights in constitutions, the
‘highest’ legislation in a legal system, so that they cannot be
overruled by lower more specific rules (perhaps at most
restricted).

I4 Cf. Poole [S] and Prakken [l l] who also handle ‘specificity’ of
conflicting rules independent of case data.

Is Not intended ones are in fact errors, They are not rare in law.

We assume that generic cases are cast in disjunctive normal form,
which means that disjunctions in the description of a single
generic case are not allowed. Indeed, if disjunctions are part of the
apparent generic case of a norm, this norm can be rewritten as two
or more norms containing no disjunction. For instance: “a bulk
carrier or liquid gas carrier should have two additional fire
pumps” is represented as two norms that F(orbid) that a bulk
carrier, respectively a liquid gas carrier does not have two
additional fire pumps.”

In the example we have translated the norm into a prohibition. In
the model we use only two normative functions: P and F.” The
function that represents obligations (0) can be rewritten as a
combination containing a permission (P), a prohibition (F) and a
negation. This means that there is only one type of exception in
our model, i.e. between ‘F’ and ‘P’.

The next question is, how do we get the implications. These have
to be computed from the representations of the world knowledge,
i.e. for each pair of norms we have to compute whether one
generic case 71 is implied by another one y.2. We use an active
description classifier” to obtain these implications. We introduce
Skolem constants for the existentially quantified variables in y2 in
such a way that they satisfy the formula ~‘2: disjunctive normal
form makes this possible (see also the discussion in Section 7).
Then we query the knowledge base to obtain a binding list for ~1.
The idea is to assert the facts of a generic case that make a norm
apply, in order to find the norms to which it is an exception. If
these assertions cause other norms to match as well,” then the
first norm is an exception to these norms.

We demonstrate the idea using Norm2 and Norm4. We set out to
prove that the second norm indeed specializes the first norm. We
first assert that two objects x0 and y0 exist such that the properties
bulk-carrier(x0). nr-passengers(xO,yO) and yO>l3 hold. Notice
that the second norm is now applicable. Next we query whether
the generic case of the first norm holds. Since we can obtain
bindings for all of the variables in the first generic case, the first
generic case holds as well. Hence the second generic case implies
the first modulo the world knowledge, since the world knowledge
gives that ‘cargo ships subsume bulk carriers’. We have detected
that the second norm is an exception to the first norm.

When we do that for all pairs of norms, we gradually reveal the
(hidden) exception structure between the norms in the legislation.
The resulting structure will probably consist of sets of trees or
graphs (DAGs) as depicted in Figure 1. From this example
exception structure it can be seen that there may be several
‘entries’ in the structure that are no exceptions to any other norm

” Note that the usual formulation would be: “bulk carriers AND
liquid gas tankers...“, due to the ambiguity of the natural
language term ‘and’ when mapped to a first order logic. The
generic case cannot be based on the surface textual structure of
the norm. The generic case is an intensional description of the
cases the norm intends to allow or disallow.

I7 The P(ermission) is implied by the notion of obligation, where
what is obliged is also permitted [151.

Ix E.g. LOOM.

I’) NB: Other norms that do not apply to exactly t.he same generic
case.

IX6

in the legislation, but only to the normative default of the
normative system (usually weakly allowed). In this case the norm
that ‘forbids’ generic-case- I (FGC I) and the norm that ‘obliges’
generic-case-8 (OGC8). FGCl has two exceptions, OGC2 and
PGC3. etc. For readability we have kept the ‘O(bligations)’ in
tact, but as was discussed above, the exceptions actually concern
the prohibition of the opposite generic case and the permission in
which we transform an obligation.

Collecting the exceptions of a normative system is most probably
a time consuming process. The result is an overview of the
implications between the generic cases of norms that give rise to
different normative qualifications. The implication relation or
exception structure generated by the implication between generic
cases can be used in a straightforward way to speed up testing. An
algorithm to select the primary norms to be tried, starts with
norms that are not exceptions, then proceeds with exceptions to
these norms etc. Depending on the tree like structure of the
exception structure this should reduce testing effort considerably.

are assigned to the variables of the generic case of the norm. Last,
we make an inventory of which additional properties the objects
have, e.g. belong to more specialized sub-concepts or sub-roles.
Furthermore, we look at which new objects are demanded by the
exception and how these new objects are related to the original
objects.

For the example of Norm2 and Norm4, we first assert that there
exist two objects x0 and ytr. They have the properties bulk-
carrier(x,J, nr-passengers(xi),y,J and yt+ 13. The difference
between the application of the Norm2 and its exception - Norm4 -
is that xr, moreover is a bulk carrier. Since there are no additional
conditions, this gives that for the exception to be triggered, the
cargo ship has to be a bulk carrier as well.

For a slightly more complicated example with three objects we
use Norm2 and Norm3. Besides xc,, y. we would assert the
existence of a third object ~0, location(xr,,z,J and harbor(z,,). This
is the minimal set of assertions to trigger the application of the
exception - Norm3. The difference between Norm2 and its
exception is now that the exception requires an additional object

3 5 77 PGCA FCC5 FCC6 F~c7 PGClO PGcll

Figure 1: An example exception structure between norms

6. USING EXCEPTIONS TO OBTAIN
MORE SPECIALISED QUERIES
We expect the legal information serving to be most practical if
queries are ‘small’. That way fewer primary norms, and
consequently fewer meta-norms are triggered. The danger is, as
was mentioned in the Introduction, that the query does not reflect
the problem in reality good enough, i.e. does not trigger the
‘right’ norms that would have been triggered by a more elaborate
description. How can we lind the difference befween an
applicable norm and its exception to check whether or not in fact
the situation of the exception is the case?

We use again the Example of Norm2 and Norm4 given above. If
we have a query concerning a cargo ship with more than 13
passengers, i.e. a query that triggers an application of Norm2, then
the missing fact to establish whether the exception can also apply
is whether the ship is also a bulk carrier. We can use the exception
structure described above to derive this information automatically.
To obtain the discriminating facts between an exception and the
norm ‘to which it is an exception’, the minimal number of facts is
asserted that trigger the exception. Next, we establish how objects

and a relation between an (already existing) object and this new
object. So if Norm2 is triggered, then the conditions for the
exception are met if the cargo ship is in the location of a harbor.

We see that the method for obtaining the differentiating
information between a norm and its exception is similar to that of
fnding the exceptions to norms themselves, as described in the
previous section. Computing this information can also be done
beforehand. The relation between the objects mentioned in the
two generic cases of the norm and the exception is static (i.e.
independent of actual case or query data). If a norm is trigged,
then asking for more specific data about existing objects and
(relations with) new objects is a matter of substitution.

7. CONCLUSIONS AND DISCUSSION
Legal information serving is different from information retrieval
in general, because obtaining the right information about legal or
normative issues invariably involves assessing the legal status of a
situation description in a query. In many respects, this assessment
procedure is identical to evaluating legal cases. As a consequence,
the results and procedures in legal information serving differ
dramatically from those obtained, respectively used in traditional
information retrieval, in particular text retrieval. While in text

187

retrieval there is strong negative relationship between the number
of cues in a query and the number of matching documents or
pieces of text, the opposite holds for legal information serving as
discussed and explained here. In fact, we work from the
assumption that the traditional metrics used in information
retrieval - recall and precision - are both 100% in legal
information serving.2” The reasons are many, but the main ones
are: (1) There is a full specification of terminology (ontology)
required as a knowledge base, and this terminology is the (only)
one that is to be employed for entering queries. This is similar to
using conceptual retrieval front ends to text bases. (2) The
assessment function in LIS is not concerned with matching terms,
but with matching situation descriptions (cases) and solves the
deontics involved in applying norms to cases. (3) Implied
knowledge is taken into account in the assessment procedure (see
e.g. [183 for more details).

On the other hand, we also pointed out that legal information
serving differs from straightforward assessment of legal cases,
because a query is in general focussed on a particular topic. The
topic may be underspecified, so that special: care has to be taken
that the user will not misunderstand the scope of the results. As a
consequence, a co-operative dialogue may not only prevent
underspecification of queries, but is sensible to point to potential
exceptions to the result presented. We discussed the nature of
these exceptions and how an exception structure could be
generated off-line.

This procedure for detecting exceptions between norms by using a
description classifier like LOOM, does not ensure that we will
find all exceptions in a regulation. First, there is the classical
problem that a description classifier is not complete. Neither
would a theorem prover be, given the minima1 level of
expressiveness that we need, but we have no precise information
how the LOOM classifier compares with such a benchmark.
Second, and of more practical importance is the modeling
problem. Incomplete results may be rather due to inaccurate or
erroneous modeling of the world knowledge than to the classical
expressiveness versus completeness trade-off (cf. [6]). What will
count and will be computed as implication is dependent on how
terms are defined. For instance, in modeling a world in which
(qualitative) spatial relations play a role. we may easily forget to
include axioms like that right, middle and left are exclusive, so
that one can infer that ‘right’ implies +&middle A ‘left’).
However, within the scope of these classical limitations we claim
that we will identify all exceptions of the specified type between
norms.

In fact, we may identify too many exceptions. We have formalized
the notion of ‘specificity’ as logical implication, but it is not
obvious whether all implications reflect the notion of specificity.
Specificity is probably one of the vaguest terms in common sense,
but also in law. For instance, in many representations of
knowledge, causality is viewed as a (material) implication, so that
‘A causes B’ is expressed as ‘A implies B’, but we probably do
not want to derive that ‘A is more specific than B’. In our
approach, definitional knowledge in legal sources is modelled

2” Of course, like in traditional information retrieval, it is not
completely clear what the standard is with which to compare
‘retrieval’ or LIS results. It is relative to the user’s needs and
typically operationalized by human experts in the field.

separately from causal knowledge, so we do not have this problem
[151.
We have also sketched a method to obtain the more specializing
or differentiating information between a norm and its exception.
As one can see, this computation is similar to the detection of the
exception to the norm itself. This shows the limit of its use in
legal information serving: if the computation of exceptions is not
guaranteed to be complete, then computation of more specializing
information suffers the same fate.

A more complicated situation arises if a norm has more than one
exception to it (and these cannot be ordered by implication of
their generic cases). In this situation we have no clue for which
exception information should be asked. Also the differentiating
information of the separate exceptions cannot be merged, due to
possible inconsistencies. It is even harder when more than one
norm with an exception applies to the user’s query. We have to
develop heuristics to select the norm of which exceptions are
tested and the order in which the exceptions are checked for
dependent incompleteness. These problems are highly related to
planning and managing dialogue and explanation between the LIS
and its users, the responsibility of other partners in the CLIME
project.

8. ACKNOWLEDGMENTS
CLIME is sponsored by the EC ESPRIT programme with project
number P25.414. The CLIME partners are: British Maritime
Technologies (UK), University of Brighton (UK}; Bureau Veritas
(France); TXT (Italy), and University of Amsterdam
(Netherlands). The official CLIME WWW-site is at:
http://www.bmtech.co.uWclime/.

9. REFERENCES
[I] Blair, D.C. and M.E. Maron (1985). An evaluation of

retrieval effectiveness for a full-text document retrieval
system. Communications of the ACM 28(3):289-299.

[2] Breuker, J.A. (1992). On Legal Information Serving. In
Proceedings of JURiX’92, Information Technology and L.uw.
Koninklijke Vermande, Lelystad, pages 93- 102.

[3] Haan, N. den and Breuker, J. A. (1996). Constructing
Normative Rules. Proceedings of JURIX’96, pages 135 147.

141 Hart, H. (1961). The Concept of Lclw. Clarendon Press.
Oxford.

[5] Hart, H. (1973). Bentham on Legal Rights. In A. Simpson
(ed). Oxford Essays in Jurisprudence. Clarendon Press,
Oxford, pages 17 I -201.

[6] Levesque, H.J. and Brachman. R.J. (1987). Expressiveness
and tractability in knowledge representation and reasoning.
Cornpututional intelligence, 3178-93, 1987.

[7] Lindahl, L. (1992). Conflicts in systems of legal norms: A
logical point of view. In P. Brouwer. T. HOI, A. Soeteman,
W. van der Velden and A. de Wild (eds.). Coherence cmd
Conflict in hw, pp. 39-64. Kluwer, Deventer, 1992.

IS] Poole, D.L. (1985). On the comparison of theories:
Preferring the most specific explanation. Proceedings of
IJCAI-85, pp. 144- 147.

[9] Power, R., D. Scott, and R. Evans (1997). What You See IS

What YOU Meant: direct know/edge editing with rutural

188

language feedbuck. Technical Report, ITRI-97-03,
University of Brighton. 1997.

[IO] Pollock. J.L. (1987). Defeasible Reasoning. Cog~ziti\~e
Science I I:48 l-5 18.

[I I] Prakken. H. (1993). Log&l Tools for Modeling Legal
Argument. PhD Thesis, Free University of Amsterdam, 1993.

[121 Prakken. H. and Sartor, G. (1995). On the relation between
Legal language and legal argument: assumptions, applicability
and dynamic priorities. In: Proceedings of the fifth ICAIL,
ACM Press, Washington DC, pp. l-9, 1995.

[131 Smith, J.C., D. Gelbart, K. MacCrimmon, B. Atherton, J.
McClean. M. Shinehoft, and L. Quintana (1995). Artificial
Intelligence and Legal Discourse: The Flexlaw Legal Text
Management System. Artificial Intelligence and Lzxw 3(1-2):
S-95.

[141 Turtle, H. (1995). Text retrieval in the legal world. Artificial
Intelligence and Luw, 3(l-2):5-54, 1995.

[151 Valente, A. (1995). Legal Knowledge Engineering. A
Modeling Approach. PhD Thesis, University of Amsterdam.
10s Press, Amsterdam, 1995.

[161 Verheij, B. (1996). Rules, Reasons, Arguments. Formal
studies ofnrgumenration and defeat. PhD thesis, University
of Maastricht, 1996.

[171 Winkels, R.G.F. (1998). CLIME: Legal Information Serving
Put to the Test. In: Pre-proceedings of the Second French-
American Conference on AI und LAW. Available on-line at:
http:Nwww.Iri.jur.uva.nI/-winkelslpapers/AIL98~CLIME~Pa
per.html

[18] Winkels, R.G.F., Boer, A., Breuker, J.A. and Bosscher, D.
(1998). Assessment Based Legal Information Serving and
Cooperative Dialogue in CLIME. Proceedings of JURIX-98,
pp. 131-146. GNI, Nijmegen. Available in PDF format at:
http:Njurix.bsk.utwente.nllpapersgdflj98-pdf/j98- 1 O.pdf

189

