
.

Attacking Legal Argument by Examining Stability of Case Citation
with Goal-Dependent Abstraction

Yoshiaki OKUBO and Makoto HARAGUCHI
Division of Electronics and Information Engineering

Hokkaido University
N-13 W-8, Sapporo 060, JAPAN

TEL: t-81-11-706-7261
FAX: +81-11-706-7808

E-mail : {yoshiaki, makoto}Qdb.huee.hokudai.ac.jp

Abstract

This paper proposes a computational method of attacking
a case-based legal argument in a Hypo[l]-like system. For
this purpose, we introduce a notion of stability of case ci-
tation. Our basic idea of stability is based on a reasonable
requirement: if an old case is cited for a new case, the old
case should be cited for each case similar to the new case
as well. If a case citation satisfies the requirement, then the
citation is said to be stable. We propose in this paper a com-
putational method for attacking a legal argument from the
viewpoint of stability of case citation. In order to examine
whether a case citation is stable or not, we need to obtain
cases similar to the new case. These are obtained with the
help of Goal-Dependent Abstraction (GDA IS]). GDA is an al-
gorithm for finding appropriate similarity between sort con-
cepts according to our viewpoint. Based on the similarity
found by GDA, we hypothetically create a set of cases similar
to the new case. Then: each hypothetical case is examined
whether we can cite the same old case for the hypothetical
case. If we found that the old case cannot be cited for a
hypothetical case, we attack the argument by pointing out
unstableness of its case citation.

1 Introduction

Case-Based Reasoning (CBR) is well known as a very power-
ful reasoning mechanism in legal domain. One of important
tasks in CBR is to retrieve an appropriate case for a given
new case(problem) from a case-base. Inappropriate retrieval
will make the reasoning result unreliable. Especially, this
point becomes serious in a case-based legal argumentation
system such as Hypo[l].

Given a new case to be decided, such a system tries to

Pemrission to make digital/hard copy of all or par~ of this work for personal or
ckwroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of
lhe publication and its data appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish. to post on senws or
to redistribute to lists, requires prior specific permission andlor fee.

ICAIL-97, Melbourne, Australia 0 1997 ACM o-89791-924
6l97/06.$3.50

190

construct an argument A, for a side s (plaintiff or dcfcndaut)
by I)citing an old case that shares some legal factors with
the new case and 2)applying the conclusion of the cited CMC
to the new one in the expectation that similar cases would
have the same conclusion. For the argument Ao, an oppo-
nent side s’ tries to attack it by pointing out some weakness
in A, and constructs a counter argument A,/ for the side.
Therefore, if an old case is inappropriately cited for the side
s, the case citation can be viewed as a weakness in the ar-
gument A, and will become a subject to bc attacked by
the opponent side s’. Giving attention to this aspect, this
paper tries to formalize such an attack of argument. That
is, we propose a computational method of attacking a legal
argument by refuting its case citation.

For this purpose, we introduce a notion of stability of
case citation. Our basic idea of stability is based OIL the
following reasonable requirement:

Assume we have constructed an argument for a
new case cneu, by citing an old case c,ld. The
old case Cold should be cited, whenever we try to
construct an argument for a case that is simmilar*
to Cnew-

Let us assume that for a case c’,,~ similar to cnewr another
old case cL,d is cited. It is implied that although cneul and
I cnew are similar, we might have different conclusions for

them. In the worst case, these conclusions might contra-
dict each other. Therefore, arguments based on such C~SC
citations are considered unreliable.

A coherent case citation satisfying the above requirement
is said to be stable. In this paper, we try to attack an ar-
gument from the viewpoint of stability of its case citation.
Especially, we investigate this kind of attack in a Hypo ??-
like case-based legal argumentation system.

In such a system, if an old case cold shares some lc@
factors with a given new case hneu., Cold is considered to to
on-point to cnew and becomes a candidate to be cited for
he=,. Intuitively speaking, this kind of case citation consid-
ers the shared legal factors to be important in order for a
side to win. Among the candidates, a case that maximally

shares legal factors 1 is actuahy cited as a most-on-point one

to Cnctr. 1n order to attack an argument based on this kind
of case citation, we try to examine its stability. If the case
citation is not stable, we attack the argument by pointing
out its unstableness.

Let us assume that for a new case c,,eu,. an argument for
a side s has been constructed by citing an old case cord as a
most-on-point one to Cncu., where a set of legal factors F, is
shared in both cases. For the examination of the stability,
we need to obtain a set of cases that are similar to cneu,.
As mentioned above, in the case citation, F, is considered
to be important in order for the side s to win. In other
word, the case citation is made by focusing on F,. As many
researchers have pointed out, similarity highly depends on
our viewpoint, purpose or contezt. In order to obtain cases
similar to cncutr therefore, we should take a similarity from
the viewpoint of F, into account. That is, we try to find
similarity depending on the viewpoint of FS that is impor-
tant for s to win. We can find such a similarity with the
help of Goal-Dependent Abstraction (GDA, for short) [g].

GDA is au algorithm for finding an appropriate similar-
ity between sort concepts depending on a viewpoint (goal)
on which we are focusing. That is, we find an appropri-
ate similarity for the shared factors F, by GDA. Based on
the similarity, a set of cases similar to cneur is created hy-
pothetically. For each hypothetical similar case, we examine
whether the old case cold can be cited as a most-on-point
one. If we found a hypothetical similar case chew for which
another old case &d favorable to the opponent side s’ can
be cited as a most-on-point one, the argument is attacked
with a claim:

Although c;,, is similar to ~~~ from the view-
point of F, that is important for the side s to
win, c&j cannot be cited as a most-on point one
to c’,,,. Another old case cLld having an oppo-
site conclusion is most-on-point to ck,, and can
construct a counter argument that is favorable
to the opponent side s’. Therefore, the case cita-
tion focusing on F, is not adequate for deciding
Gzm.

It should be emphasized that although this paper inves-
tigates a method for attacking an argument by examining
the stability of its case citation, use of the stability is not
limited to that purpose. The stability can be used as a crite-
rion for case citation. That is, if we have several candidates
of case citations, we would prefer a stable one to the others.

2 Preliminaries

We introduce in this section some terminologies.
We are assumed to have two kinds of predicates, fac-

tual and legal predicates. Factual predicates axe used to
represent a raw case. Therefore, they also contain general
(commonly-used) concepts or relations that are not specific
to legal domain. For example, we consider predicates such

as carnu&er(toyota) and employed-by(tom, toyota) to
be factual ones. Given a set of factual predicates. we dis-
tinguish predicates denoting sort concepts from the others.
In the above example. car_maker(toyota) would be distin-
guished from employed-by(tom, toyota), since the former
denotes a sort concept and the latter a relation. Predicate
symbols denoting sort concepts are simply called sort sym-
bols. For example. car-maker is a sort symbol.

On the other hand, legal predicates are used to repre-
sent a legal case. Therefore, they contain only concepts
or relations that are specific to legal domain. Each legal
predicate is assumed to be propositional and is called a le-
gal factor. For example, predicates (propositions) such as
disclosureinmegotiations and secret-disclosed-outsider
used in H-ypo[l] are legal factors.

We have a knowledge-base in order to relate factual pred-
icates with legal factors. A knowledge-base consists of Horn-
rules that are of the form

H cB1 A-*-h& (n 2 9,

where H is a legal factor or a factual predicate and B; is a
factual predicate. We call H the conclusion and Bi a premise
of the rule. For a rule R, its conclusion and premises are
denoted by cone(R) and pre(R), respectively. Intuitively
speaking, our knowledge-base can be viewed as a variation
of Dimension Knowledge in Hypo[l].

As mentioned above, we deal with two types of cases, raw
and legal cases. A raw cuse is represented as a set of ground
factual predicates. Each raw case c has its corresponding
legal case denoted by legal(c). More formally speaking, the
legal case is defined as

legal(c) = {f] f is a legal factor such that c U K:L3 I- j},

where XL3 is a knowledge-base. In a word, the legal case is
the set of legal factors that hold in the raw case.

3 Constructing Legal Arguments Based on Claim Lattice

In this section, we discuss how a legal argument can be con-
structed in a Hypo-like legal argumentation system.

Given a new case to be decided, such a system constructs
a legal argument for a side (plaintiff or defendant) with the
help of claim lattice. Based on the claim lattice, an old
case is first retrieved as a most-on-point one to the new
case. Then a legal argument is constructed by applying the
conclusion of the old case to the new case.

3.1 Case-Base

A case-base is a collection of precedents. Each precedent is
represented by a triple of a legal case, an identifier (name) of
the case and a side (?;:plaintiff or &defendant) that won in
the case. For example, a precedent recording that a plaintiff
w won in a legal case C whose identifier is I, is represented
by (I, C, w). The identifier of C is often referred as id(C).

‘The underlying ordering is based on set-inclusion.

191

3.2 Claim Lattice

Given a new case to be decided, a claim lattice is constructed
in order to make a decision for the new case. The claim
lattice is used to select an old legal caSe (precedent) to be
cited for the decision. We discuss here ho%* we construct a
claim lattice for a new case.

Let c,,eu, be a new caSe to be decided, CL3 be a case-base
and K:L3 be a knowledge-base. In this paper. each new cese
is assumed to be a raw case. A claim lattice is a directed
acyclic graph. In the lattice, we have a special node JVO (root
node) which contains the legal case of G,~#, that is?

Zegal(cno) = {f 1 f is a legal factor
such that c,,eW U]cL? I- f}.

Any other node Xi contains a set of legal factors (denoted
by LF(I\‘i)) and a set of identifiers of legal cases with their
sides (denoted by lD(Xi)) in CU. In a word, the node Ari
can be viewed as the collection of old cases each of which ez-
actly shares the legal factors LF(Xi) with iegal(G.,). More
formally speaking: for each (non-root) node Ari: LF(l\‘i) and
lD(Ari) satisfy the following conditions:

I. Each case identifier in ID(Ki) can be found in CB.

2. For any case identifiers id(G) and id(&) in ID(Ki),

ZegaZ(ch,,) n Cl = legal n C2 = LF(Aii) (# 4).

. Foi any two node Mi and Xj?:if =LF(Ari) > LF(A’j),
then a directed edge from nii to h-j is made. Thus, we can
construct a claim lattice for a given new case.

3.3 On-Pointness of Cases

Based on a claim lattice for a new case: we can retrieve an
old case that is most-on-point to the new case according to
a side on which we are.

Let cnc,,. be a new case to be decided and C be a legal
case in a case-base. If C shares some legal factors with the
legal case of Cneu. (that is, legal(G,,.)). then C is said to be
on-point to cneu.. More precisely speaking. the set of legal
cases that are on-point to the new case. denoted as OP,,,,,
are defined as follows:

OP~n,u = {C 1 (id(C).C.s) E CD and legal(c,,,)nC # 6,).

where CZ3 is a case-base and .s is either s or 6. Intuitively
speaking. OP,,,,. is the set of legal cases that are relevant
to cnr,,. in the sense that some legal factors are shared with
IcpZ(c,,,.). For two cases Cl and C’s in OP,,,,.. if (Cl fl
legal(c,,,.)) c (CZ rl legal(cncW)). then Cs is said to be
more-on-point than Cr.

According to the on-pointness. the set of most-on-point
cases. denoted as dj

AfOP,,,, = {C

3P,,,,.. is defined as

C E OP,,,,. and
there is no C’ in OP,,,,.
that is more-on-point than C}.

For a new case IZ,,~,,.. the identifier of each case on-point to
hcW is contained in a claim lattice for the new case and
others are never. hforeover, the identifier of each most-on-
point case can be found in nodes in the lattice that are
immediately connected to the root node.

3.4 Legal Argument Based on Most-On-Point Case

With the help of claim lattice, we can construct a legal ar-
gument for a new case according to a side on which WC are,

A claim lattice for a new case cncw is firstly constructed.
Then an argument for cneW that is favorable to a side s is
obtained by citing an old case Cord from MOP,,,, in which
the side s won and applying the conclusion of Cold to cncW.
Let us assume that legal(cnew) and Cold exactly share a set
of legal factors F,. It is claimed in the argument that

Since the new case c,,, can be considered similar
to the old case C& in the sense that they share
F,: &eW would have the same conclusion as Cold
has.

In the next section, we propose a method for attaching
a legal argument obtained in such a manner.

4 Attacking Legal Argument by Examining Stability of
Case Citation

Let us assume that a legal argument for a new cesc c,,ew
has been obtained by citing an old case C&. Constructions
of legal arguments in case-based manner are carried out in
the expectation that similar cases would have the same con-
clusion. Therefore, if we try to CoXlStNCt ~9 argument for
another new case &,,. that is similar to c,,eWr the argument
for chcW should be obtained by citing the same cld case
C old. A citation of another old case implies that although
, c,,c,,, and cncu, are similar, we might have different cxrclu-

sjons for them. In the worst case, these conclusions might
contradict each other. Therefore, the authors consider thnt
stability (coherence) of case citation should be taken into
account in order to obtain strong (reliable) arguments, In
other words, an argument based on unstable case citatien
csrr be attacked by pointing out the unstableness of ULSC ci.
tation. In this section. we present a computational method
for attacking arguments from the viewpoint of stability of
case citation.

4.1 Stability of Case Citation

We present here a formal definition of stability of uuc citn-
tion.

Definition 1 (Stability of Case Citation)
Let us assume that a side s has constructed a 1ega.l argument
for a new case c,,eu. by Citing an old case Cold as a most-on-
point one to cncU.. The citation of Cold is said to be stable

ifffor each case CL,,,. similar to cncU.. the side s can cite the
old case C&j as a most-on-point one a.5 well. H

192

In order to attack a legal argument for a new case that
an opponent constructed. we try to examine whether its case
citation is stable or not. If we found that the citation is not
stable. then it becomes a subject to be pointed out in at-
tacking the argument. For the examination, we need to fmd
a set of cases that are similar to the new case. Such simi-
lar cases can be obtained with the help of Goal-Dependent
Abstraction.

4.2 Examining Stability of Case Citation with GDA

Vie discuss here how we examine stability of case citation.
Before precise discussions, we present a framework of Goal-
Dependent Abstraction (GDA, for short) that plays a very
important role for the e--nation.

4.2.1 GDA : Goal-Dependent Abstraction

GDA [5] is an algorithm for finding appropriate similarities
between sort concepts according to a view-point. Be-fore giv-
ing a formal definition of appropriate similarity for a view-
point, it would be helpful for the reader to provide its basic
idea with a simple example.

Basic Idea:

Let us assume that we have the following legal rules:

“Male whose age is above twenty is permitted smoking.”

“Female whose age is above twenty is permitted smoking.”

“Female whose age is above .&teen is permitted mam.age. P

In the rules, “male” and UfemaIe’: are sort concepts. From
the rules, we know that a person whose age is above twenty
can be permitted smoking irrespective of sex. In other words,
we do not have to recognize any difference between sort con-
cepts kmaleV and “female7 when we consider “permission
of smoking”. In this sense. we can consider that Umale”
and -female” are similar each other. In other words, this
similarity can be considered appropriate when we consider
*permi.kon of smo~+zg~.

On the other hand. when we consider Gpermission of
marriage”. we need to distinguish sort concepts “maid and
-female-. Female whose age is above sixteen can be permit-
ted marriage. while male whose age is above sixteen cannot
be so ‘. In this sense. we cannot consi’der that “male” and
“female- arc similar. although such a similarity seems to be
appropriate when we consider “permission of smoking”.

Thus our appropriateness of similarity highly depends
on a subject (viewpoint) wc are considering. Such a dy-
namic asprrt of similarity is reflected in our framework of
GDA. Given a subject we try to consider. our GDA algorithm
computes an appropriate similarity for the subject. In the
framework. a subject is represented in fact as a goal to be
proved. Below we forma& discuss the framework of GDA.

2A~~~~~I/~. male canwl be permilred marriage in Japan. unless his
age 15 ahovr eighteen.

193

Sort Mapping:

We first need to introduce a notion of sort mapping that
represents a similarity between sort concepts.

Let S be a set of predicate s-ymbols that denote sort con-
cepts. Such predicate symbols are simply called sort sym-
bols. A mapping 9 : S w S’ is a sort mapping, where S’ is
a set of sort symbols not appearing in S- A sort mapping
can easily be extended to a mapping between two first-order
languages, 9 : L I+ L’, where the sets of sort symbols in L
and L’ are S and S’, respectively, and any non-sort s-ymbol
is mapped into itself under 9. Any expressions El and &
are said to be similar under y if v(-&) = 9(&). Therefore,
a sort mapping can be viewed as a representation of similar-
ity between sort concepts. In what follows, the terms “sort
mapping” and “similarity are used to give the same mean-
ing. Moreover, for an expression E’, p-’ (E’) is defined as
{E 1 p(E) = E’}. That is, p-‘(E’) can be viewed as a class
of similar expressions.

For example, let us consider Horn-rules

permitted-smoking(X) +
male(X) A above-twenty(X) and

permittedsmoking +
female(X) A above-twenty(X),

where male and female are sort symbols. If male and f tie
are similar under a sort mapping v, that is, cp(mtie) =
cp(female) = cr: the two rules are mapped into the same
rule

permittedsmoking + a(X) A above-twenty(X)

under q, Furthermore, the rules are said to be similar under
P-

Abstraction Based on Sort Mapping:

The abstraction framework of Tenenberg [2] is used as the
basis of our GDA. So we introduce here the abstraction
framework. Exactly speaking, a modified version of Tenen-
berg’s framework is presented.

Let 9 : L w L’ be a sort mapping and T be a set of Hom-
clauses in L. Assume that Rs is the set of rules and Fs is
the set of facts in T. We can transform T into an abstract
Horn-clause set according to the following definition.

Definition 2 (Soti.Lib)
Sort.4bs,(T) defined as follows is called an abstract Hom-
clause set of T based on 9:

SdrtAbs,(T) = zlbsRuks,(Rs) u =ibsFa&,(Fs).

where

AbsRulesJRs) = {p(R) I R E Rs and
for each Bs E F-‘(~(pre(R))).
there exists H E u-‘(y(conc(R)))
such that Rs I- H - Bs} and

AbsFads,(Fs) = {9(F) I F E Fs}. n

Intuitively speaking. p(R) can be contained in AbsRules,(Rs),
if each rule similar to R under p is provable from T.

Example 1
Let us assume we have the follon-ing set of Horn-clauses T:

T = { permittedsmoking +
male(X) A above-twenty(X),

permitted-smoking(X) +
female(X) A above-twenty(X),

permitted-marriage(X) -
female(X) A abovesixteen(

male(jolm).
above-tventy(john),
f emale(mary).
abovesixteen(maq)):

where male and female are sort symbols. Furthermore. let
9 be a sort mapping such that v(male) = p(female) = ct.
Based on the mapping. we can obtain the following abstract
Horn-clause set:

SorfAbs,(T) = { permitted-smoking(X) +
a(X)Aabove-tventy(X),

a(john).
above-tuenty(john).
4maryh
abovesixteen(mary)).

It should be noted that the rule R

permitted-marriage(X) t female(X) A abovesixteen

has no corresponding abstract rule. The reason is that a
rule similar to R. that is.

permittedmarriage + male(X) A above-sixteen(X),

is not provable from the rule set of T. II

In general. thus. given a sort mapping y and a Horn-
&use set T. a part ojrules in T can be abstracted under v
to construct the abstract rule set. As mentioned above, for
a rule R. if all rules similar to R under y are provable from
T. the rule can be abstracted. In other words. existence of
an abstract rule R’ guarantees existence of ail similar rules
that are mapped into R’ under q. Thus. rules that can be
abstracted are dependent on a sort mapping (similarity) we
provide beforehand. This observation has motivated us to
propose CDA.

Appropriate Similarity between Sort Symbols:

Let T be a Horn-clause set. G be a pro\zblc goal (not sort
lncdicates) from IT and 9 be a sort mapping. Further-
morr assume T can bc divided into the rule set Rs and
the fact set Fa. From Definition 2. if G(G) is provable from
Sort=lhsJT). WC can obscrvc the following fact:

For each fact set Fs’ such that 9(Fs) = p(F.5’).
the goal G is pro\ablc from RV U Fs’.

194

For each of sorts SI and ~2, if the same property (or
relation) holds, human beings often consider that sr and 9s
are similar from the Gwpoint of the property. The above
obsenation reflects such a natural aspect of similarity. That
is, n*e would be able to find some similarity between sorts
in Fs and Fs’ from the viewpoint of G. Therefore, the
authors consider that y is an appropriate similarity for the
goal G. Given a goal to be proved and a Horn-clause set,
our GDA algorithm computes such an appropriate similarity
(sort mapping) between sort symbols for the goal.

Our appropriateness of similarity for a given goal is for-
mally defined as follows.

Definition 3 (Appropriate Similarity for Goal)
Let T be a set of Horn-clause, Rs be the rule set of T, G be
a provable goal (not sort predicates) and TX(G) be a proof-
tree of G from T. If the following condition holds, a sort
mapping (similarity between sort symbols) +CJ is said to be
appropriate for G:

p(Rules(G)) C AbsRules,(Rs),

where Rules(G) is the set of rules in Rs that are used in
7&). n

Example 2
Let us consider again the Horn-clause set T and the simi-
larity 9 in Example 1. The similarity q is appropriate for
a goal permitted-smoking(X). since each rule used to prove
the goal can be abstracted based on C,Z On the other hand, ‘p
is not appropriate for anotha goal permittedmarriaga(X),
since the rule

permittedmarriage 6
female(X) A above-sixteen(X)

necessary to prove the goal cannot be abstracted based on
the similarity. It should be emphasized that this result
matches the appropriateness that we have intuitively ex-
plained before. n

4.2.2 Finding Similarity by GDA : Shared Legal Factors os
Goal for GDA

Let cncv be a new caSe to be decided. Assume that by con-
structing a claim lattice for cnCu.. an old case GoId has heen
cited for a side s (opponent side) as a most-on-point one to
c,,eW. where Go/d shares the set of legal factors LF with the
legal case legal(c,,,.). In the case citation. LF is considered
to be important in order for s to win. That is. the oppo-
nent is focusing on LF in the citation. As many researchers
have pointed out. similarities should bc dependent on our
viewpoint. purpose or context. Since we try to examine the
stability of opponent’s case citation by using cases similar
to c*c”.. we should tahe a similarity into account from the
viewpoint of LF on which the opponent focused in the ci-
tation. Thercforc. w find an appropriatr similarit,v for LF
by GDA.

More precisely spcahing. wc compute a similarity as fol-
lows. Let AZ3 1~ a knowledge-base. At first. a proof-tree of

LF from KB U c,,~~. is constructed. Then: we identify the
set of rules in XX, denoted by Rules(LF), that are used in
the proof-tree. From Definition 3: au appropriate similarity
9 for LF satisk the following condition:

y(Rutes(LF)) E AbsRutes,(KB).

GDA computes such a similarity by a generate-and-test strat-
egy. That is. candidates for similarities (sort mappings) are
generated and then tested for their appropriateness accord-
ing to the above condition. It should be noted that in order
to prune useless candidate generations, GDA adopts a prun-
ing method. More precise descriptions of GDA algorithm
can be found in the literatures [3: 51.

4.2.3 Creating Hypothetical Similar Cases

Let us assume that we obtained an appropriate similarity
p by GDA according to the above procedure. Based on the
similarity. we can hypothetically create a set of cases similar
to the new case c,,cW in order to examine the stability of
case citation.

The set of hypothetical similar cases HypoSim,(~,,)
is formally defined as

HypoSim,(c,,,) = v-‘(cp(Cnc~))\tG~l~

n-here ti\V denotes the set-difference operator. It should be
noted that each constant symbolin there E aypoSin~,(c,,~,)
denotes some hypothetical object.

As stated previously. for each hypothetical similar case
I c,,,, the legal factors LF -for which 9 was computed can

be derived from ck,, U XL% That is: each hypothetical case
shares at least the legal factors with the old case cited in the
opponent’s case citation.

4.2.4 Examining Stability of Case Citation

Created the set of hypothetical similar case HypoSim,(~,,),
we construct a claim lattice for each ck,, E HypoSim,(~,,).
Based on the claim lattice, then, we examine whether the
old case Cord that the opponent cited for c,,ew can be cited as
a most-on-point one to d,,, for the opponent’s side. If Ccl,+
can be cited as a most-on-point one to each h.ypothetical
case. the opponent’s case citation can be considered stable.
If not so. the citation is considered unstable and becomes a
subjrrt to br refuted in attacking the opponent’s argument.

4.3 Attacking Legal Argument by Refuting Case Citation

Let us assume that for a new case cneW. a legal argument for
au opponent side has been constructed by citing au old case
Cold as a most-on-point one to cnc,,.. where the set of shared
legal factors is LF. According to the procedures explained
previously. WC can examine the stability of case citation.
If WC found the citation is unstable. we try to attach the
opponent’s argument by refutiug the case citation.

.4ssumc that for a hypothetical similar case 4,,? Cold
cannot br cited as a most-on-point one. This means that
thcrc exists another old case CA,, that is more-on-point to

, c,,, than Co/d. For such a CL,d, we have the following two
possibilities:

l CA,,+ is favorable to the opponent side.

l Ci,d is favorable to our side.

In the former, although the opponent’s case citation is
unstable, pointing out the unstableness would not be ef-
fective in attaching opponent’s argument. Because an ar-
gument that is favorable to the opponent side can be con-
structed in the end. That is, unstableness in the former case
does not seem so convincing.

On the other hand, in the latter, we can strongly attach
the opponent’s argument since although c&, is similar to
ketr, an argument favorable to our side can be constructed
for ck,,. Such an argument for ck., would be considered as
a counter argument to the opponent’s. It should be empha-
sized here that &,, was created hypothetically based on the
similarity that was obtained from the viewpoint of the legal
factors on which the opponent focused in his/her argument
construction. Therefore, we take unstableness only in the
latter case into account to attach the opponent’s argument.

In the examination of stability, if we find a hypothetical
similar case cLeu for which we cau construct an argument
favorable to our side by citing an old case C&d more-on-
point than C&d: we attach the opponent’s argument with a
claim:

Although G,, and d,, are similar from the
viewpoint of F, that is important for the oppo-
nent to win, Cold cannot be cited as a most-on
point one to f$,,. Another old case CA,, having
an opposite conclusion is most-on-point to c’,,,
and can construct a counter argument that is fa-
vorable to our side. Therefore, the opponent’s
citation focusing on F. is not adequate for de-
ciding c,,,,.

4.4 Illustration of Argument Attack

Let us assume that we have a knowledge-base KB aud a
case-base CB shown in Figure 1 3- The hnowledge base is
represented as Prolog-rules. For example, a Prolog-rule of
the form

q(X) : -P1 w, * - - : PII@)

is interpreted as a Horn-rule of the form

q(X) + Pl (XI) A -. * A PIm

In the figure, propositional predicates are legal factors aud
others arc factual predicates, where we consider company,
car-maker. car-dealer and bank to be sort symbols. That
is. our GDA tries to find a similarity between these s.ym-
bols. Furthermore. ?; and 5 denote the sides of plaintiff and
defendant. respectively.

-4ssume that wc are given the following new (raw) case
cnc,,. to be decided:

3They were partly borrowed from [I].

195

KB :

non_disclosureagreement:-
company(X),side(X,r),company(Y),side(Y,~),
made-asecret(X,T),brought(T.X,Y),
enteredintosondisclosure-agrement(Y,X,T).

secret-disclose&outsider:-

/ compauy(X),side(X,x).outsider(Y,X),
I made-asecret(X,T).brought(T.X.Y).
t
/
1

securitysleasure : -
company(X),hassecuritysystm(X).

! competitive-advantage-gained:-
i compaay(X). side(X, r). company(Y), side(Y, 61,

brought-to(T,X,Y),advantage-gained(Y.T).
I

disclosureinsegotiations:-
1 company(X),side(X.r).company(Y). side(Y.61,

made-asecret(Z,X),hadnegotiation(X,Y,X),
i I brought(Z,X,Y).

{
I vertical&nouledge:-

company(X).side(X,n)~company(Y),side(X.6),
I made-asecret(Z,X),verticalinformation(Z),

brought(Z,X,Y).
t
I verticalinformation : -

1 bank(X),made-asecrete(Y.X).

! compally(x) : -caunaker(X).

company(X): -car-dealer(X).

company(X): -bank(X).

cl3 :
z

(AutomatecLSystema,

*I

{disclosure-in-negotiations,
vertical~ouledge},6)

(SpaceA eru,
{securitysleasure.competitiveadvantage-gained,
disclosure-innegotiations},a)

(Hea&. {secreLdiscloseLoutsider}.6)

Figure 1: A knowledge-base and a case-base

Cnev = { crurmaker(tyt). side(tyt. 7;).
car-maker(nsn). side(nsn. 6)
carrmaker(hnd). ontsider(tyt.hnd)t
madeasecret(info. tyt).
brought(info. tyt.nsn).
bronght(info. tyt.lmd).
hadnegotiation(tyt. nsn. info).
non-disclosure-agreement(nsn, tyt. info) }

For the new case. its corresponding legal case tegat(~,,) is

leya!(c,,,,) = { disclosureinmegotiations:
secret-disclosed-outsider.
non-disclosure-agreement).

For the legal case. wc can obtain the claim lattice shown in
Figure 2. Based on the lattice. the plaintiff r cites Space4ero
CZLSC as a most-on-point one to the new case. 11-e try to refute
this case citation from the defendant side 6.

Figure 2: Claim lattice for a new case

Figure 3: claim lattice for a hypothetical similar case

In the case citation, the legal factor

disclosnreinmegotiationo

is considered to be important for ‘IT to win. Therefore, by
considering the factor as a goal, GDA computes a similarity
that is appropriate for the factor. In this case, a similarity
9 such that

y(car-maker) = cp(car-dealer) = cp(bank)

can be obtained. Based on the similarity, let us consider the
following hypothetical case CL,, similar to cnccu.

I c,,, = { ban.k(tyt): side(ty& r),
car-dealer(nsn). side(nen, S),
car-dealer(hnd). ontsider(tyt, hnd),
made-e-secret(info, tyt),
bronght(inf 0: tyt, nsn),
bronght(info. tyt. hnd),
hadmegotiation(tyt. rum. infoi),
non-disclosure-agreement(nsn, tyt, info))

Figure 3 shows the claim lattice constructed for this hg-
pathetical case. Based on the claim lattice, the defendant
side can refute the plaintiff’s case citation with the following
claim:

Although cnc,,. and cheu. are similar from the
viewpoint of the legal factor diocloouro~ogotiotiono
that is important for the plaintiff to win. SpaccAero
case cannot be cited as a most-on point one to

I c,,,,.. Another old case AutomatedJystems hav-
ing an opposite conclusion is most-on-point to
I cmeU. and cau construct a counter argument that

is favorable to the defendant side. Therefore,

the plaintips case citation focusing on the legal
factor disclosnreinnegotiations is not ade-
quate for deciding the new case hew-

5 Discussion

Also iu Hypo [l]. hypothetical variations of a current case
are mated. &-PO’s variations are created by adding some
legal factors to the current case. It should be noted that
cas,m in Hype is a legal case in our sense. AS illustrated
in the pr&ous section. our creation of hypothetical simi-
lar ran’ case often yields a hypothetical legal case including
some additional legal factors. Therefore, it would be con-
sidered that our creation of hypotheticals is closely related
to &JO’s one. However, their purposes are quite different.
In Hype. the purpose of creating hypotheticals is to show
how certain variations could strengthen or weaken legal ar-
guments for a side. More concretely? Hype creates hypothet-
ic& in order to show which legal factors could strengthen
or weaken the side. On the other hand, our creation of hy-
pothetic& is for the examination of the stability of oppo-
nent’s case citation. We emphasize here that in our creation
of hypothetic&, some additional legal factors are yielded
side-efiectiuely, rvhile in Hype% one, some legal factors are
added by Hypo itself intentionally.

Our knowledge-base in this paper is assumed to be a set
of Horn-rules in nhich no negations are appeared. However,
allowing negations in knowledge-base would be desired to
represent more practical legal knowledge. As well known, we
have two types of negations in the first-order logic, cla.rsical
(logical) negation and negation as failure (NAF). The cur-
rent GDA would be able to deal with a knowledge-base with
classical negations by a slight modification, since the under-
lying Tenenberg’s abstraction framework has been proposed
for such a knowledge-base [2]. In order to deal with NAF,
however. further investigation on GDA should be made. It
has currently been under studying.

6 Concluding Remarks

In this paper. we formalized a computational method for
attacking a legal argument by refuting its case citation. Al-
though several ways of argument attack have been investi-
gated. WC newly proposed to attack from the viewpoint of
stability of case citation. Since our basic idea of stability
is based on a reasonable requirement. the authors expect
that the notion of stability would widely be accepted. In
order to examine stability of case citation. we create a hy-
pothetical similar cases with the help of GDA. Our GDA is
an useful algorithm for finding a similarity depending on a
viewpoint. We would be able to use GDA in many legal
reasoning systems. Since similarity plays a very important
role in legal domain. some mechanism for computationally
dealing with similarity is highly desired to construct useful
systems. GDA can be used as the basis of such a powerful
mechanism. Some applications of GDA to analogical legal
reasoning has been investigated in (3. 41.

It should be emphasized that although this paper inves-
tigated a method for attacking an argument from the view-
point of the stability of its case citation, use of the stability
is not limited to that purpose. It can be used in general as a
criterion for case citation in Case-Based Reasoning systems.
That is, when we have several candidates of case citation:
we prefer a stable one to the others.

The work in this paper is the first step in constructing
a legal argumentation system with GDA. Since our method
was investigated in a restricted Hypo-like system, integrat-
ing the method into the original Hypo would be desired as
the next step. By such au integration, we believe strongly
that Heypo would become a more powerful and useful case-
based legal argumentation system.

Acknowledgments

The authors would like to thank anonymous referees for their
very helpful comments and suggestions.

References ,

PI

PI

131

PI

PI

Kevin D. Ashley, “Modeling Legal Argument : Rea-
soning with Cases and Hypothetical?, The MIT Press,
1990.

Josh D. Tenenberg, “Abstracting First-Order Theo-
ries”, Change of Representation and Inductive Bias
(D-Paul Benjamin ed.), Kluwer Academic Publishers,
pp.6i-79, 1989.

T. Kakuta, M. Haraguchi and Y. Okubo, “A Goal-
Dependent Abstraction for Legal Reasoning by Anal-
o&, Artificial Intelligence and Law, Kluwer Academic
Publishers, 1997 (in printing).

T. Kakuta. M. Haraguchi and Y. Okubo, =Legal
Reasoning by Structural Analogy Based on Goal-
Dependent Abstraction”, Proceedings of the Ninth In-
ternational Conference on Legal Knowledge-Based Sys-
tems - JURIX’SG: Tilburg University Press, pp.lll-
121,1996.

Y. Okubo and M. Haraguchi. ‘Constructing Predicate
hfappings for Goal-Dependent Abstraction”, Proceed-
ings of the Fifth International Workshop on Algorith-
mic Learning Theory (ALT’94), Lecture Note in Artiii-
cial Intelligence 872. Springer-Verlag, pp.516531% 1994.

197

