Attacking Legal Argument by Examining Stability of Case Citation
with Goal-Dependent Abstraction

Yoshiaki OKUBO and Makoto HARAGUCHI
Division of Electronics and Information Engineering
Hokkaido University
N-13 W-8, Sapporo 060, JAPAN
TEL: 481-11-706-7261
FAX: +81-11-706-7808
E-mail : {yoshiaki, makoto}@db.huee.hokudai.ac.jp

Abstract

This paper proposes a computational method of attacking
a case-based legal argument in a Hypo[l]-like system. For
this purpose, we introduce a notion of stability of case ci-
tation. Our basic idea of stability is based on a reasonable
requirement: if an old case is cited for a new case, the old
case should be cited for each case similar to the new case
as well. If a case citation satisfies the requirement, then the
citation is said to be stable. We propose in this paper a com-
putational method for attacking a legal argument from the
viewpoint of stability of case citation. In order to examine
whether a case citation is stable or not, we need to obtain
cases similar to the new case. These are obtained with the
help of Goal-Dependent Abstraction (GDA [5]). GDAis an al-
gorithm for finding appropriate similarity between sort con-
cepts according to our viewpoint. Based on the similarity
found by GDA, we hypothetically create a set of cases similar
to the new case. Then, each hypothetical case is examined
whether we can cite the same old case for the hypothetical
case. If we found that the old case cannot be cited for a
hypothetical case, we attack the argument by pointing out
unstableness of its case citation.

1 Introduction

Case-Based Reasoning (CBR) is well known as a very power-
ful reasoning mechanism in legal domain. One of important
tasks in CBR is to retrieve an appropriate case for a given
new case(problem) from a case-base. Inappropriate retrieval
will make the reasoning result unrelicble. Especially, this
point becomes serious in a case-based legel argumentation
system such as Hypo[1].

Given a new case to be decided, such a system tries to

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of
the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or fee.

ICAIL-97, Melbourne, Australia © 1997 ACM 0-89791-924-
6/97/06.$3.50

190

construct an argument A, for a side s (plaintiff or defendant)
by 1)citing an old case that shares some legal factors with
the new case and 2)applying the conclusion of the cited case
to the new one in the expectation that similar cases would
have the same conclusion. For the argument A,, an oppo-
nent side s’ tries to attack it by pointing out some weakness
in As and constructs a counter argument A,/ for the side.
Therefore, if an old case is inappropriately cited for the side
s, the case citation can be viewed as a weakness in the ar-
gument A, and will become a subject to be attacked by
the opponent side s'. Giving attention to this aspect, this
paper tries to formalize such an attack of argument. That
is, we propose a computational method of attacking a legal
argument by refuting its case citation.

For this purpose, we introduce a notion of stabilily of
case citation. Our basic idea of stability is based on the
following reasonable requirement:

Assume we have constructed an argument for a
New case Cpew DY citing an old case coa. The
old case c,1a should be cited, whenever we try to
construct an argument for a case that is similar
to Crew-

Let us assume that for a case ¢}, similar to cnew, another
old case cl;4 is cited. It is implied that although cnew and
Chew are similar, we might have different conclusions for
them. In the worst case, these conclusions might contra-
dict each other. Therefore, arguments based on such case
citations are considered unreliable.

A coherent case citation satisfying the above requircment
is said to be stable. In this paper, we try to attack an ar-
gument from the viewpoint of stability of its case citation,
Especially, we investigate this kind of attack in a Hypo 77-
like case-based legal argumentation system.

In such a system, if an old case c,14 shares some legal
factors with a given new case tnew, Cold is considered to be
on-point t0 Cnew and becomes a candidate to be cited for
Cnew. Intuitively speaking, this kind of case citation consid-
ers the shared legal factors to be important in order for a
side to win. Among the candidates, a case that maximally



shares legal factors ! is actually cited as a most-on-point one
t6 Cnew. In order to attack an argument based on this kind
of case citation, we try to examine its stability. If the case
citation is not stable, we attack the argument by pointing
out its unstableness.

Let us assume that for a new case Cnpew. an argument for
a side s has been constructed by citing an old case co1q4 as a
most-on-point one to ¢ncw, Where a set of legal factors Fs is
shared in both cases. For the examination of the stability,
we need to obtain a set of cases that are similar to Cnew-
As mentioned above, in the case citation, F; is considered
to be important in order for the side s to win. In other
word, the case citation is made by focusing on F;. As many
researchers have pointed out, similarity highly depends on
our viewpoini, purpose or contezi. In order to obtain cases
similar to Cnew, therefore, we should take a similarity from
the viewpoint of F; into account. That is, we try to find
similarity depending on the viewpoint of F; that is impor-
tant for s to win. We can find such a similarity with the
help of Goal-Dependent Abstraction (GDA, for short) [5].

GDA is au algorithm for finding an appropriate similar-
ity between sort concepts depending on a viewpoint (goal)
on which we are focusing. That is, we find an appropri-
ate similarity for the shared factors F; by GDA. Based on
the similarity, a set of cases similar to cpew is created hy-
pothetically. For each hypothetical similar case, we examine
whether the old case c,1¢ can be cited as a most-on-point
one. If we found a hypothetical similar case ¢}, for which
another old case c,;; favorable to the opponent side s' can
be cited as a most-on-point one, the argument is attacked
with a claim:

Although ... is similar to cpew from the view-
point of F, that is important for the side s to
win, ¢,14 cannot be cited as a most-on point one
to chew- Another old case ¢y, having an oppo-
site conclusion is most-on-point to ¢}, and can
construct a counter argument that is favorable
to the opponent side s'. Therefore, the case cita-
tion focusing on F; is not adequate for deciding

Chew-

It should be emphasized that although this paper inves-
tigates a method for attacking an argument by examining
the stability of its case citation, use of the stability is not
limited to that purpose. The stability can be used as a crite-
rion for case citation. That is, if we have several candidates
of case citations, we would prefer a stable one to the others.

2 Preliminaries

We introduce in this section some terminologies.

We are assumed to have two kinds of predicates, fac-
tual and legal predicates. Factual predicates are used to
represent a raw case. Therefore, they also contain general
(commonly-used) concepts or relations that are not specific
to legal domain. For example, we consider predicates such

1The underlying ordering is based on set-inclusion.

191

as car_maker(toyota) and employed.by(tom, toyota) to
be factual ones. Given a set of factual predicates. we dis-
tinguish predicates denoting sort concepis from the others.
In the above example. car_maker(toyota) would be distin-
guished from employed_by(tom, toyota), since the former
denotes a sort concept and the latter a relation. Predicate
symbols denoting sort concepts are simply called sort sym-
bols. For example. car_maker is a sort symbol.

On the other hand, legal predicates are used to repre-
sent a legal case. Therefore, they contain only concepts
or relations that are specific to legal domain. Each legal
predicate is assumed to be propositional and is called a le-
gal factor. For example, predicates (propositions) such as
disclosure_in negotiations and secret.disclosed.outsider
used in Hypo[l] are legal factors.

We have a knowledge-base in order to relate factual pred-
icates with legal factors. A knowledge-base consists of Horn-
rules that are of the form

He~BiA---ABx (n2>1),

where H is a legal factor or a factual predicate and B; is a
factual predicate. We call H the conclusionand B; a premise
of the rule. For a rule R, its conclusion and premises are
denoted by conc(R) and pre(R), respectively. Intuitively
speaking, our knowledge-base can be viewed as a variation
of Dimension Knowledge in Hypo[1].

As mentioned above, we deal with two types of cases, raw
and legal cases. A raw case is represented as a set of ground
factual predicates. Each raw case ¢ has its corresponding
legal case denoted by legal(c). More formally speaking, the
legal case is defined as

legal(c) = {f | f is a legal factor such that cUKB I f},

where KB is a knowledge-base. In a word, the legal case is
the set of legal factors that hold in the raw case.

3 Constructing Legal Arguments Based on Claim Lattice

In this section, we discuss how a legal argument can be con-
structed in a Hypo-like legal argumentation system.

Given a new case to be decided, such a system constructs
a legal argument for a side (plaintiff or defendant) with the
help of claim lattice. Based on the claim lattice, an old
case is first retrieved as a most-on-poini one to the new
case. Then a legal argument is constructed by applying the
conclusion of the old case to the new case.

3.1 Case-Base

A case-base is a collection of precedents. Each precedent is
represented by a triple of a legal case, an identifier (name) of
the case and a side (:plaintiff or §:defendant) that won in
the case. For example, a precedent recording that a plaintiff
% won in a legal case C' whose identifier is I, is represented
by (I,C,x). The identifier of C is often referred as id(C).



3.2 Claim Lattice

Given a new case to be decided, a claim lattice is constructed
in order to make a decision for the new case. The claim
lattice is used to select an old legal case (precedent) to be
cited for the decision. We discuss here how we construct a
claim lattice for a new case.

Let cnew be a new case to be decided, CB be a case-base
and KB be a knowledge-base. In this paper. each new case
is assumed to be a raw case. A claim lattice is a directed
acyclic graph. In the lattice, wehavea special node Ng (root
node) which contains the legal case of cpew, that is,

legal(cnew) = {f | f is a legal factor
Such that Cnew U KB i- f}.

Any other node N; contains a set of legal factors (denoted
by LF(NN;)) and a set of identifiers of legal cases with their
sides (denoted by ID(X;)) in CB. In a word, the node N;
can be viewed as the collection of old cases each of which ez-
actly shares the legal factors LF(N;) with legal(cnew). More
formally speaking, for each (non-root) node N;, LF(N;) and
ID(N;) satisfy the following conditions:

1. Each case identifier in ID(N;) can be found in CB.
2. For any case identifiers id(C; ) and id(C2) in ID(N;),
legal(caew) N C1 = legal(cnew) NC2 = LE(N;) (F ¢)-

* For any two node N; and Ny:.if -LF(N:) O LE(Nj),
then a directed edge from N; to N; is made. Thus, we can
construct a claim lattice for a given new case.

3.3 On-Pointness of Cases

Based on a claim lattice for a new case, we can retrieve an
old case that is most-on-point to the new case according to
a side on which we are.

Let Cpew be a new case to be decided and C be a legal
case in a case-base. If C shares some legal factors with the
legal case of cqey (that is, legal(cnew)). then C is said to be
on-point to Cnew. More precisely speaking. the set of legal
cases that are on-point to the new case. denoted as OF,,.,,,
are defined as follows:

OP,

Cneu

= {C | (id(C)-C. s) € CB and legal{cne )NC # 6}.

where CB is a case-base and s is either # or é. Intuitively
speaking, OF,,.,. is the set of legal cases that are relevant
t0 Cnew in the sense that some legal factors are shared with
legal(cnew). For two cases Cy and Ca in OF,.,. i (C1 N
legal(Cnew)) C (Ca Nlegal(cnew)). then Ca is said to be
more-on-point than Cj.

According to the on-pointness. the set of most-on-point
cases. denoted as MOPF.,,,.. is defined as

MOP.,. . ={C|Ce€OF,., and
there is no C' in OF,,.,.
that is more-on-point than C}.

192

For a new case Cpcuw. the identifier of each case on-point to
Cnew is contained in a claim lattice for the new case and
others are never. Moreover, the identifier of each most-on-
point case can be found in nodes in the lattice that are
immediately connected to the root node.

3.4 Legal Argument Based on Most-On-Point Case

With the help of claim lattice, we can construct a legal ar-
gument for a new case according to a side on which we are.

A claim lattice for a new case cn.y is firstly constructed.
Then an argument for cnew that is favorable to a side s is
obtained by citing an old case Cotg from MOP.,, , in which
the side s won and applying the conclusion of Cyiy to cpee.
Let us assume that legal(cnew) and Coia exactly share n set
of legal factors F;. It is claimed in the argument that

Since the new case ¢pe. can be considered similar
to the old case Coq in the sense that they share
F, cnew would have the same conclusion as Cya
has.

In the next section, we propose a method for attacking
a legal argument obtained in such a manner.

4 Attacking Legal Argument by Examining Stability of
Case Citation

Let us assume that a legal argument for a new case cpey
has been obtained by citing an old case Coiq. Constructions
of legal arguments in case-based manner are carried out in
the expectation that similar cases would have the same con-
clusion. Therefore, if we try to construct an argument for
another new case ch,.,- that is similar to cnew, the argument
for ch.. should be obtained by citing the same dd case
Cota- A citation of another old case implies that although
Chew 20d Cnew are similar, we might have different conclu-
sions for them. In the worst case, these conclusions might
contradict each other. Therefore, the authors consider that
stability (coherence) of case citation should be taken nto
account in order to obtain strong (reliable) arguments. In
other words, an argument based on unstable case citation
can be attacked by pointing out the unstableness of case ci.
tation. In this section. we present a computational method
for attacking arguments from the viewpoint of stability of
case citation.

4.1 Stability of Case Citation

We present here a formal definition of stebility of case cita-
tion.

Definition 1 (Stability of Case Citation)

Let us assume that a side s has constructed a legal argument
for a new case cnew by citing an old case Cy1q4 as a most-on-
point one to ¢new- The citation of Coy is said to be stable
iff for cach case ¢, similar to cncow. the side s can cite the
old case C,1q as a most-on-point one as well,. =



In order to attack a legal argument for a new case that
an opponent constructed. we try to examine whether its case
citation is stable or not. If we found that the citation is not
stable. then it becomes a subject to be pointed out in at-
tacking the argument. For the examination, we need to find
a set of cases that are similar to the new case. Such simi-
lar cases can be obtained with the help of Goal-Dependent
Abstraction.

4.2 Examining Stability of Case Citation with GDA

We discuss here how we examine stability of case citation.
Before precise discussions, we present a framework of Goal-
Dependent Absiraction (GDA, for short) that plays a very
important role for the examination.

4.2.1 GDA : Goal-Dependent Abstraction

GDA [3] is an algorithm for finding eppropriate similarities
between sort concepts according fo a viewpoini. Before giv-
ing a formal definition of appropriate similarity for a view-
point, it would be helpful for the reader to provide its basic
idea with a simple example.

Basic Idea:

Let us assume that we have the following legal rules:
“Male whose age is above twenty is permitted smoking.”
“Female whose age 1s above twenty i3 permilted smoking.”
“Female whose age s above sizteen i3 permitted marriage.”

In the rules, “male” and “female” are sort concepts. From
the rules, we know that a person whose age is above twenty
can be permitted smoking irrespective of sex. In other words,
we do not have to recognize any difference between sort con-
cepts “male” and “female” when we consider “permission
of amoking”. In this sense. we can consider that “male”
and “female” are similar each other. In other words, this
similarity can be considered appropriate when we consider
“permission of smoking”.

On the other hand. when we consider “permission of
marrigge” . we need to distinguish sort concepts “male” and
~femalc”. Female whose age is above sixteen can be permit-
ted marriage. while male whose age is above sixteen cannot
be so 2. In this sense. we cannot consider that “male” and
~female” arc similar. although such a similarity seems to be
appropriate when we consider “permission of smoking”.

Thus our appropriateness of similarity highly depends
on a subject (viewpoint) we are considering. Such a dy-
namic aspect of similarity is reflected in our framework of
GDA. Given a subject we try to consider. our GDA algorithm
computes an appropriate similarity for the subject. In the
framework. a subject is represented in fact as a goal to be
proved. Below we formally discuss the framework of GDA.

3 . - . -
“Actually. male cannot be permitied marriage in Japan. unless his
age 15 above eighteen.

193

Sort Mapping:

We first need to introduce a notion of sort maepping that
represents a similarity between sort concepts.

Let S be a set of predicate symbols that denote sort con-
cepts. Such predicate symbols are simply called sort sym-
bols. A mapping ¢ : S+ S’ is a sort mapping, where §' is
a set of sort symbols not appearing in S. A sort mapping
can easily be extended to a mapping between two first-order
langunages, ¢ : L — L', where the sets of sort symbols in L
and L' are S and S', respectively, and any non-sort symbol
is mapped into itself under ¢. Any expressions E; and E»
are said to be similar under ¢ if ¢ (E)) = ¢(E2). Therefore,
a sort mapping can be viewed as a representation of similar-
ity between sort concepts. In what follows, the terms “sort
mapping” and “similarity” are used to give the same mean-
ing. Moreover, for an expression E', ¢~!(E') is defined as
{E | ¢(E) = E'}. That is, ¢"1(E’) can be viewed as a class
of similar expressions.

For example, let us consider Horn-rules

permitted_smoking(X) «

male(X) A above_twenty(X) and

permitted_smoking(X) ~—
female(X) A above_twventy(X),

where male and female are sort symbols. Ifmale and female
are similar under a sort mapping ¢, that is, p(male) =

p(female) = a, the two rules are mapped into the same
rule

permitted._smoking(X) « a(X) A above_twenty(X)

under ¢. Furthermore, the rules are said to be similar under
.

Abstraction Based on Sort Mapping:

The abstraction framework of Tenenberg [2] is used as the
basis of our GDA. So we introduce here the abstraction
framework. Exactly speaking, a modified version of Tenen-
berg’s framework is presented.

Let ¢ : L = L' be a sort mapping and T be a set of Horn-
clauses in L. Assume that Rs is the set of rules and Fs is
the set of facts in T. We can transform T into an abstract
Horn-clause set according to the following definition.

Definition 2 (SortAbs)
SortAbs,(T) defined as follows js called an abstract Horn-
clause set of T based on ¢:

SortAbs,(T) = AbsRules,(Rs) U AbsFacts,(Fs).

where

AbsRules:(Rs) = {z(R) | R € Rs and
for cach Bs € ¢~ (¢s(pre(R))).
there exists H € ¢~ ((conc(R)))
such that Rs H — Bs}  and

AbsFacts (Fs)={z(F)| F€Fs}. W



Intuitively speaking. (o(R) can be contained in AbsRules,(Rs),
if each rule similar to R under ¢ is provable from T.

Example 1
Let us assume we have the following set of Horn-clauses T

T = { permitted_smoking(X) —

male(X) A above_twenty(X),
permitted_smoking(X) +

female(X) A above.twenty(X),
permitted marriage(X) —

female(X) A above_sixteen(X).
male(john).
above_twenty(john),
female(mary).
above_sixteen(mary) },

where male and female are sort symbols. Furthermore. let
¢ be a sort mapping such that ¢(male) = p(female) = a.
Based on the mapping, we can obtain the following abstract
Horn-clause set:

SortAbs ,(T) = { permitted.smoking(X) «
a(X) A above_tventy(X),
a(john).
above_twenty(john).
a(mary),
above_sixteen(mary) }.

It should be noted that the rule R
permitted marriage(X) «— female(X) A above.sixteen(X)

has no corresponding abstract rule. The reason is that a
rule similar to R. that is.

permitted marriage(X) — male(X) A above_sixteen(X),
is not provable from the rule set of 7. 1

In general. thus. given a sort mapping ¢ and a Horn-
clause set T. a part of rules in T can be abstracted under ¢
to construct the abstract rule set. As mentioned above, for
arule R. if all rules similar to R under - are provable from
T. the rule can be abstracted. In other words. existence of
an abstract rule R' guarantees existence of all similar rules
that are mapped into R’ under -. Thus. rules that can be
abstracted are dependent on a sort mapping (similarity) we
provide beforehand. This observation has motivated us to
proposc GDA.

Appropriate Similarity between Sort Symbols:

Let T be a Horu-clause set. G be a provable goal (not sort
predicates) from T and  be a sort mapping. Further-
more assume I can be divided into the rule set Rs and
the fact set Fs. From Definition 2. if 5(G) is provable from
SortAbs -(T). we can observe the following fact:

For cach fact set Fs' such that o(Fs) = o(Fs').
the goal G is provable from RsU Fs'.

194

For each of sorts s1 and sz, if the same property (or
relation) holds, human beings often consider that s1 and sa
are similar from the viewpoint of the property. The above
observation reflects such a natural aspect of similarity, That
is, we would be able to find some similarity between sorts
in Fs and Fs' from the viewpoint of G. Therefore, the
authors consider that ¢ is an appropriate similarity for the
goal G. Given a goal to be proved and a Horn-clause set,
our GDA algorithm computes such an appropriate similarity
(sort mapping) between sort symbols for the goal.

Our appropriateness of similarity for a given goal is for-
mally defined as follows.

Definition 3 (Appropriate Similarity for Goal)

Let T be a set of Horn-clause, Rs be the rule set of T, G be
a provable goal (not sort predicates) and 7z (G) be a proof-
tree of G from T. If the following condition holds, a sort
mapping (similarity between sort symbols) ¢ is said to be
appropriate for G:

?(Rules(G)) C AbsRules,(Rs),

where Rules(G) is the set of rules in Rs that are used in
T=(G). W

Example 2

Let us consider again the Horn-clause set T and the simi-
larity ¢ in Example 1. The similarity ¢ is appropriate for
a goal permitted_smoking(X), since each rule used to prove
the goal can be abstracted based on . On the other hand, ¢
is not appropriate for another goal permitted marriage(X),
since the rule

permitted marriage(X) —
female(X) A above.sixteen(X)

necessary to prove the goal cannot be abstracted based on
the similarity. It should be emphasized that this result
matches the appropriateness that we have intuitively ex-
plained before. H

4.2.2 Finding Similarity by GDA : Shared Legal Factors as
Goal for GDA

Let cncw be a new case to be decided. Assume that by con-
structing a claim lattice for cnew. an old case Coq has been
cited for a side s (opponent side) as 2 most-on-point one to
Cnew. where Corq shares the set of legal factors LF with the
legal case legal(cpev- ). In the case citation. LF is considered
to be important in order for s to win. That is. the oppo-
nent is focusing on LF in the citation. As many researchers
have pointed out. similarities should be dependent on our
viewpoint. purpose or context. Since we try to examine the
stability of opponent’s case citation by using cases similar
tO Cnew. we should take a similarity into account from the
viewpoint of LF on which the opponent focused in the ci-
tation. Thercfore. we find an appropriate similarity for LF
by GDA.

More precisely speaking. we compute a similarity as fol-
lows. Let KB be a knowledge-basc. At first. a proof-tree of



LF from KB U cueu is constructed. Then, we identify the
set of rules in KB, denoted by Rules(LF), that are used in
the proof-tree. From Definition 3, an appropriate similarity

i8¢ proQl-1rce, IIQLL LJCRIRRLE o, & Pyt

¢ for LF satisfies the following condition:
#(Rules(LF)) C AbsRules,(KB).

GDA computes such a similarity by a generate-and-test strat-
egy. That is. candidates for similarities (sort mappings) are

generated and then tested for their appropriateness accord-

ing to the above condition. It should be noted that in order
to prune useless candidate generations, GDA adopts a prun-
ing method. More precise descriptions of GDA algorithm
can be found in the literatures [3, 5).

4.2.3 Creating Hypothetical Similar Cases

Let us assume that we obtained an appropriate similarity
w by GDA according to the above procedure. Based on the
similarity. we can hypothetically create a set of cases similar
to the new case Cqew in order to examine the stability of
case citation.

The set of hypothetical similar cases HypoSim,(cnew)
is formally defined as

HypoSimy(cnew) = ‘P-_l(‘P(Cncw))\{cncw}a

where “\” denotes the set-difference operator. It should be
noted that each constant symbolin ¢}, € HypoSimy(cnew)
denotes some hypothetical object.

As stated previously. for each hypothetical similar case
Chew- the legal factors LF for which ¢ was computed can
be derived from c... UXB. That is, each hypothetical case
shares at least the legal factors with the old case cited in the
opponent’s case citation.

4.2.4 Examining Stability of Case Citation

Created the set of hypothetical similar case HypoSim,{cnew ).
we construct a claim lattice for each ;... € HypoSimy(cnew ).

Based on the claim lattice, then, we examine whether the
old case C,1q that the opponent cited for ¢new can be cited as
a most-on-point one to ¢}, for the opponent’s side. If Co1a
can be cited as a most-on-point one to each hypothetical
case. the opponent’s case citation can be considered stable.
If not so. the citation is considered unstable and becomes a
subject to be refuted in attacking the opponent’s argument.

4.3 Attacking Legal Argument by Refuting Case Citation

Let us assume that for a new case cpew. a legal argument for
an opponent side has been constructed by citing an old case
Cotd as 2 most-on-point one to Cnew. Where the set of shared
legal factors is LF. According to the procedures explained
previously. we can examine the stability of case citation.
If we found the citation is unstable. we try to attack the
opponcent’s argument by refuting the case citation.

Assume that for a hypothetical similar case ¢je; Cotd
cannot be cited as a most-on-point one. This means that
there cxists another old case Cl;y that is more-on-point to

195

Chew than Coud. For such a C)y, we have the following two
possibilities:

o (.4 is favorable to the opponent side.

e C},4 is favorable to our side.

In the former, although the opponent’s case citation is
unstable, pointing out the unstableness would not be ef-
fective in attacking opponent’s argument. Because an ar-
gument that is favorable to the opponent side can be con-
structed in the end. That is, unstableness in the former case
does not seem so convincing.

On the other hand, in the latter, we can strongly attack
the opponent’s argument since although c,.,, is similar to
cnm, an a.rgument favorable to our side can be constructed
for c,.,cw Such an d.lgument for c,,w, wotuld be considered as
a counter argument to the opponent’s. It should be empha-
sized here that )., was created hypothetically based on the
similarity that was obtained from the viewpoint of the legal
factors on which the opponent focused in his/her argument
construction. Therefore, we take unstableness only in the
latter case into account to attack the opponent’s argument.

In the examination of stability, if we find a hypothetical
similar case Cpe,, for which we can construct an argument
favorable to our side by citing an old case C.;; more-on-
point than C,i4, we attack the opponent’s argument with a
claim:

Although cnewr and .., are similar from the
viewpoint of F, that is important for the oppo-
nent to win, Coia cannot be cited as 2 most-on
point one to cpe... Another old case Cj;y having
an opposite conclusion is most-on-point to ch .y
and can construct a counter argument that is fa-
vorable to our side. Therefore, the opponent’s
citation focusing on F, is not adequate for de-
ciding cpew-

4.4 [lustration of Argument Attack

Let us assume that we have a knowledge-base XB and a
case-base CB shown in Figure 1 3. The knowledge base is
represented as Prolog-rules. For example, a Prolog-rule of
the form

q(X) : =p1(X),...,pn(X)

is interpreted as a Horn-rule of the form

q(X) ~ p1 (X} A--- A pa(X).

In the figure, propositional predicates are legal factors and
others are factual predicates, where we consider company,
car.maker. car.dealer and bank to be sort symbols. That
is. our GDA tries to find a similarity between these sym-
bols. Furthermore. 7 and & denote the sides of plaintiff and
defendant. respectively.

Assume that we are given the following new (raw) case
Cnewr to be decided:

3They were partly borrowed from [1].



KB:

CB:

non.disclosure._agreement : —
company(X), side(X, 7), company(Y), side(Y,§),
made.a.secret(X, T), brought(T.X,Y),
entered_into_non disclosure_agreement(Y,X,T).

secret.disclosed.outsider : —
company(X),side(X, 7). outsider(Y,X),
made.a.secret(X, T). brought(T.X.Y).

security.measure : —
company(X), has_security.system(X).
competitive_advantage.gained: —
company(X), side(X, 7), company(Y), side(Y,§),
brought.to(T, X, Y), advantage.gained(Y, T).
disclosure_in.negotiations : —
company(X), side(X. 7). company(Y), side(Y.§),
made.a_secret(Z,X),had negotiation(X,Y,Z),
brought(Z,X, Y).
vertical knowledge : —
company(X).side(X, ), company(Y), side(X.4),
made.a.secret(Z, X), vertical_information(Z),
brought(Z,X,Y).
vertical_information(Y): —
bank(X),made_a_secrete(Y,X).

company(X) : —~car.maker(X).
company(X) : —car_dealer(X).
company(X) : —bank(X).

(Automated_Systems,
{disclosure.in negotiations,
vertical knowledge}, §)

(Space_Aero,
{security measure. competitive.advantage.gained,
disclosure_in.negotiations}, x)

( Healy. {secret_disclosed_outsider}. §)

Figure 1: A knowledge-base and a case-base

Cnew = { car.maker(tyt).side(tyt.x).

car.maker(nsn). side(nsn. &),
car.maker(hnd). outsider(tyt.hnd),
made.a_secret{info. tyt).

brought(info. tyt.nsn).

brought(info. tyt.hnd).
had_negotiation(tyt.nsn.info).
non.disclosure_agreement(nsn,tyt.info) }

For the new case. its corresponding legal case legal{cnew) is

legal(¢new) = { disclosure_in.negotiations,
secret.disclosed_outsider.
non_disclosure_agreement }.

disclosure_in_negotiations

Automated_Systems :dsfendant
Space_Aero : plaintff

Giew?

disclosure_in_nsgotiations
sacret_disclosed_outsider
non_disclosure_sagreesent

secrat_disclosed_cutsider

Healy : defendant

Figure 2: Claim lattice for a new case

disclosure_in_negotistions
westical nowiedge of foclosmurs in pegttations
= d, Svsiems : Sefestasy Spoce_Acro rptaiee!
:;;alcuanltlm
secTet_Sisclosed_outsider
bon_41scloecre_agresmeat
vertical_knowledge

weczet_disclosed outsliber
Healy ; defencany

Figure 3: claim lattice for a hypothetical similar case

In the case citation, the legal factor
disclosure.in.negotiations

is considered to be important for 7 to win. Therefore, by
considering the factor as a goal, GDA computes a similarity
that is appropriate for the factor. In this case, a similarity
¢ such that :

(car.maker) = p(car_dealer) = ¢(bank)

can be obtained. Based on the similarity, let us consider the
following hypothetical case ¢l similar to cqeqw.

Cnew = { bank(tyt), side(tyt, =),
car_dealer(nsn). side(nsn, §),
car_dealer(hnd). outsider(tyt, hnd),
made_a_secret(info, tyt),
brought(info. tyt,nsn),
brought(info. tyt. hnd),
had_negotiation(tyt.nsn,infol),
non.disclosure.agreement(nsn, tyt,info) }

Figure 3 shows the claim lattice constructed for this hy-
pothetical case. Based on the claim lattice, the defendant
side can refute the plaintiff's case citation with the following
claim:

Although ¢ueo and cj., axe similar from the
viewpoint of the legal factor disclosurc.in.nogotintions
that is important for the plaintiff to win. Space.Aero
case cannot be cited as a most-on point onc to

For the legal case. we can obtain the claim lattice shown in

Figure 2. Based on the lattice. the plaintiff 7 cites Space_Aero
casc as a most-on-point one to the new case. We try to refute

this case citation from the dcfendant side 4.

196

Chew- Another old case Automated_Systems hav-
ing an opposite conclusion it most-on-point to
¢hew and can construct a counter argument that
is favorable to the defendant side. Therefore,



the plaintiff’s case citation focusing on the legal
factor disclosure_in_negotiations is not ade-
quate for deciding the new case Cnew-.

5 Discussion

Also in Hypo [1]. hypothetical variations of a current case
are created. Hypo's variations are created by adding some
legal factors to the current case. It should be noted that
cases in Hypo is a legal case in our semse. As illustrated
in the previous section. our creation of hypothetical simi-
lar raw case often yields a hypothetical legal case including
some additional legal factors. Therefore, it would be con-
sidered that our creation of hypotheticals is closely related
to Hypo's one. However, their purposes are quite different.
In Hypo. the purpose of creating hypotheticals is to show
how certain variations could strengthen or weaken legal ar-
guments for a side. More concretely, Hype creates hypothet-
icals in order to show which legal factors could strengthen
or weaken the side. On the other hand, our creation of hy-
potheticals is for the examination of the stability of oppo-
nent’s case citation. We emphasize here that in our creation
of hypotheticals, some additional legal factors are yielded
side-effectively, while in Hypo’s one, some legal factors are
added by Hypo itself intentionally.

Our knowledge-base in this paper is assumed to be a set
of Horn-rules in which no negations are appeared. However,
allowing negations in knowledge-base would be desired to
represent more practical legal knowledge. As well known, we
have two types of negations in the first-order logic, classical
(logical) negation and negation as failure (NAF). The cur-
rent GDA would be able to deal with a knowledge-base with
classical negations by a slight modification, since the under-
lying Tenenberg's abstraction framework has been proposed
for such a knowledge-base [2]. In order to deal with NAF,
however. further investigation on GDA should be made. It
has currently been under studying.

6 Concluding Remarks

In this paper. we formalized a computational method for
attacking a legal argument by refuting its case citation. Al-
though several ways of argument attack have been investi-
gated. we newly proposed to attack from the viewpoint of
stability of case citation. Since our basic idea of stability
is based on a reasonable requirement. the authors expect
that the notion of stability would widely be accepted. In
order to examine stability of case citation. we create a hy-
pothetical similar cases with the help of GDA. Our GDA is
an useful algorithm for finding a similarity depending on a
viewpoint. We would be able to use GDA in many legal
reasoning systems. Since similarity plays a very important
role in legal domain. some mechanism for computationally
dealing with similarity is highly desired to construct useful
systems. GDA can be used as the basis of such a powerful
mechanism. Some applications of GDA to analogical legal
reasoning has been investigated in (3. 4].

197

It should be emphasized that although this paper inves-
tigated a method for attacking an argument from the view-
point of the stability of its case citation, use of the stability
is not limited to that purpose. It can be used in generalas a
criterion for case citation in Case-Based Reasoning systems.
That is, when we have several candidates of case citation,
we prefer a stable one to the others.

The work in this paper is the first step in constructing
a legal argumentation system with GDA. Since our method
was investigated in a restricted Hypo-like system, integrat-
ing the method into the original Hypo would be desired as
the next step. By such an integration, we believe strongly
that Hypo would become a more powerful and useful case-
based legal argumentation system.

Acknowledgments

The anthors would like to thank anonymous referees for their
very helpful comments and suggestions.

References

[1] Kevin D. Ashley, “Modeling Legal Argument : Rea-
soning with Cases and Hypotheticals”, The MIT Press,
1990.

[2) Josh D. Tenenberg, “Abstracting First-Order Theo-
ries”, Change of Representation and Inductive Bias
(D.Paul Benjamin, ed.), Kluwer Academic Publishers,
pp-67-79, 1989.

[3] T. Kakuta, M. Haraguchi and Y. Okubo, “A Goal-
Dependent Abstraction for Legal Reasoning by Anal-
ogy”, Artificial Intelligence and Law, Kluwer Academic
Publishers, 1997 (in printing).

f4] T. Kakuta. M. Haraguchi and Y. Okubo, “Legal
Reasoning by Structural Analogy Based on Goal-
Dependent Abstraction”, Proceedings of the Ninth In-
ternational Conference on Legal Knowledge-Based Sys-
tems — JURIX’96, Tilburg University Press, pp.111-
121, 1996.

[5] Y. Okubo and M. Baraguchi. “Constructing Predicate

Mappings for Goal-Dependent Abstraction”, Proceed-

ings of the Fifth International Workshop on Algorith-

mic Learning Theory (ALT’94), Lecture Note in Artifi-

cial Intelligence 872. Springer-Verlag, pp.516-531, 1994.



