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ABSTRACT
We propose a formal and executable framework for expressing pro-
tocols and strategies for automated (legal) negotiation. In this frame-
work a party involved in a negotiation is represented through a
software agent composed of four modules: (i) a communication
module which manages the interaction with the other agents; (ii) a
control module; (iii) a reasoning module specified as a defeasible
theory; and (iv) a knowledge base which bridges the control and the
reasoning modules, while keeping track of past decisions and inter-
actions. The choice of defeasible logic is justified against a set of
desirable criteria for negotiation automation languages. Moreover,
the suitability of the framework is illustrated through two case stud-
ies.
Keywords. Automated Legal Negotiation, Auctions, Defeasible
Logic, Software Agents.

1. INTRODUCTION
What is legal negotiation? With negotiation we mean a process

involving at least two parties aimed at reaching an agreement that
is acceptable by the parties involved. In this perspective a legal ne-
gotiation is either a negotiation about legal content or a negotiation
where legal issues have to be taken into account.

Legal negotiations are by far more common than one might ex-
pect. For example any agreement can be conceived as a form of
private contract, and contracts are subject to the current (relevant)
legislation. Moreover, there are several kinds of negotiation and
some of them are typical of legal areas (for example pleading, cf.
[10]) while others are more frequent in economics, commerce and
related fields, but, in the end, even these cases have to be considered
with a normative eye.

In addition to affecting its content, legal issues can also affect
the negotiation process on itself. Indeed, any negotiation is guided
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by a protocol, which describes the rules of the dispute, that is, how
the parties exchange their offers, and how and when the negotiation
can go on or terminate. Protocols can themselves be seen as agree-
ments, that can take the form of a contract, and are thereby subject
to law. Thus, for example, an auction is a one-to-many negotiation
governed by the rules of the auction itself. In public auctions the
rules (procedures) are established by law (cf., for example the arti-
cles 576 and 581 of the Italian Code of Civil Procedure), while pri-
vate auctions are self-regulated: the auction house states the rules
under which the auction will be conducted (yet, these rules are sub-
ject to the law).

It should be clear that one of the main normative aspects of nego-
tiation concerns the definition of the protocols (rules) under which
negotiations are carried out.

Negotiation protocols can be classified into one-to-one (e.g., bar-
gaining, divorce), one-to-many (e.g., tenders, English auction), and
many-to-many (double auctions) [35]. This classification can be
further refined depending on whether the negotiation is carried out
in a single step (i.e., sealed-bid auctions), or iteratively (open-cry
auctions). Figure 1 provides a classification schema that captures
these two dimensions.
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Figure 1: Taxonomy of negotiation protocols

Other classification dimensions orthogonal to the above ones in-
clude:

� Single issue vs. multiple issues. Legal negotiations often in-
volve several interdependent issues. Auctions involving mul-
tiple items [30] or multiple units of an item are another ex-
ample of multiple-issue negotiations.

� Direct vs. mediated. A mediator is a neutral party (e.g., a
judge in a pleading), as opposed to a representative of one
of the parties (e.g., a lawyer). Legal negotiations are often
mediated.
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� Anonymous vs. identity-open. Auction houses often carry
out anonymous or at least semi-anonymous auctions.

This brief overview shows that protocols are manifold; it would
thus be difficult, if not impossible, to capture all of them in a sin-
gle universal framework. Still, we believe that a logic-based ap-
proach could cope easily with most of them. Moreover, this same
kind of approach could be used to specify the behaviour of the par-
ties involved in a negotiation, that is, their strategies. Interestingly,
expressing both the protocols and the strategies in a logic-based
framework, makes it possible to reason about their internal and
their mutual consistencies.

With this motivation, this paper aims at assessing the feasibility
and suitability of a logic-based approach to legal negotiation, and
to develop a framework for specifying protocols and strategies in
this setting.

The paper is organised as follows: in Section 2 we introduce
a list of desiderata that an automated negotiation system should
satisfy (Section 2.1) and we describe an agent based architecture
for such systems (Section 2.2). In Section 2.3 we defend Defeasible
Logic against the desiderata of Section 2.1, and then we introduce
Defeasible Logic formally (Section 3). In Section 4 we develop
two case studies in order to illustrate how the framework works.
We conclude the paper with a discussion on related work (Section
5) and directions for future research (Section 6).

2. RATIONALE AND APPROACH

2.1 Desiderata
Before choosing one or several languages for the specification of

protocols and strategies for automated negotiation, it is important
to establish a set of criteria that such languages need to satisfy. The
criteria presented below are inspired from those formulated by [15]
in the context of techniques for information modelling. They en-
compass several well-known principles of language design.

Firstly, a language for specifying negotiation protocols and
strategies needs to beformal, in the sense that its syntax and its
semantics should be properly defined. This ensures that the proto-
cols and strategies can be interpreted unambiguously (both by ma-
chines and human beings) and that they are bothpredictableand
explainable. In addition, a formal foundation is a prerequisite for
verification or validation purposes.

Secondly, a language for negotiation automation should becon-
ceptual. This, following the well-knownConceptualization Princi-
ple of [13], effectively means that the language should allow their
users to focus only and exclusively on aspects related to negotia-
tion, without having to deal with any aspects related to their imple-
mentation. As stated in [13], examples of conceptually irrelevant
aspects are e.g. aspects of (external or internal) data representation,
physical data organisation and access, as well as all aspects related
to platform heterogeneity (e.g., message-passing formats).

Thirdly, in order to ease the interpretation of protocols and strate-
gies and to facilitate their documentation, the language should be
comprehensible. Comprehensibility can be achieved by ensuring
that formal and intuitive meaning are as much in line as possi-
ble, and by offering structuring mechanisms (e.g., decomposition).
These structuring mechanisms often lead tomodularity, which in
our setting means that a slight modification to a protocol or strat-
egy should concern only a specific part of its specification. Closely
related to its comprehensibility, the language that we aim for should
besuitable, that is, it should offer concepts close to those involved
in negotiation. It is worth noting that the suitability criterion is
content dependent and it can be specialised in several sub-fields ac-

cording to the nature of the phenomenon at hand and the aim of the
intended modelling.

As we are interested in the actual execution of the negotiation
process, the negotiation automation language should beexecutable.
Furthermore, in the setting of an open environment such as the In-
ternet, the execution of the language expressions should exhibit ac-
ceptable performances even for complex strategies involving many
issues, and for a great number of participants (i.e., the execution
performances should bescalable).

Finally, a negotiation automation language should be sufficiently
expressive, that is, it should be able to precisely capture all the ex-
isting negotiation protocols, as well as a wide spectrum of negotia-
tion strategies.

2.2 Architecture
Following a classical agent-based approach to automated nego-

tiation, we view a negotiation process as a set of software agents
which interact in order to reach an agreement. Agents participating
in a negotiation can interact directly in the case of one-to-one nego-
tiation, or through a mediator (or broker) in the case of a multi-party
negotiation. The mediator may itself be considered as a software
agent guided by a set of rules.

Following an abstract architecture for agents with memory pro-
posed in [34] and other previous work, each of the software agents
is composed of four modules:

1. A communication module responsible of receiving and send-
ing messages to the other agents, while ensuring that these
messages satisfy the constraints imposed by the protocol.

2. A memory which contains the history of the past decisions
and interactions of the agent, including its current intentions.

3. A reasoning module which encodes the decision-making part
of the agent.

4. A control module which coordinates the interactions between
all the other modules.

In the remainder, we choose to express the control and the rea-
soning modules of an agent as defeasible theories, and conse-
quently the memory as a knowledge base of strict and defeasible
facts. This choice is defended in the next subsection. In this paper,
we do not address the issue of designing the communication mod-
ule. Still, we believe that defeasible logic could be also applied to
this end. Indeed, one of the roles of the communication module is
to check that the incoming and outgoing messages conform with
the protocol. Hence, if the protocol is specified as a set of strict and
defeasible rules, these rules can be used to derive a partial specifi-
cation of the communication module.

A negotiation is a discussion between parties for the purpose of
reaching an agreement (cf., for example, [6]). This suggests rep-
resenting a negotiation as a dialogue between parties, this dialogue
is articulated in progressive stages, where the parties make offers,
reject or accept offers, or propose counter-offers. In the context of
a negotiation involving two parties –let us call them the Proponent
and the Opponent– the architecture can be depicted as in Figure 2.

A bilateral negotiation is therefore modeled through three se-
quences of defeasible theories. The first sequence records the evo-
lution of the protocol, while the second and the third theories are
used to store the knowledge bases or defeasible theories (DT) of
the two parties. Graphically, a bilateral negotiation can be depicted
as follows
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Figure 2: System architecture for bilateral negotiation
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Under this model, we can think of at least four kinds of negotiation
strategies.

� Single fixed theory: a party uses a single defeasible theory
through the whole negotiation, which is evaluated using new
data that becomes available during the negotiation.

� Fixed sequence of theories; here a party fixes a sequence of
theories for the whole negotiation.

� Parameterised theories: a party defines a set of rules that can
be triggered or modified according to the stage of the negoti-
ation.

� Revision of theories: a party modifies the actual theory from
stage to stage according to the result of the previous stage.

In the case studies presented in section 4, a single fixed theory
approach is used.

Information privacy is an important aspect of a negotiation. As
long as the protocol allows it, the parties do not have to disclose
every piece of information they have. Thus, we partition the defea-
sible theory of a party into two parts: the public part, whose conclu-
sions have to be disclosed to the other party, and a private part. The
Proponent computes its theory obtaining a set of conclusions and
the public conclusions are passed to the Opponent through the com-
munication modules of the parties. The Opponent then uses these
facts to supplement its knowledge base, and re-computes its theory.
According to the result of this last computation we can have three
possible results: the Opponent accepts the Proponents offer and
the negotiation is terminated successfully; the Opponent rejects the
Proponents offer, makes a counter offer and the negotiation is con-
tinued (i.e., we pass to the next stage); or the Opponent rejects the
offer, but the two parties cannot converge on an agreement so there
is no point in negotiating, and the negotiation is terminated with a
failure.

In the context of legal bilateral negotiation, we have to consider
also external rules, for example laws regulating the trade at hand
or the rules of negotiation, thus the we have to define the legal out-
come, where each agent has to consider not only its own knowledge
base but it has to take into account also the defeasible theory corre-
sponding to the relevant jurisprudence. It is worth noting that legal
issues have to be considered at two levels. They can and must be
involved in the negotiation phase (e.g., in the evaluation of the of-
fers and counteroffers); and subsequently, they are used to verify
the legality and validity of the reached agreement.

The above architecture is also applicable for multi-party nego-
tiations, where there are one or several sellers, and one or several
buyers. In this setting, the architecture can be depicted as in Fig-
ure 3.

Seller Agent

Defeasible Rules

Knowledge Base

Control Module

Seller Agent

Defeasible Rules
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Defeasible Rules

Bidder Agent

Control Module
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Figure 3: System architecture for auctions.

Conceptually, each time that a bidding agent is notified of a new
event regarding the auction, the logic program is invoked. This
program reads the knowledge base, attempts to deduce new facts
or refute existing ones, and updates the knowledge base accord-
ingly. Depending on the new state of the knowledge base, the agent
determines whether it should submit a bid immediately, wait for
some further event, or retract from the auction. The same process
is carried out by the sellers if applicable.

2.3 Choice of Formalism
There are several reasons why Defeasible Logic can be consid-

ered an appropriate tool to formalize legal negotiation. Let us ex-
amine some of them.

A negotiation can be thought of as a dialogue between parties
concerning the resolution of a common dispute (cf. [6]). In this
perspective some authors (cf. [27, 18, 26]) suggested the use of
argumentation-based reasoning formalisms to characterise it, while
others proposed the use of argumentation to supplement negotia-
tion procedures (cf. [22]). In [11, 12], it was shown that Defeasible
Logic can be characterised by argumentation semantics, thus the
formal semantics of Defeasible Logic is in line with the argumen-
tative nature of legal negotiations. Moreover, given the close con-
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nection between derivations in Defeasible Logic and arguments,
Defeasible Logic offers then a predictable and explainable formal-
ism for legal negotiation.

The defeasibility of normative reasoning is a very well estab-
lished phenomenon with many facets. Consequently a plethora
of non-monotonic systems have been proposed to capture it, but,
unfortunately, most of the proposed non-monotonic systems have
different and sometimes incompatible intuitions. In [3, 4] it was
shown that Defeasible Logic is flexible enough to deal with several
intuitions of non-monotonic reasoning in a modular way applying
the paradigm of [20]. Moreover, Nute [23, 24] has proposed to ex-
tend Defeasible Logic with deontic operators to capture normative
phenomena, while [2] shows how regulations can be represented
conceptually in Defeasible Logic.

Undoubtedly, it is in the context of legal negotiations in a strict
sense –negotiations governed by statutory norms– that the suitabil-
ity of Defeasible Logic as a protocol specification language finds
its utmost degree. Indeed, the procedure for the negotiation could
leave space to open exceptions, and then be subject to defeasibility,
as it is the case of the protocol presented at the end of section 3.

Regarding strategy specification, most of the current systems
adopt a quantitative approach based on utility functions [28]. Very
often, it is not easy to find the right utility functions for a given set
of negotiation issues, especially in situations where one needs to
express preferences without attaching a metric to them. Moreover,
utility functions are mostly used to determine preferences that can
otherwise be expressed in a more comprehensible and suitable way
through (defeasible) rules and priorities among these rules. For this
reason, we believe that in the context of legal negotiations, defea-
sible logic is more suitable than, or at least is complementary to,
strategy specification approaches purely based on utility functions.

Last but not least the complexity of Defeasible Logic is linear
[19], and existing implementations are able to deal with non trivial
theories consisting of over 100,000 propositional rules [21], offer-
ing thus an executable and scalable system.

3. BASICS OF DEFEASIBLE LOGIC
In this section we describe Defeasible Logic formally. Defeasi-

ble logic is a sceptical formalism, meaning that it does not support
contradictory conclusions. Instead it seeks to resolve differences.
In cases where there is some support for concludingA but also sup-
port for concludingnot A (:A), the logic does not conclude either
of them (thus the name “sceptical”). If the support forA has prior-
ity over the support for:A thenA would be concluded. Sceptical
reasoning is appropriate for the study of normative reasoning.

A set of norms (rules) will be represented as a defeasible theory.
A defeasible theory, i.e., a knowledge base in Defeasible Logic,
consists of six different kinds of knowledge: facts, strict rules, de-
feasible rules, defeaters, a superiority relation, and a specification
of conflicting literals.

Factsdenote simple pieces of information that are deemed to be
true regardless of other knowledge items. A typical fact is that John
is a minor:minor(John).

Briefly, strict and defeasible rules are represented, respectively,
by expressions of the formA1; : : : ;An ! B and A1; : : : ;An ) B,
whereA1; : : : ;An is a possibly empty set of prerequisites andB is
the conclusion of the rule.

Strict rulesare rules in the classical sense:whenever the premises
of a rule are given, we are allowed to apply the rule and get a con-
clusion. When the premises are indisputable (e.g., facts) then so
is the conclusion. An example of a strict rule is “every minor is a

person”. Written formally:

minor(X)! person(X):

It is worth noting that, technically, facts can be represented as
strict rules with an empty antecedent. However, this is against the
very same idea of non-monotonic reasoning, and the difference be-
tween facts and strict rules with empty antecedents is a pragmatic
one: facts capture a snapshot of the case at hand, and they may
change from case to case, while rules are the description of the sce-
nario under analysis, and are not depended on the case at hand.

Defeasible rulesare rules that can be defeated by contrary evi-
dence. An example of such a rule is “every person has the capacity
to perform legal acts to the extent that the law does not provide
otherwise”; written formally:

person(X)) hasLegalCapacity(X):

The idea is that if we know that someone is a person, then we may
conclude that he/she has legal capacity,unless there is other evi-
dence suggesting that he/she has not.

Defeatersare a special kind of rules. They are used to prevent
conclusions not to support them. For example

WeakEvidence; :guilty

This rule states that if pieces of evidence are assessed as weak, then
they can prevent the derivation of a “guilty” verdict; on the other
hand they cannot be used to support a “not guilty” conclusion.

Thesuperiority relationamong rules is used to define priorities
among rules, that is, where one rule may override the conclusion of
another rule. For example, given the defeasible rules

r : person(X)) hasLegalCapacity(X)
r 0 : minor(X)):hasLegalCapacity(X)

which contradict one another, no conclusive decision can be made
about whether a minor has legal capacity. But if we introduce a
superiority relation� with r 0 � r, then we can indeed conclude
that the minor does not have legal capacity.

It turns out that we only need to define the superiority relation
over rules with contradictory conclusions. Also notice that a cycle
in the superiority relation is counter-intuitive from the knowledge
representation perspective. In the above example, it makes no sense
to have bothr � r 0 andr 0 � r. Consequently, the defeasible logic
we discuss requires an acyclic superiority relation.

For each literalp we define the set ofp-Complementary lit-
erals (C (p)), that is, the set of literals that cannot hold whenp
does. Let us consider an example: suppose we have the pred-
icatesinnocentand guilty. Here, we define, for any constanta,
C (innocent(a)) = f:innocent(a);guilty(a)g. We know that, under
the usual interpretation of the predicates they cannot be true at the
same time for one and the same individual. We stipulate that the
negation of a literal is always complementary to the literal, thus,
in the rest of the paper, when we give a set ofp-Complementary
literals we shall omit the negation of the literal.

Now we present formally defeasible logics. Arule r consists of
its antecedents(or body) A(r) which is a finite set of literals, an
arrow, and itsconsequent(or head) C(r) which is a literal. There
are three kinds of arrows,!,) and; which correspond, respec-
tively, to strict rules, defeasible rules and defeaters. Where the body
of a rule is empty or consists of one formula only, set notation may
be omitted in examples.

Given a setR of rules, we denote the set of all strict rules inR
by Rs, the set of strict and defeasible rules inR by Rsd, the set of
defeasible rules inR by Rd, and the set of defeaters inR by Rd ft.
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R[q] denotes the set of rules inR with consequentq, andR[C (q)]
denotes the set of rules inRwhose consequent is inC (q).

A defeasible theory Dis a structure

D = (F;R;�;C )

whereF is a finite set of facts,R is a finite set of rules,� is a
binary relation overR, andC is a function mapping a literal to a set
of literals.

A conclusionof D is a tagged literal, where a tag is either∂ or ∆,
that may have positive or negative polarity.

+∆q which is intended to mean thatq is definitely provable inD
(i.e., using only strict rules).

�∆q which is intended to mean that we have proved thatq is not
definitely provable inD.

+∂q which is intended to mean thatq is defeasibly provable inD.

�∂q which is intended to mean that we have proved thatq is not
defeasibly provable inD.

Basically a conclusionB is supported if there is a rule whose
conclusion isB, the prerequisites are either supported or given in
the case at hand, and a stronger rule whose conclusion isnot Bhas
prerequisites that fail to be supported.

Provability is based on the concept of aderivation (or proof)
in D = R. A derivation is a finite sequenceP = (P(1); : : : ;P(n))
of tagged literals satisfying four conditions (which correspond to
inference rules for each of the four kinds of conclusion). In the
following P(1::i) denotes the initial part of the sequencePof length
i.

+∆:
If P(i +1) = +∆q then

9r 2Rs[q]
8a2 A(r) : +∆a2 P(1::i)

�∆:
If P(i +1) =�∆q then

8r 2Rs[q]
9a2 A(r) :�∆a2 P(1::i)

The definition of∆ describes just forward chaining of strict rules.
For a literalq to be definitely provable we need to find a strict rule
with headq, of which all antecedents have been definitely proved
previously. And to establish thatq cannot be proven definitely we
must establish that for every strict rule with headq there is at least
one antecedent which has been shown to be non-provable.

Now we turn to the more complex case of defeasible provability.
Before giving its formal definition we provide the idea behind such
a notion. A defeasible proof of a literalp consists of three phases.
In the first phase either a strict or defeasible rule is put forth in
order to support a conclusionp; then we consider an attack on this
conclusion using the rules for its negation:p. The attack fails if
each rule for:p is either discarded (it is possible to prove that part
of the antecedent is not defeasibly provable) or if we can provide
a stronger counterattack, that is, if there is an applicable strict or
defeasible rule stronger than the rule attackingp. It is worth noting
that defeaters cannot be used in the last phase.

+∂:
If P(i +1) = +∂q then either
(1) +∆q2 P(1::i) or
(2) (2.1)9r 2Rsd[q]8a2 A(r) : +∂a2 P(1::i) and

(2.2)8p2 C (q)�∆p2 P(1::i) and

(2.3)8s2R[C (q)] either
(2.3.1)9a2 A(s) :�∂a2 P(1::i) or
(2.3.2)9t 2Rsd[q] such that

8a2 A(t) : +∂a2 P(1::i) andt � s

�∂:
If P(i +1) =�∂q then
(1)�∆q2 P(1::i) and
(2) (2.1)8r 2 Rsd[q] 9a2 A(r) : �∂a2 P(1::i) or

(2.2)9p2 C (q) such that+∆p2 P(1::i) or
(2.3)9s2R[C (q)] such that

(2.3.1)8a2 A(s) : +∂a2 P(1::i) and
(2.3.2)8t 2Rsd[q] either

9a2 A(t) :�∂a2 P(1::i) or t 6� s

Let us work through the condition for+∂, an analogous explanation
holds for�∂. To show thatq is provable defeasibly we have two
choices: (1) We show thatq is already definitely provable; or (2) we
need to argue using the defeasible part ofD as well. In particular,
we require that there must be a strict or defeasible rule with headq
which can be applied (2.1). But now we need to consider possible
“attacks”, that is, reasoning chains in support of a complementary
of q. To be more specific: to proveq defeasibly we must show that
every complementary literal is not definitely provable (2.2). Also
(2.3) we must consider the set of all rules which are not known to
be inapplicable and which have head inC (q) (note that here we
consider defeaters, too, whereas they could not be used to support
the conclusionq; this is in line with the motivation of defeaters.
Essentially each such rules attacks the conclusionq. For q to be
provable, each such rules must be counterattacked by a rulet with
headq with the following properties: (i)t must be applicable at this
point, and (ii)t must be stronger thans. Thus each attack on the
conclusionq must be counterattacked by a stronger rule.

To explain the mechanism of defeasible derivations –showing at
the same time the appropriateness of Defeasible Logic for norma-
tive reasoning– we consider rule 162 of the Australian Civil Avia-
tion Regulations 1988: “When two aircraft are on converging head-
ings at approximately the same height, the aircraft that has the other
on its right shall give way, except that (a) power-driven heavier-
than-air aircraft shall give way to airships, gliders and balloons;
: : :” This norm can be represented in defeasible logic as follows:

r1 : :rightOfWay(Y;X)) rightOfWay(X;Y)
r2 : onTheRightOf(X;Y)) rightOfWay(X;Y)

The first rule states that, given two aircraft, if one of the aircraft
does not have right of way then the other aircraft does, while the
second states that the aircraftX has right of way over the aircraftY
if X is on the right ofY;

r3 : powerDriven(X);:powerDriven(Y)
):rightOfWay(X;Y)

The idea of the above rules is that a power-driven aircraft does
nothave right of way over a non-power-driven one.

r4 : balloon(X)!:powerDriven(X)
r5 : glider(X)!:powerDriven(X)

r4 andr5 classify balloons and gliders as non-power-driven aircraft
and

r6 : ) powerDriven(X)

assumes aircraft to be power-driven unless further information is
given. The superiority relation is determined as follows:r3 � r2
becauser3 is an exception tor2 and, by specificity

r4 � r6 r5 � r6
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Moreoverr1 � r3.
Let us examine the following cases: 1) two aircraft of the same

type (power-driven, non-power-driven) are converging 2) a power-
driven aircraft and a non-power-driven aircraft are converging. In
the first case we can applyr2 since the prerequisites ofr3 do not
hold and we cannot prove the antecedent ofr1.

In the second case we can applyr3 given that both of the two
prerequisites hold, and after the conclusion ofr3 has been estab-
lished we can applyr1 to derive that the non-power-driven aircraft
has the right of way over the power-drive one.

As stated in Section 2.3, Defeasible Logic as a protocol specifi-
cation language, finds its utmost degree of suitability in the context
of legal negotiations in a strict sense, i.e., negotiations governed
by statutory norms. For example, consider an auction consisting
of two bidding rounds, in which the winners are the n highest bids
of the second round, unless there is no offer in the second round
or there is no second round, in which case the winners are the n
highest bids of the first round.1

To describe this protocol we need the following predicates:

� firstRoundOffer(X;Y) (secondRoundOffer(X;Y)): the bidder
X has offeredY at the first (second) round;

� bid(X;Y): the actual bid for the bidderX isY.

At this point this scenario can be captured by the following defea-
sible rules:

r1 : firstRoundOffer(X;Y)) bid(X;Y)
r2 : secondRoundOffer(X;Y)) bid(X;Y)

wherer2 � r1 and the complementary literals are thus defined

C (bid(X;Y)) = fbid(X;Z)jY 6= Zg

All that remain is to determine the highest n bids, but this can be
easily done with a simple inspection of the conclusions with form
+∂bid(X;Y).

4. CASE STUDIES
In this section we present in detail two examples of the applica-

tion of Defeasible Logic to automated (legal) negotiation scenarios.
In the first example (Section 4.1) we consider a simple case of ne-
gotiation: single issue bargaining. In the second example (Section
4.2) we examine how to model an English auction automated bid-
der in Defeasible Logic.

4.1 Bargaining
In this scenario we have a buyer that wants to buy a house and

negotiates the price with a seller. Here we describe a simple de-
feasible theory capturing his/her strategy, as well as the normative
rules to which this strategy is subject.

For the sake of simplicity, we use a strategy consisting of a fixed
single theory. The buyer strategy is to offer first the minimum price,
then wait for the counteroffer; if the counteroffer is less than the
maximum price, the buyer will accept it, otherwise the maximum
price will be offered. The rules corresponding to this simple strat-
egy are:

s1: price(X)) offer(X)

s2: counteroffer(X);maxPrice(Y);X <Y ) accept

s3: counteroffer(X);maxPrice(Y);X >Y ) offer(Y)

1This protocol is very similar to that used in Italy for the auction
for the concession of the UMTS radio frequencies.

wheres3 � s1 and

C (offer(X)) = foffer(Y)jY 6= Xg

This last condition states that at a given point in time, only one offer
can be made.

At this point we need a set of rules to establish the initial and the
maximum prices.

r1: cash(X);finance(Y);Z = X+Y )maxPrice(Z)

r2: ) housePrice(p1)

r3: ) appliances(p2)

r4: brandNewAppliances) appliances(p3)

r5: maxPrice(X);Y > X; :totalPrice(Y)

r6: housePrice(X);appliances(Y); tax(W);Z = X+Y+W
) totalPrice(Z)

Wherer4� r3 andr5� r6. The complementary literals of the pred-
icatesappliancesandtotalPriceare defined as follows:

C (appliances(X)) = fappliances(Y)jX 6=Yg

C (totalPrice(X)) = ftotalPrice(Y)jX 6=Yg

Let us explain shortly the rules:r1 says that the maximum price is
the sum of the available cash and the finance that can be obtained,
while ruler5 states that the price inclusive of taxes and appliances
(according to ruler6) should not exceed the maximum price. In-
stalled appliances are sometimes sold with the house, the buyer
needs appliances and will pay a given pricep2 for them (r3), but
will pay a higher pricep3 if they are brand new (r4).

During the negotiation, external considerations have to be taken
into account in order to determine the price. For example, from July
1, GST (Good and Service Tax) has been introduced in Australia,
thus, if the settlement date occurs after such a date, the transaction
will be subject to GST (rulet1 below), but only if the house is brand
new (rulet2). However, in such a case, first-home buyers are enti-
tled to a rebate (rulet3) unless they are not permanent residents or
Australian citizens (t4). Rulest5–t6 below are used in determining
the amount of taxes, based on whether the 7k rebate is applied or
not.

t1: afterJuly1)GST

t2: :brandNew):GST

t3: firstHome) rebate

t4: :resident):rebate

t5: housePrice(X);GST;Y = :1X ) tax(Y)

t6: housePrice(X);GST; rebate;Y = :1X;Y < 7k) tax(0)

t7: housePrice(X);GST; rebate;Y = :1X;Y > 7k;W =Y�7k
) tax(W)

wheret2 � t1, t4 � t3, t6 � t5, t7 � t5 andt7 � t6. Moreover

C (tax(X)) = ftax(Y)jX 6=Yg
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4.2 English auction
TheEnglish auctionis perhaps one of the most popular one-to-

many negotiation mechanisms. In its simplest form, it serves to
select a buyer for an item and to establish its price (multi-party
single-issue negotiation). There are many variants of the English
auction (see [1] for a survey). The variant that is currently in use
within the biggest Internet trading communities (e.g.eBay[8] and
TradeOut[32]) may be roughly described as follows. The seller
starts by setting areservation price, which may or may not be an-
nounced to the bidders. He also sets atiming constraint, which may
be either expressed as a firm deadline, as a maximum duration be-
tween two successive bids, or as both. Potential buyers then issue
increasingly higher bids. Theincrementbetween one bid and the
next is constrained to be greater than a given threshold. The auction
stops when the timing constraint is violated, i.e. either the deadline
is reached, or no bid is registered for longer than the established
maximum duration. The last bidder then buys the item at the price
of the last bid. If no bid is issued at or above the reservation price,
the item is not sold.

We assume that the role of the seller in an English auction is
implemented by anauction broker. This system registers the pa-
rameters of the auction, publishes them, processes incoming bids,
and continuously makes accessible the auction’s status. The con-
trol module of the auction broker is described as a task structure
in Figure 4. This task structure can straightforwardly be translated
into a defeasible theory.

new bid

evaluate bid

reject bid terminate accept bid

Figure 4: Auction broker control module

On the other hand, each bidder is represented through a soft-
ware agent whose control and reasoning module capture the bid-
der’s strategy. To illustrate how a bidder’s strategy is expressed
using defeasible logic, we consider the following scenario. Mark
wishes to participate in the auction of an item. He doesn’t know
exactly how much the item is worth, but he thinks that its value lies
somewhere within two bounds L and U. He is keen not to over-
value the item, so he decides to assume at the beginning of the
auction that the item is worth L, and to eventually increase his val-
uation whenever one of the following two situations occurs: (a) at
least three bids above his current valuation have been registered, or
(b) somebody has bid more than 20% of his current valuation. As
soon as one of these conditions is met, Mark will raise his valua-
tion by the minimum possible amount that allows him to stay in the
auction. However, he will never accept to valuate the item above
U. As it is usual in the case of English auctions, Mark will start
by bidding some minimum amount (i.e. the reservation price), and
if needed, he will subsequently overbid the other participants’ bids
by the minimum increment, as long as the resulting bid is less than
his current valuation. In the eventuality where the auction’s dead-
line is too close and that he does not hold the current highest bid,
he will bid his current valuation instead of just over-bidding by the
minimum increment.

Formally, the parameters, status, and history of the auction, are

modeled through the following predicates and constants:

� ConstantminIncrementdenotes the minimum amount by
which the bidders are allowed to overbid.

� ConstantinitialBid denotes the minimum amount of the first
acceptable bid. This is not the same as the reservation price
which is usually greater. In fact, we assume in the sequel that
the bidders do not know the reservation price.

� PredicatetimeRemaining(T) provides the time remaining be-
fore the end of the auction.

� PredicatehighestBid(X) provides the current highest bid.

� PredicatebidsAbove(X;N) holds if N bids above amountX
have been registered. This predicate actually provides an ag-
gregated view of the history of the auction, which is available
as a predicate calledpriceQuotes(L), where L is a list of pairs
htime, bidi. The rules for deriving predicatebidsAboveout
of predicatepriceQuotesare all strict (i.e., not defeasible),
and therefore we omit them in the sequel.

Meanwhile, the parameters of Mark’s strategy are modeled by
the following constants and predicates:

� ConstanttimeThresholdis the duration to the deadline, below
which Mark estimates that he should bid his valuation instead
of just over-bidding by the minimum increment.

� ConstantsignificantBiddersis the number of bidders that
should bid above Mark’s current valuation before he consid-
ers raising it.

� ConstantsignificantIncrementis the amount (expressed as
a percentage), that another bidder should bid above Mark’s
current valuation before he considers raising it.

� ConstantmaxValuationis self-explainable.

� PredicatessubmitBid(X) states that a bid of amountX should
be submitted. At the beginning of the auction, the agent’s
knowledge base contains the factsubmitBid(initialBid).

� Predicatevaluation(X) provides to the current valuation.

� newValuation(X) states that the valuation has been raised and
should now beX. When the bidding agent finds a fact of the
form newValuation(x) in its knowledge base, it immediately
deletes it, and updates predicatevaluation(X) accordingly
(i.e.,+∂valuation(X) will hold subsequently).

� PredicatemyBid(X) gives the amount of the last accepted
bid issued by the bidder. At the beginning of the auction
myBid(0) holds.

The rules modeling the strategy are:

r1: myBid(X);highestBid(Y);valuation(Z);
X <Y;Y+minIncrement< Z;
timeRemaining(T);T > timeThreshold
) submitBid(Y+minIncrement)

r2: myBid(X);highestBid(Y);valuation(Z);
X <Y;Y+min increment< Z;
timeRemaining(T);T � timeThreshold
) submitBid(Z)
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r3: myBid(X);highestBid(Y);newValuation(Z);
X <Y;Y+minIncrement=W;W < Z;
timeRemaining(T);T > timeThreshold
) submitBid(W)

r4: myBid(X);highestBid(Y);newValuation(Z);
X <Y;Y+minIncrement< Z;
timeRemaining(T);T � timeThreshold;
) submitBid(Z)

r5: valuation(X);bidsAbove(X;N);
N � signi f icantBidders;highestBid(Y)
) newValuation(Y+minIncrement)

r6: valuation(X);highestBid(Y);
Y > (1+signi f icantIncrement)�X
) newValuation(X +minIncrement)

r7: Y > maxValuation; :newValuation(Y).

The superiority relation between these rules is defined as follows:
r4 andr5 have precedence over bothr1 andr2.

The sets of complementary literals state that there can only be
one amount to bid, and one new valuation, i.e.

� C (submitBid(X)) = fsubmitBid(Y) jY 6= Xg

� C (valuation(X)) = fvaluation(Y) jY 6= Xg

� C (newValuation(X)) = fnewValuation(Y) jY 6= Xg

Rulesr1 throughr4 model the bidding strategy. Ruler1 states
that if there is enough time remaining and the agent’s current bid is
not the highest, it should be increased by the minimum increment,
provided that the current valuation allows so. Ruler2 states that if
the deadline is close and the bidder does not hold the item, a bid
of the amount of the current valuation should be submitted imme-
diately. Rulesr3 and r4 are similar tor1 and r2, except that they
apply only when the valuation is raised. Rulesr5 throughr7 deter-
mine if the valuation should be raised: ruler5 andr6 model the two
conditions under which the valuation should be raised, while rule
r7 is a defeater modeling the fact that the bidder is under no circum-
stances willing to valuate the item above a given amount. The use
of this defeater provides a strong modularity to the defeasible pro-
gram. If for instance the user wanted to modify the above strategy
with a statement of the form“raise the valuation if the reserva-
tion price has not been met and the highest bid is above my current
valuation”, then (s)he just have to extend the corresponding logic
program with the following rule :

r9: reservationNotMet;valuation(X);
highestBid(Y);Y > X
) newValuation(Y+minIncrement)
(r9 � r2 andr9 � r3)

without having to worry whether the reservation price is greater
than his/her maximum valuation or not (raising the valuation above
its maximum is prevented by ruler7).

The control module of the bidding agent is described as a task
structure in Figure 52. At the beginning of the process, the agent
activates the defeasible inference engine, which replies with a de-
feasible fact of the formsubmitBid(X). Accordingly, the agent con-
tacts the auctioneer to submit a bid of amountX. The auctioneer

2Again, this task structure can straightforwardly be translated into
a defeasible theory.

new bid

evaluate bid

overbid

Figure 5: Bidder Control Module

replies by stating whether the bid is accepted or rejected. If the
bid is accepted, the bidding agent introduces the factsmyBid(X)
andhighestBid(X) into the knowledge base, waits until the auction
broker notifies it that another participant has over-bidden, and then
triggers the inference engine again. If on the other hand the sub-
mitted bid is rejected (i.e., another participant bided the same or a
higher amount before the submitted bid was processed), the auc-
tion broker provides the current price quote (i.e., the highest bid).
The agent then updates predicateshighestBidandbidsAboveto re-
flect this, and triggers the inference engine to determine if a new
bid should be submitted. If no bid is to be submitted, the agent
waits for notifications of new bids issued by the other participants,
before updating the knowledge base and triggering the inference
engine again.

5. RELATED WORK
Bellucci and Zeleznikow [6] propose a legal negotiation support

system tailored for Australian family law. Such a system is based
on bi-directional fuzzy cognitive map, and it relies essentially on
numerical (fuzzy) values given to the negotiation issues by the par-
ties involved. Then those values are used to determine the order of
decomposition and allocation of the content of the dispute. Finally
trade-off (fuzzy) relationships are used in resolving the conflicts. It
is clear that such an approach does not meet some of the desiderata
listed in Section 2.1: in general it is not easy to define the appro-
priate value functions and the corresponding trade-off relationship,
and numerical functions are not easily explainable, thus this system
does not seem a natural and intuitive approach to the problem. Sec-
ondly, it does not take into account legal issues nor deal with the
defeasibility of normative reasoning.

The architecture of another legal negotiation support system is
outlined in [22]. The main feature is a user interface which uses
Toulmin’s diagram to represent the status of the negotiation. Addi-
tionally it supports several defeasible reasoning mechanisms (prior-
itized logic programming), and an adviser. However, the reasoning
modules are used only for negotiation contents and not to describe
protocols, but, as we have seen, in a legal context, protocols for
negotiation can be defeasible. Finally, the advisor module is based
on utility functions, and we have argued that this approach lacks
suitability and comprehensibility.

The Michigan AuctionBot [25, 35] is an auction management
server supporting the creation, location and enactment of differ-
ent kinds of auctions. Users can manually interact with the system
through an HTML-based interface, or alternatively, they can de-
velop their own arbitrarily complex bidding agents, and connect
them to the auction manager through a TCP/IP-level API. This API
is generic enough to deal with several kinds of auctions (e.g. En-
glish, Dutch, double, etc.) through a common set of primitives. The
AuctionBot has recently been used to host an trading agent compe-
tition [31], as has another similar platform called FishMarket [7,
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16].
Unlike our work, neither FishMarket nor AuctionBot, address

the issue of specifying bidding agent strategies.
More recently, yet another auction management server called

eAuctionHousehas been released [30]. An interesting feature of
eAuctionHouse is that it supports combinatorial auctions, that is,
auctions in which a bidder may place bids on combinations of
items, and may even issue simultaneous bids for several combina-
tions, while ensuring that only one of his bids will win. eAuction-
House also supports mobile agents that can issue bids on behalf of
a user. However, the user is not allowed to specify his own bidding
strategy: he has to choose between a set of predefined ones.

[17] classifies techniques for designing negotiation strategies
into 3 categories: game-theoretic, heuristic and argumentation-
based. The first approach, models a negotiation situation as a game,
and attempts to find dominant strategies for a each participant by
applying game theory techniques. For simple negotiation proto-
cols, and under very specific assumptions about the rationality and
attitude toward risk of each participant, this kind of analysis leads
to simple and optimal strategies. However, very often these results
do not generalize easily to more complex situations. In heuristic-
based approaches on the other hand, a strategy consists of a family
of tactics (i.e. a method for generating counter-offers), and a set
of rules for selecting a particular tactic depending on the stage of
the negotiation. The strategies for bargaining and bidding that we
discussed in the previous section, can be seen as belonging to this
family. Interestingly, our case studies show that defeasible logic
is suitable to express both the tactics, and the rules for tactic se-
lection. Finally, argumentation-based approaches extend heuristic
ones, by introducing communication performatives such as threats
(e.g., “this is my last offer”), rewards (e.g., “if you accept this offer,
I will be more clever in our next negotiation”), etc. These performa-
tives can be modeled in our approach through defeasible predicates
shared by the participants of a negotiation. Concretely, in the bar-
gaining case study of Section 4.1, in addition to having a predicate
offer, the theory should also include predicatesthreat, reward, etc.
as well as derivation rules for these predicates.

The use of logic-based formalisms with rule prioritisation in the
context of automated negotiations has been studied in [9] and [29].

Garcia et al. [9] suggests to use a “variant” of defeasible logic
to express strategies for agents trading over stock markets. The
“variant” of defeasible logic that the authors consider, does not
support an explicit ranking of the rules within a theory, but rather
derives this ranking through a specificity criterion over arguments.
Roughly speaking, an argument is more specific than (and therefore
can defeat) another argument, if it takes into account more informa-
tion. In addition to the fact that this approach allows “tie-breaks”
between defeasible arguments, it may sometimes lead to counter-
intuitive situations. Indeed, the semantics given by a user to the
concept of “more information”, may potentially not be in line with
that given by the defeasible logic’s inference method.

Reeves et al. [29], use Corteous Logic Programs (CLP) [14] to
express knowledge about user preferences, constraints, and nego-
tiation structures. The authors do not address the issue of speci-
fying negotiation strategies directly, but rather that of deriving the
set of negotiation structures that have to be carried out in order to
transform a contract template into an executable contract. Inter-
estingly, Defeasible Logic Programming (DLP) is more expressive
than CLP [5], in the sense that it allows the user to express stratified
theories. Hence, the question remains open whether it is possible to
express useful contract templates in DLP that cannot be expressed
in CLP.

6. CONCLUSION
In this paper we have proposed a qualitative logic-based ap-

proach to (automated) legal negotiation, and we have shown that
it meets a set of desiderata that a negotiation framework should sat-
isfy. In particular, we believe that the use of Defeasible Logic as the
inference engine of the proposed architecture makes our approach
“suitable” for legal negotiation in so far as it allows to capture ef-
fectively the defeasibility of law in a very close way.

It is worth noting that the present approach offers a great deal of
flexibility when compared with other approaches, we have already
argued that other approaches, and in particular those based on util-
ity functions, fail to satisfy some of the criteria listed in section 2.1.
Still, for some problems, very well understood and well behaving
utility functions have been defined; in such cases it may be use-
ful to combine the two approaches. Usually utility functions are
applied to evaluate offers; thus, if one of the party is willing to con-
cede on some issues, if the opponent party has conceded on other
issues, then several utility functions can be defined with different
weight for the conceded attributes. For example, letf1, f2 and f3
be utility functions defined over a set of attributes. We can supple-
ment the given functions with a set of defeasible rules to choose the
most appropriate utility function according to the solved issues, for
example:

r1 :) f1
r2 : concession2 ) f2
r3 : concession3 ) f3

The meaning of the above rules is as follows: usually the offer is
evaluated usingf1, however if some concessions are given by the
counter-party, utility functionsf2 or f3 are used instead.

One of the advantages of this method is that it is possible to
formulate trade-off strategies in an easy way, and utility functions
can be simplified.
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