
��%XVFD/HJLV�FFM�XIVF�EU�

Journal of Information, Law and Technology

&RGH�DV�(PEHGGHG�6SHHFK��0DFKLQH��DQG�6HUYLFH

L. Jean Camp
Assistant Professor, Kennedy School of Government

Harvard University, USA
MHDQBFDPS#KDUYDUG�HGX�
�KWWS���ZZZ�OMHDQ�QHW!�

Serena Syme
Masters of Public Policy

Kennedy School of Government
Harvard University

VFV\PH#KRWPDLO�FRP

This is a UHIHUHHG article published on: 2 July 2001

&LWDWLRQ: Camp L J and Syme S, ‘Code as Embedded Speech, Machine, and Service’,
2001 (2) 7KH�-RXUQDO�RI�,QIRUPDWLRQ��/DZ�DQG�7HFKQRORJ\��-,/7�.
<http://elj.warwick.ac.uk/jilt/01-2/camp.html>

$EVWUDFW
What is code and how should it be governed? This article frames the question by
considering the various forms of governance currently applied to code: copyright, patents,
embedded speech, and trade secrets. The current governance models imply that code is a
service, a document, and a machine. True, physical materials can be arranged to be all of
these things, yet there is little legal difficulty in distinguishing which model is
appropriately used for which item. Thus the mental models of code and of different types
of underlying the legal definitions of code are confused. Thus, we being our work by
describing both code and the protection modes which can be used for code (at a high
level, of course). Then, in the context of both recent court decisions and private
contractual models for code, we work to fit code in the context of the governance
frameworks. We conclude with an overarching theory of code which argues for the
continuation of all the models of protection, yet offers a manner of distinguishing which
models should be applied to which instantiations of code. In short, we conclude that
source code should best be governed as a form of speech and object code should be
treated as a class of machine. We conclude that customer code sold to one customer
treated as a professional service, possibly with requirements for source availability.

.H\ZRUGV: Software Protection, Code, Governance of Code, Theory of Code,
Models of Protection for Code, Source Code, Object Code, Intellectual Property,
Copyright, Patents, Embedded Speech, Machine, Service, Trade Secrets, UCITA.

���,QWURGXFWLRQ
What is code? When is the procurement of software the licensing of a service, the
purchase of a product or the free exchange of ideas? Currently software - including source
and object code- fits under all three rubrics. Industry practices, intellectual property
regimes, the aims of the market, and the traditions of science together form an incoherent
and almost certainly unsustainable regulatory patchwork for computer code. In this paper
our goal is to answer the question, ‘What is the appropriate regulatory regime for code?’.
In order to do so rather we seek to frame the question more fully than in past literature for
the specific case of code.

Previous work has focused on the ethical implications of code1, a specific self-regulatory
approach2, industry practices3, or information goods as a whole4. In this work we focus
on code, rather than on information goods as a class. Doing so provides for us a
framework in which to explore the implications of different mechanisms of intellectual
property protection specifically for code. We consider the use of copyright by open code,
the lack of control associated with code in the public domain, licensing as proposed by
UCITA, and the current use of patents as code control mechanisms. Part 1 provides a
brief outline of the various forms of intellectual property protection that are applied to
software: copyright, patent, trade secret and contract protection. In Part 2 we compare and
contrast the protection offered by each of these schemes. Those familiar with intellectual
property law can reasonable skip this section. Part 3 is a discussion of the types of code.
Those familiar with computer science can reasonably skip Part 3. In Part 4 we build upon

this foundation by addressing how intellectual property protections interact with open
code licenses, proprietary licenses, and licenses under UCITA. After having classified
code according to its mode of governance, we close by arguing that the mechanisms used
to govern speech (the First Amendment, traditional copyright and trade secrets protection)
are the correct mechanisms for the governance of code. In our final conclusion in part we
offer a preliminary framework which would treat source code as embodied speech, mass
market object code as product, and custom software as professional service.

���,QWHOOHFWXDO�3URSHUW\�3URWHFWLRQ
The previous parts, described licenses and their constraints, and the impact of UCITA.
This section summarizes the previous discussion for simplified comparison and reference.
It then briefly outlines the types of intellectual property protection used in each license.

����7\SHV�RI�,QWHOOHFWXDO�3URSHUW\
Different types of software, that is software protected under different property rubrics,
depend on different elements of the intellectual property legal structure. There are four
rubrics for intellectual property: copyright, patent, trade secrets, and contract. There is no
argument over the need for some type of intellectual property protection for code.

������&RS\ULJKW�3URWHFWLRQ
Copyright is a form of protection granted under Title 17 of the U.S. Code to those who
create ‘original works of authorship’ that are fixed in a tangible form of expression.
Under Section 106 of the Copyright Act 1976, the owner of copyright usually has the
exclusive right to reproduce the work, make derivative works based on it, distribute,
perform or display the work. The owner also has the exclusive right to authorize others to
exercise these rights. Copyright protects the physical embodiment of an artistic or
creative work. That is, it will prevent others from copying the actual form of expression
selected by the author, but will not protect the ideas, thoughts or processes underlying that
expression. Section 102 of US Code Title 17 indicates that copyright subsists in ‘original
works of authorship fixed in any tangible medium of expression’, including literary
works, musical works, dramatic works, pantomimes and choreographic works, pictorial,
graphic, and sculptural works, motion pictures and other audiovisual works, sound
recordings and architectural works. An important exception to the property rights that
copyright confers on a creator is the doctrine of ‘fair use’. Section 107 provides that
copyright is not infringed by the fair use of a work protected by copyright ‘for purposes
such as criticism, comment, news reporting, teaching (including multiple copies for
classroom use), scholarship, or research’. Copyright protection will endure for 70 years
after the death of the author. Copyright subsists automatically in the work - there is no
need for the author to register the work or take any other steps to obtain the protection.
However, an author can abandon the copyright protection, if he or she so chooses. A work
for which copyright protection has been abandoned or has expired is considered to be in
the public domain.
Copyright and patent protection evolved in Western countries at the time of the printing

press, as an attempt to assure the free transmission of ideas while safeguarding the rights
of the creator. In fact, the modern concept of authorship itself arose with the printing
press5. These forms of a protection are a strictly limited monopoly, a form of bargain
with inventors, artists, and authors; promising remuneration via a legal right to exclude.

Copyright provisions are careful not to encroach on constitutional protection of free
speech. Litman notes that copyright permits free communication of facts and ideas while
protecting an author’ s expression, so striking a balance between the First Amendment and
the Copyright Act. Unlike patent protection, copyright protects the form of expression but
not the concept behind the expression -- it ‘leaves others free to communicate the ideas
embodied in protected works, so long as they do not appropriate the form in which those
ideas were expressed6.

The Internet’ s has created challenges to copyright, particularly in terms of copying and
material embodiment7. Copyright’ s dependence on material embodiment and the
incentives it offered worked well when the works protected by it were physical. But the
Internet poses a number of challenges to the copyright system:;The technical reality of the
Internet is that the works displayed on it are frequently copied, often without deliberate
human effort. In a digital system to view or transfer a work requires making copies. Each
time a browser caches a web site, that web site and the information on it is copied.
Buffering requires information or images to be automatically loaded to one location and
then transferred to another one - which again is copying. Johnson-Laird describes the
Internet as a global copying machine:

‘everything on the net is a copy of something -- else if it is just a local copy of a
World Wide Web page on a local Web server’ 8.

How should a copyright system deal with these ‘involuntary’ copies?

Technological changes have resulted in economic changes, at the least changes in
business models. The economy of the Internet suggests that there is value in the rapid
dissemination of information. Dyson claims that the Internet changes the fundamental
economics attached to the selling of information:

‘because it allows us to copy content essentially for free, the Net poses
interesting challenges for owners, creators, sellers, and users of intellectual
property. In this new world of the Net, it is easy to copy information but hard to
find it’ 9.

Dyson argues that in this new, copy-centric environment, content will tend towards being
free, because it is the free content that will be rapidly disseminated and noticed. She adds
that under these conditions:

‘the likely best course for content providers is to exploit that situation, to
distribute intellectual property free in order to sell services and relationships’ .

This as yet not tested or proven ‘new economics’ suggests that fundamental changes in

intellectual property restrictions may be needed.

As the works copyright seeks to protect lose their physicality, copyright may begin to
threaten freedom of speech. Copyright was designed to protect the physical embodiment
of ideas. Now ideas can be rapidly disseminated without any physical embodiment, which
makes them difficult to distinguish from speech. It follows that efforts to extend the scope
of those laws so as to protect such insubstantial creations is likely to result in restrictions
on freedom of speech.

This had lead to widespread consideration of the future of copyright on the Net. At one
extreme, Barlow argues that copyright’ s ship is sinking beneath the waves of this new
environment:

‘This vessel .. was developed to convey forms and methods of expression
entirely different from the vaporous cargo it is now being asked to carry. It is
leaking as much from within as from without. Legal efforts to keep the old boat
floating are taking three forms: a frenzy of deck chair rearrangement, stern
warnings to the passengers that if she goes down, they will face harsh criminal
penalties, and serene, glassy-eyed denial’ 10.

On the contrary, free software proponents argue that copyright is essential to protect the
freedom of their work11. Unless code is appropriately copyrighted, users can ‘capture’
that code back into the private domain and apply stringent license conditions to it.
Further, software companies argue strongly that copyright should continue to apply in on-
line space, and be enforced more stringently. The Software and Information Industry
Association (SIIA) notes that the fact that software creates unique problems for copyright:

‘does not make it legal to violate the rights of the copyright owner’ 12.

Copyright applies internationally, and to code internationally. (In contrast software
patents are a divisive international issue). Article 7 of the Berne Convention for the
Protection of Literary and Artistic Works 1971 states that the term of copyright protection
is ‘the life of the author and fifty years after his death’ . The World Intellectual Property
Organization’ s 1996 Copyright Treaty clarifies the application of the Berne Convention
to computer programs, among other things. Article 4 provides that:

‘Computer programs are protected as literary works within the meaning of
Article 2 of the Berne Convention. Such protection applies to computer
programs, whatever may be the mode or form of their expression’ .

The US Congress has recognized that there the current intellectual property regime does
not naturally apply to code. The US Congress passed the Digital Millennium Copyright
Act (P.L.105-304) in October 1998 to implement the 1996 WIPO Copyright Treaty.
Among other things, the DMCA prohibits the circumvention of any effective
‘technological protection measure’ (such as encryption) used by a copyright owner to
restrict access to its material13. Until recently, the Berne Convention’ s copyright duration
of ‘life plus 50 years’ applied in the United States. However, the Copyright Term

Extension Act (the ‘CTEA’) passed in October 1998, extended the term of copyright
protection by 20 years to ‘life plus 70 years’ for individual authors, and to 95 years from
75 years for corporate ‘creators’ . One motivation for the CTEA was the desire of
copyright owners to obtain protection in the US equal to that provided by European
countries. As long as US laws offered shorter protection than the European laws, US
authors could not benefit from the full length of protection available in Europe13. But it
seems that many of those arguing in favor of CTEA were also worried about losing
copyright protection in lucrative properties. Disney, which was set to lose copyright
protection over the Mickey Mouse character in 2004, made financial contributions to 8 of
the Senate bill’ s 12 sponsors, and to 10 of the original House bill’ s 13 sponsors14. The
CTEA attracted much opposition. For example, the Society of American Archivists
expressed their disapproval to Congress, stating that the law ‘disrupts the balance
between public and private interests and will have a severe negative impact on the
public’ s use of unpublished materials for teaching, scholarship, and research’ 15. The
Association of Research Librarians describe it as an ‘unfortunate law’ , and a group of
small publishers and archivists of public domain material brought a constitutional
challenge against CTEA.

The Eldred�Y�5HQR16 case was heard in the District Court, where Judge June Green
granted summary judgment to the government on October 28, 1999. It is now on appeal.
In our references to copyright in the remainder of this article, we are referring to
traditional copyright protection, not copyright as amended by the DMCA and CTEA. The
implications of the DMCA and CTEA do, in the opinion of the authors, tend to
exacerbate the problems with the current incoherent governance of code. Yet the impact
of the DMCA is yet uncertain, and is beyond the scope of this work.

������3DWHQW�3URWHFWLRQ
Just as the subject matter of copyright is a tangible expression of authorship, the subject
matter of patent law is an invention. Title 35 of the US Code deals with patent protection
- section 101 of that title defines an invention as subject to patent if the invention is any
‘new and useful process, machine, manufacture, or composition of matter, or any new and
useful improvement thereof’ . The inventor or discoverer of such an invention may patent
it, provided that:

• the invention is novel, which usually means that it was not disclosed in
the ‘prior art’ ;

• publications or other documents relating to that field of endeavor;

• was not patented elsewhere more than a year previously (section 102);

• the invention has not been ‘abandoned’ by the inventor (section 102); and

• the invention is ‘non-obvious’ , in the sense that it would not have been
considered to be an obvious development by a ‘person having ordinary skill

in the art to which said subject matter pertains’ (section 103).

A person seeking patent protection must engage in a lengthy and complex application
process that usually requires the involvement of professional patent attorneys to establish
the validity of the patent grant. The United States Patent and Trademark Office hears
patent applications and is the sole grantor of US patents. Patent protection endures for 20
years (section 154). However an individual can approach the US Patent and Trademark
Office.

Patent protection is broader than copyright protection, in that it prohibits more than
simple copying of the invention. A patent will be infringed if another person
independently creates an invention that comes within the terms of the patent. So if Person
A was to patent a left handed corkscrew with a 90 degree angle between the screw and
the pull mechanism, for instance, any other person who produced a corkscrew matching
this description would infringe the patent. This would be the case whether or not the
infringing person had ever heard of or seen the patent or the patented device. Due to the
breadth of this protection, innovation is promoted by ensuring that patented inventions
are very narrowly described in the application.

One of the more controversial areas of patent protection is the patenting of computer
algorithms. Until recently, the USPTO would not patent a business method. But
following the 1998 decision in State Street Bank & Trust Co. v. Signature Financial
Group which opened the way for these patents, software manufacturers and web
companies have been extremely active in seeking protection for their ‘inventions’ . As an
example, Amazon.com has obtained patents to protect it’ s ‘1-Click’ shopping method17,
and more recently, its affiliate program18. These companies argue that this protection is
essential to safeguard their investment. Opponents argue against such patents on a range
of issues:

• patent protection is not necessary to promote software innovation, and
may well impede innovation19;

• innovation costs in this industry are substantially less than those in
traditional patent fields such as pharmaceuticals20;

• patent searches (which are necessary to avoid infringement) are
expensive, unreliable and prohibitively difficult for smaller companies21;

• independent reinvention, which is quite rare in some other fields where
patents are active, is extremely common in the software industry22;

• business process patents require so little actual inventive work that they
amount to a patent on an idea23;

• a 20 year term of patent protection is unreasonable in this fast moving
environment24; and,

• the prevalence of patents restricts programmers’ creativity and expression.

Others argue that patent protection software is sufficiently excessive as to create barriers
to entry as well as innovation25. If there is no change in the law, it is reasonable to expect
the number of web and software patents granted to increase exponentially.

������7UDGH�6HFUHW�3URWHFWLRQ
Patent protection requires disclosure of the invention; the bargain that the State makes
with inventors is that 20 years of protection is offered in return for this disclosure. Trade
secret protection does not require disclosure, and for this reason may be relied on for
especially confidential commercial formulae. The recipe for Coca Cola is the canonical
example. Section 757 of the Restatement of Torts (1939) indicates that:

‘a trade secret may consist of any formula, pattern, device or compilation of
information which is used in one’ s business, and which gives him an opportunity
to obtain an advantage over competitors who do not know or use it. It may be a
formula for a chemical compound, a process of manufacturing, treating or
preserving material, a pattern for a machine or other device, or a list of
customers’ .

To be eligible for this protection, the information or invention must be secret, and it must
confer commercial advantage. Secrecy implies that it is not within the general knowledge
of those working in the field, and also that the owner has taken steps to guard it. It
generally implies that the information is not widely distributed. Unlike copyright and
patent protection, trade secret protection generally occurs under State law rather than
Federal law, and the protection offered is very limited. A trade secret holder is only
protected from unauthorized disclosure and use of the trade secret, or from a third party
obtaining the trade secret by improper means. It is not an infringement of this protection
for a third party to reverse engineer the secret (i.e. determine the recipe for Coca Cola by
working backwards from the taste of the drink), or to arrive at it independently (i.e.
develop Coca Cola without having tasted it). Trade secret protection essentially guards
against corporate espionage only. As for copyright protection, an owner does not need to
take any special steps to rely on this form of protection (except by safeguarding the
secrecy of the information). But unlike copyright and patent protection, trade secret
protection can easily be lost - one or more unprotected disclosures of the information will
usually be enough for a court to conclude that the information is no longer secret. The
secrecy requirement means that this form of protection would not be relied on to protect
open code software, as the provision of the code to users would essentially undermine the
secrecy of that code. But trade secret protection could conceivably be used to prevent
someone from entering Microsoft headquarters and stealing the Windows source code, or
to punish a disgruntled employee who released that code to the world.

���&RGH

Code is no more homogenous than any other information type, and in fact it is far more
heterogeneous than any other information type. Computer code takes the same
nomenclature as legal code and there are two other similarities. First, both legal and
computer code attempt to structure inherently entropy life into formal conditional logical
structures. Second, by virtue of this translation or encoding both are difficult to decipher
for those without trained and both can appear encoded in the cryptographic sense to the
untrained eye.

����)RUPV�RI�&RGH26
Computer code exists along a continuum. At one end is source code. Source code is
optimized for human readability. Source code is high level code. In fact, the readability of
this code has been decried by some27 because using the new coding schemes does not
require any fundamental understanding of computing or communications.

)LJXUH����+RZ�FRGH�FDQ�EH�UHDG

As shown in the figure above code can be of a form that is inherently human readable.
Example of this are mark-up languages, such as the hypertext markup language used to
format this document. There are technical means to prohibit the trivially easy reading and
viewing of a document source, and methods for writing increasingly obtuse source code
are proliferating. For example, popular Web-authoring documents use unnecessary Java
calls or covert Web pages to Shockwave formats which cannot be easily read. However,
markup languages are designed to be readable.

The same is true of scripting languages such as JavaScript and CGI28 scripts. Such
scripts are read (thus the name) each time the script is called. Scripting languages are
stored and transmitted in source form.

Assembly is the original coding language. In assembly language humans had to use the
tiny steps which a computer can understand, like moving number between registers, to
write programs. For example, a subtraction instruction in assembly takes many lines of
code. The computer must be instructed to read the input a, one by one. Each input that is
read must be assigned an address in memory. Then the inputs must be copied to input
locations of the Arithmetic Logic Unit which handles subtraction. Then the ALU must be
told to subtract the numbers. Then the result must be stored in a particular location.
Computers can understand only the most simple, short commands.

Grace Hopper (invented the concept of a forerunner to all modern compilers, and thus
enabled the creation of high level languages29. Before her breakthrough work all code
was written in binary, and in fact often implemented by cabling ports together. Today

even modern ‘assembly’ must be run through an assembler to be read by the machine.
While the human programmer must make the steps easy for the machine, and write the
steps in the correct order, the assembler must alter the steps into exact binary instructions
which include, for example, exact addresses rather than the command to move a number
to memory (or store) or to the ALU input.

The earliest code was all binary; of course, and thus clearly the most basic binary codes
can be read. In these early codes the commands were implemented by women who
physically linked nodes to create the binary ‘1’ of the commands. However, the codes
produced today are orders of magnitude larger and thus more complex to read in binary
form. For example, during World War II the effort of all the Allied mathematicians at
Bletchley Park to create a coding to break German’ s encrypting Enigma machine. The
mathematical genius who determined how to break the machine using the binary
computing power available at the time, Alan Turing, is now being honored by s 20,000
pound statue in Manchester’ s Sackville Park. In contrast, creating high-level code to
break the Enigma machine is a not uncommon undergraduate assignment at Carnegie
Mellon, as the coding is far simpler and the available processing power far greater. The
coding involved in creating a modern game, WYSIWYG word processor, or operating
system requires higher level code and produces millions of functionally unreadable binary
code. Thus the code written today is commonly subject to reverse engineering which
observes the actions and interactions of the code with other elements of the machine; as
opposed to attempting to read the code itself.

High level languages can be used for far more complex tasks than scripting languages,
and are more efficient for multiple use on a single machine. High level languages can be
compiled or interpreted. Compiled code is read directly by a machine, and is suitable only
for a particular machine running a particular operating system. A compiler changes words
to bits, of course, but more importantly it changes instructions which can be understood
by a human(e.g., x+1)to instructions which can be understood by a computer. Interpreted
languages similarly alter high level instructions to instructions which can be understood
by a virtual machine. A virtual machine breaks the actions into the same set of long
simple steps which a computer can understand. However, it uses interim address and
names rather than actual hardware addresses (e.g. Arithmetic Logic Buffer 0 as opposed
to a specific 16 or 32 bit address). Thus interpreted code can be run on any machine
capable of supporting a version of the virtual machine. Java is interpreted code and the C
family of languages is compiled.

The output of a assembler, compiler or interpreter is source code. Object code is machine-
specific even if the machine is a virtual machine. The object code for a complex program,
which may be written on a scale of 10^6 lines, cannot be read by humans. Object code
can be read only be de-compiling, which is a painstaking process requiring as much
artistry as engineering. De-compiling object code will not result in the same code as was
entered into the compiler, but rather code which does the same thing as the original code.
High level languages are optimized to be read by humans, in contrast to low-level or
binary code is optimized for the machine.

����&RGH�DV�6SHHFK
In addition to the arguments within the computer science community as to the appropriate
nature of code there have been three significant court cases which hinge on the question
of code as speech. One critical element of all three cases that the code in question in all
these cases is source code. These three cases are -XQJHU�Y��'DOH\��, %HUQVWHLQ�Y��86�
'HSDUWPHQW�RI�6WDWH31 and .DUQ�Y��8QLWHG�6WDWHV�'HSDUWPHQW�RI�6WDWH 32.

The case of;-XQJHU�Y�'DOH\ deals with the question of whether computer code is entitled
to protection as free speech. The plaintiff, Cleveland Law School Professor Peter Daley,
sought to publish examples of encryption code on his class web site. However, Export
Administration Regulations prohibited the export of certain types of encryption, and this
form of publication was deemed to be a prohibited export. The District Court rejected
Professor Daley’ s arguments that free speech protection should apply to source code.
Judge James Gwin concluded that source code should be regarded as a functional device,
outside the scope of First Amendment protection. The plaintiff appealed, and the matter
was heard by the United States Court of Appeals. That court’ s recent determination
reversed the District Court decision, determining that:

‘[b]ecause computer source code is an expressive means for the exchange of
information and ideas about computer programming... it is protected by the First
Amendment’ 33.

The written judgment indicates that the court was influenced by the fact that source code
must be converted into object code before it can be executed by a computer, so the code
cannot be regarded as mere functional executable code. It has ‘both an expressive feature
and a functional feature’ . Further, the First Amendment does not require the speech to be
comprehensible to the average person: ‘a musical score cannot be read by the majority of
the public but can be used as a means of communication among musicians. Likewise,
computer source code, though unintelligible to many, is the preferred method of
communication among computer programmers’ 34.

The facts %HUQVWHLQ�Y��86�'HSDUWPHQW�RI�6WDWH are similar to those of -XQJHU�Y��'DOH\.
Bernstein is a Professor of Mathematics, and Computer Science at the University of
Illinois. As is now common in many universities, Professor Bernstein published the
material for his courses on his web site. This material included cryptographic source
code.

In�.DUQ�Y��8QLWHG�6WDWHV�'HS¶W�RI�6WDWH the plaintiff attempted to export a text on
encryption. The book, $SSOLHG�&U\SWRJUDSK\35 includes the written text of source code,
which is now and has been classified as speech. The book also includes a disc which has
the source code described in the book. The disc does not include a compiler. The book
can be exported under current law, yet the disc which accompanies the book cannot. Karn
sought to export the disc as well as the printed text.

The key element in all of these cases is the use of source code as expression, to
communicate between people. The full implications of the application of the First

Amendment to computer code are yet to be explored. A regular right to free speech is not
a right to plagiarize, so this change in the law is unlikely to impact upon programmers’
rights with respect to the copyrighted computer code of others. The arguments with
respect to the nature of code which encrypts has been the area where discussions of the
nature or code have been most detailed36. Yet this debate has not extended to the
discussion of the interaction of intellectual property and code, no doubt in part because
the core of the argument has been the existence of First Amendment rights for those who
communicate with source code.

With this basic understanding of code we can proceed.

���/LFHQVHV�DQG�/HJDO�3URWHFWLRQ
Licenses are intellectual property mechanisms which address the distinct types of code
and the protection for that code. Notice that within the computer science community the
construct which we offer here has been implicit if unexamined in the private governance
structure (i.e. licenses) for decades. Here we discuss the types of licenses at some length,
to bring to light the options for governance of code embodies in each license. We also
discuss the interaction between code types and intellectual property protection in each
license.

Contract law regulates the relationship between the parties to the contract - it does not
provide those parties with rights against the rest of the world. In that sense, contract is
essentially a private matter, and courts will allow parties significant discretion to
negotiate and agree on terms suitable to their situation. Courts may be inclined to override
contractual terms where they are considered to be unconscionable, or if they contravene
public policy. But where the parties are negotiating at ‘arms’ length’ in a commercial
context, the bargain and terms they reach are likely to be upheld by the law. The ‘shrink
wrap’ and ‘click through’ licenses included with software are governed by the law of
contract. By their nature, licenses convey rights to use software, but no proprietary rights
in that software. As a result, the ‘purchaser’ of software under a license receives a variety
of contractual rights (to use, copy or modify the software, for instance), but cannot be
considered to own the software. The license can be revoked (such as if there is a
fundamental contractual breach by the licensee), and this would generally terminate the
licensee’ s rights in respect of the software.

This section considers how intellectual property protections interact with open code
licenses, proprietary licenses and licenses under UCITA.

����2SHQ�&RGH�/LFHQVHV
Copyright protection is essential to the effectiveness of open code licenses. Once
copyright protection is waived in relation to code, that code becomes public domain. As
noted in the discussion of public domain software in Part 1, this means that the code can
be removed from the public domain and used in proprietary software. Copyright is
necessary to keep open code free or open. Notice that the copyright proposal proposed by

Zittrain37 and the less considered proposals by Barlow, would effectively kill open code
licenses.

Why is copyright needed when the parties could simply rely on a license agreement? The
existence of copyright creates a default position restricting all users’ ability to copy or
amend the software. If users want more extensive rights in relation to open code software,
they must rely on open software licenses, which tend to be more permissive than
copyright. Once they rely on these licenses for the benefits they confer, they must also
comply with the license restrictions and any disclaimers or warranty exclusions in the
license. This approach offers benefits to both parties. If copyright were not applied, it
would be much more difficult to establish that a person using freely distributed code had
entered into a license agreement and was bound by its terms and conditions. Many
members of the open code software community reject software patents, charging that they
restrict expression and creativity and are generally bad for business38. Open code licenses
do not rely on patent protection, although they may be able to interact with patent
protection. As open code distributions necessarily include a distribution of the underlying
source code, trade secret protection will not apply to that code.

����3URSULHWDU\�/LFHQVHV
A proprietary software license usually reserves all applicable intellectual property
protection attaching to the product. For instance, Microsoft’ s End-User License
Agreement for Windows 98 (the ‘MS License’) states:

‘[t]he SOFTWARE PRODUCT is protected by copyright laws and international
copyright treaties, as well as other intellectual property laws and treaties. The
SOFTWARE PRODUCT is licensed, not sold’ .

Article 4 of the MS License goes on to state:

All title and intellectual property rights in and to the content which may be
accessed through use of the SOFTWARE PRODUCT is the property of the
respective content owner and may be protected by applicable copyright or other
intellectual property laws and treaties. This [license] grants you no rights to use
such content. All rights not expressly granted under this [license] are reserved by
MS and its suppliers (including Microsoft Corporation).

The software producer is also likely to attempt to restrict consumer rights conferred by
intellectual property laws to the maximum extent possible. As an example, Article 2(e) of
the MS License provides:

‘You may not reverse engineer, de-compile, or disassemble the SOFTWARE
PRODUCT, except and only to the extent that such activity is;expressly
permitted by applicable law notwithstanding this limitation’ [italics added].

The effect is to limit any rights that might be implied under the law. However, at present,
there is some doubt about the enforceability of these licenses, and so software producers

may be left to rely on their intellectual property rights alone. As source code is usually not
distributed with proprietary software, the software producer may be able to rely on trade
secret protection in relation to any unauthorized disclosures of this code.

����8&,7$
A license under UCITA is simply a commercial contract, which depends on the parties’
abilities to enter into such a contract. UCITA cannot be used to extend a licenser’ s
intellectual property rights, and expressly recognizes preemption by copyright, patent, or
other federal intellectual property law. Under UCITA, proprietary software licenses are
likely to continue to reserve all intellectual property rights and restrict consumer rights
under those laws to the maximum extent possible. As these licenses are more likely to be
enforceable than existing mass market software licenses, this approach can be expected to
offer software producers at least as much protection as existing proprietary licenses and
possibly more protection.

���&RQFOXVLRQV��&RGH�DV�6SHHFK��3URGXFW�RU�6HUYLFH
Proprietary code is currently sold as a product. Code is purchased as the artefact on which
it is embodied, usually a CD ROM. Code is packaged and sold as a product to the home
consumers. Similarly, the software patenting scheme views code as an invention, as a
functional device that operates to produce an outcome. UCITA would change this
practice by having code be controlled as a service with extreme variation in the licensing
terms. The closest match to UCITA today is in professional services - lawyers or
consultants who can be held liable only for negligence or misrepresentation. UCITA
offers the view of code as an active service performed by the company on the consumer’ s
computer. Open source and free software offer a view of code as speech, which must be
protected to allow it to be freely shared, examined and dissected. By contrast, software in
the public domain has no protection, and thus cannot be said to be governed. This
analysis gives rise to four implicit models of code governance; code as a product or
functional invention, code as professional service, code as speech and ungoverned code.
The table below and our argument above supports the application of these three models
by showing the correspondence between the intellectual property mechanisms used for
code governance and the mental model that we propose here.

,PSOLFLW�PRGHO�RI�&RGH 2SHQ�FRGH��IUHH�OLFHQVHV 8&,7$
&RS\ULJKW 3DWHQWV 7UDGH�6HFUHWV 3XEOLF�'RPDLQ

3URGXFW�RU�IXQFWLRQDO�LQYHQWLRQ X X

3URIHVVLRQDO�VHUYLFH X
(PERGLHG�6SHHFK X X
8QJRYHUQHG�&RGH X

7DEOH����&RUUHVSRQGHQFH�EHWZHHQ�PRGHOV�RI�VRIWZDUH�DQG�IRUPV�RI�OHJDO�SURWHFWLRQ�

If the court is correct in Junger�Y�'DOH\��arguably the only sustainable model of code

governance is that which recognizes code as embodied speech. Our framing suggests that
the ruling in;-XQJHU�Y�'DOH\�may have far-reaching (at least) philosophical and (at most
and unlikely) regulatory effects. At its extreme this ruling may be seen to imply that First
Amendment protection, copyright and trade secrets - the only mechanisms useful for that
which is embodied speech - are the only feasible mechanisms for the governance of code.
When code is the specialized speech that governs our world, as Lessig would argue, this
degradation of dialogue is costly

It is critical that the foundations for the protection of code be thoroughly considered with
a broad view encompassing not only intellectual property but also all current experiments
in code governance. By describing the essence of code as well as the mechanisms of its
governance we have concluded that source code should be governed as embodied speech,
object code governed as product or functional invention. The third option - professional
service - should be restricted to code developed for a single customer as specified by the
customer under an individually negotiated contract. An example of such a situation may
be the efforts by software engineers to prevent any difficulties resulting from the two-year
field date, widely known as the Y2K problem. Other examples may be the conversion of
databases or custom interfaces or web designs.

/HJDO�3URWHFWLRQ &RQFHSWXDO�0RGHO 3URWHFWLQJ $SSOLFDWLRQ�WR�
&RGH
Patent Code as product or functional invention specific implementations of idea,
practical innovation Object code
Copyright Code as speech expression of idea Source code
Professional service Code as customized service consultants,
results of professional judgment Custom produced code
None Ungoverned code information which wants to be free Public domain

7DEOH����$Q�,QWHOOHFWXDOO\�&RKHUHQW�$SSOLFDWLRQ�RI�/DZ�WR�'LJLWDO�,QIRUPDWLRQ�3URSHUW\

Such a reorganization of intellectual property law would maintain the governance of
code, reward inventors, allow innovation and prevent restrictions of speech. The proposal
for reconsideration of intellectual property has the advantage that it fits the mental models
as embodied in different licenses and proposals with respect to the governance of code.

While this is an innovative proposal it is neither as radical as any who would propose a
single model for all code, from information wanting to be free to information which is
licensed, nor would it prohibit the models for software market as they exist today. It is in
concert with the fundamental concepts of intellectual property and business practice. Both
the free software and open source approaches to code governance fit within our proposed
implementation. In the case of open code or free software those who choose to install
software have changed the form from embodied speech to machine. Just as a producer of
a textbook will not be held liable if a student were to harm him/herself when building
from its directions this would not increase the liability of those providing source code.

The patent system is not fundamentally at odds with this framing. It would require that
patents be limited to a particular instantiation of source code, rather than a concept which

can be coded. Yet innovations as implementations in software would remain protected by
patent. The more interesting issue would be the question of functional equivalence in
software. This may produce exactly the same negative result as overly broad software
patents is said to have produced: a unknowable web of constraints on the individual
innovator. Alternatively this may allow any significant innovation to occur while
providing patent protection for the most fundamental innovations. Depending on the
construction of the concept of equivalence for functioning software, the patent protection
on software as a machine could be broad enough to have prevented the creation of
Microsoft Excel from Lotus 1•2•3, Microsoft’ s Explorer from Navigator. Despite the
findings of fact that Explorer was initially technically inferior to Navigator and adoption
was forced by monopoly power, the extension of the patent system to cover any GUI
browser would be a considerable and potentially dangerous extension, rather than
contraction, of patent protection. Under the current law, the final competitive choice for
Netscape was to release its code. Under the proposed framing, such a release would entail
trading the more stringent protect ion of copyright for the lower liability given
instructions in the printed word. Maintaining trade secrets would not be altered by this
reorganization of intellectual property law.

There are two perspectives which would be not be possible under this proposed regime.
The first is the declaration that information is inherently free, and that any protection is
ill-considered. Both as authors and individuals who would purchase high quality
information, we do not believe that all information wants to be free39. The second is the
model of code as implemented in UCITA. UCITA is in direct opposition to this proposal
as UCITA treats code as specialized service even when packaged with shrink wrap and
sold to millions. The extremes as represented by ‘information wants to be free’ at one end
and UCITA at the other both negate concepts of code which do not meet the narrow
mental models of the one who has framed the argument. History has shown that both
speech without control and speech with excessive control yield effectively the same result
- degradation of dialogue40. This proposal seeks to strike a balance in accordance with
the traditions of intellectual property, the realities of economics, and the nature of code.

The current rubrics of intellectual property provide adequate flexibility to fit all those
models, yet at this time the application of these models has no coherent underlying basis
and is in such flux as to be reasonably said to be in disarray. A coherent application of
intellectual property standards will enhance the Internet, allow multiple models of
information exchange without placing the ideals of civil society at risk. The Digital
Millennium Copyright Act is an excellent example of using a nuclear explosion when the
hammer in the tool belt did not work41 - when the task was best left to a screwdriver.
Radical redesign of the toolbox is not needed. All that is necessary is a rational
reconsideration of the tools and problems at hand.

Source code should be governed as speech because the core of source code is the
communication of ideas. These ideas include the illustration how to solve a particular
computing problem, the flow of information between user and code distributor, and the
appropriate balance between speed, ease of use, and security. The distribution of source
code is the exchange of ideas, ideas which are necessary for both democratic debate and
scientific innovation.

The problem with the application of source code is the same as the problem with the
application of ubiquitous contract law: one cannot expect any user to have the near
infinite attention span necessary to examine the details of the code. A naive user loading
source code an a computer would be unable to turn it into functioning code. Many a
Linux user has found messages requiring extending the path or updating libraries are
required to compile, and thus install, source code. Some such messages have turned
prospective Linux users against the option; yet installation is far more simple thane
examination of the body of code as a whole.

However, publishing the code would allow agents (in the traditional sense; for example,
Consumer Reports) to examine code. It is the rare citizen who has read the law of the
land, yet its openness serves us all (an analogy explored to its fullest in Lessig, 2000).

Object code should be treated as a machine because it is inherently functional. The design
of licenses which prohibit reverse engineering illustrate that the distribution of the code is
not intended to be a distribution of ideas, but a distribution of functionality42.

A distinction between these may be code written for an individual or unique application.
In this case both the source code and the object code is provided. A strict application of
the limits described here could prevent small companies making individually developed
code from installing the code for clients. It is not unusual to make distinctions between
services and products developed for the mass market and those which are customized for
an individual user. An example of this which is close to home is the design of homes
themselves. The governance of manufactured housing and stick built housing are
fundamentally different. One is a code requiring particular implementations, for example,
certain thickness of materials. In contract manufactured housing has to meet performance
requirements. Similarly manufactured code and customer-produced code are distinct.
Thus we propose governing such code as a professional service.

While this does not offer a complete detailed analysis of the regulatory framework, in this
paper we have offered a practical and philosophically coherent model for the governance
of code which will allow multiple markets and business models to thrive.

)RRWQRWHV
1. e.g., Johnson, D and Nissenbaum, H (1995),Computer Ethics and Social Value,
Prentice Hall, N.J; Kling, R (1996), &RPSXWHUL]DWLRQ�DQG�&RQWURYHUV\, Academic Press,
UK; Spinello, R and Tavani, H (2001), 5HDGLQJV�LQ�&\EHUHWKLFV, Jones and Bartlett
Publishers, January 2001.

2. e.g., DeBona, C, Ockman, S, and Stone, M (eds) (1999),2SHQ�&RGHV��9RLFHV�)URP�WKH�
2SHQ�&RGH�5HYROXWLRQ, O’ Reilly, Cambridge; Lessig, L (1999), &RGH�DQG�2WKHU�/DZV�RI�
&\EHUVSDFH, Basic Books.

3. e.g., Shapiro and Varian, H (1998)��,QIRUPDWLRQ�5XOHV, Harvard Business School Press,
Cambridge MA; Baldwin C and Clark, K (2000), 'HVLJQ�5XOHV, MIT Press, Cambridge,

MA.

4. e.g., National Academy of Science (2000), 7KH�'LJLWDO�'LOHPPD��,QWHOOHFWXDO�3URSHUW\�
LQ�WKH�,QIRUPDWLRQ�$JH, National Academy Press, 2000; Branscomb, A (1995), :KR�
2ZQV�,QIRUPDWLRQ, Basic Books.

5. Eisenstein, E. L (1979), ‘The Printing Press as an Agent of Change’ , Cambridge
University Press, Cambridge, UK

6. Litman, J (1997), Reforming Information Law in Copyright’ s Image, , University of
Dayton Law Review 587, (1997) 22: <http://www.msen.com/~litman/dayton .htm
<http://www.msen.com/~litman/dayton.htm>>

7. National Academy of Science (2000), 7KH�'LJLWDO�'LOHPPD��,QWHOOHFWXDO�3URSHUW\�LQ�
WKH�,QIRUPDWLRQ�$JH, National Academy Press, 2000.
Similarly, the NCCUSL describes the threat faced by software producers as follows:
Computer information is peculiarly vulnerable to dissipation of its value by copying. The
genius of computers is their ability to retain and copy information. Copies of information
look just like their originals. In fact, everything is a copy. There are no true originals.
Copies can be duplicated in huge numbers and disseminated to millions of users in times
measured in less than seconds. Therefore, those who invest capital, intellectual effort and
labor into the creation of valuable computer information may lose the economic value of
their products in seconds. Without the ability to control copying and dissemination of
computer information, vendors risk losing everything. The risk is so great that without
licensing, the development of computer information products could become
uneconomical and the great economic benefit of computer information products could be
lost. (NCCUSL UCITA summary:
<<http://www.nccusl.org/uniformact_summaries/uniformacts-s-ucita.htm>>.

8. Johnson-Laird, A (1997),‘The Anatomy of the Internet Meets the Body of the Law’ ,
(1997) 22, University of Dayton Law Review. 465, (1997) 22
<<http://eon.law.harvard.edu/h2o/property/alternatives/johnson-laird.html>>.

9. Dyson, E (1995), ‘Intellectual Value’ , Wired vol. 3.07, July 1995:
<http://www.wired.com/w ired/archive/3.07/dyson.html
<http://www.wired.com/wired/archive/3.07/dyson.html>>.

10. Barlow, J (1994),‘The Economy of Ideas’ , Wired vol. 2.03, 1994:
<http://www. wired.com/wired/archive/2.03/economy.ideas_pr.html
<http://www.wired.com/wired/archive/2.03/economy.ideas_pr.html>>.

11. See e.g. Debian Project, ‘What Does Free Mean?’ ,
<<http://www.debian.org/intro/free>; Stallman, R (1996), Re-evaluating Copyright: The
Public Must Prevail [Published in Oregon Law Review, Spring 1996]
<http://www.gnu.org/philosophy/reevaluating-copyright .es.html
<./vhttp://www.gnu.org/philosophy/reevaluating-copyright.es.html>> suggests that the
DMCA altered copyright in exactly the wrong way; while traditional copyright stuck an

important but now inappropriate balance. The GPL depends on copyright.

12. SIIA web site: <<http://www.siia.net/piracy/programs/sftuse.htm>>

13. Note that the WIPO Copyright Treaty requires countries bound by the treaty to
provide adequate legal protection and effective legal remedies against ‘the circumvention
of effective technological measures that are used by authors in connection with the
exercise of their rights under this Treaty or the Berne Convention’ (Article 11).

14. Fonda, D (1999),‘Copyright Crusader’ , Boston Globe Magazine, August 29th, 1999:
<http://www. boston.com/globe/magazine/8-29/featurestory1.shtml
<http://www.boston.com/globe/magazine/8-29/featurestory1.shtml>>.

15. Some opponents were concerned with the process as well as the content. The Bill
passed at the height of the impeachment crisis and ‘[t]here wasn’ t any debate,’ said Eric
Eldred, who later brought a constitutional challenge against the Act, ‘no public
consideration of the trade-offs being made. Where were the people charged with
protecting the public domain - historians, archivists, free speech advocates? I was writing
letters to newspapers, trying to get attention to the issue. But the public didn’ t realize
what was going on; they didn’ t understand the consequences’ : Fonda, D (1999),
‘Copyright Crusader’ , Boston Globe Magazine, August 29th, 1999: <http://www.
boston.com/globe/magazine/8-29/featurestory1.shtml
<http://www.boston.com/globe/magazine/8-29/featurestory1.shtml>>. See also Society of
American Archivists, Text of Letter Sent on SAA Letterhead to Members of the Senate
and House Judiciary Committees in Opposition to the Copyright Term Extension Act,
November 1997:
< http://www.archivists. org/statements/copyextn.html
<http://www.archivists.org/statements/copyextn.html>>.

16. Eldred v Reno, U.S. District Court, DC, Case No. 99-65, 1999.

17. Amazon’ s 1-Click patent #US05960411 can be viewed at: <http://www.patents.ibm.c
om/details?pn=US05960411 <http://www.patents.ibm.com/details?pn=US05960411>>

18. Tim O’ Reilly of O’ Reilly publishing reflected the views of many of those in the
programming community when he made the following comments about the 1-Click
patent: ‘the Amazon 1-Click Patent is one more example of an ‘intellectual property’
milieu gone mad. In the first place, this patent should have never been allowed. It’ s a
completely trivial application of cookies.... Like so many software patents, it is a land
grab, an attempt to hoodwink a patent system that has not gotten up to speed on the state
of the art in computer science. I’ m not completely opposed to software patents, since
there are some things that do in fact qualify as legitimate ‘inventions’ , but when I see
people patenting obvious ideas, ideas that are already in wide use, it makes my blood
boil’ . <http://www.oreilly.com/ ask_tim/amazon_patent.html
<http://www.oreilly.com/ask_tim/amazon_patent.html>>.

19. League for Programming Freedom, ‘Against Software Patents’ : <http://lpf.ai.mit.edu

/Patents/AgainstSP/asp-14.html <http://lpf.ai.mit.edu/Patents/AgainstSP/asp-14.html>>

20. League for Programming Freedom, ‘Against Software Patents’ : <http://lpf.ai.mit.edu
/Patents/AgainstSP/asp-05.html <http://lpf.ai.mit.edu/Patents/AgainstSP/asp-05.html>>

21. Lessig comments that ‘An increasingly significant cost of Net startups involves both
defensive and offensive lawyering - making sure you don’ t ‘steal’ someone else’ s ‘idea’
and quickly claiming as yours every ‘idea’ you can describe in a patent application.’
(Lessig, L (1999), ‘The Problem with Patents’ , The Standard, April 23rd, 1999:
<<http://www.thestandard.com/article/display/0,1151,4296,00.html>>.

22. See also the League for Programming Freedom, ‘Against Software Patents’ :
<http://lpf.ai.mit.edu /Patents/AgainstSP/asp-07.html
<http://lpf.ai.mit.edu/Patents/AgainstSP/asp-07.html>>.

23. League for Programming Freedom, ‘Against Software Patents’ :
<http://lpf.ai .mit.edu/Patents/against-software-patents.html
<http://lpf.ai.mit.edu/Patents/against-software-patents.html>>.

24. Tim O’ Reilly, in his email dialogue with Richard Stallman, February-March 2000:
<http://w ww.oreillynet.com/pub/a/patents/2000/03/09/stallman.html
<http://www.oreillynet.com/pub/a/patents/2000/03/09/stallman.html>>.

25. The Economist notes that: ‘ Increasingly, companies realize that among the few
remaining barriers to entry are the ones that the government hands out in the form of 20-
year monopolies’ (‘Patent Wars: Better get yourself armed. Everybody else is’ , The
Economist, April 8th, 2000). It adds: ‘ IBM is now getting ten new patents every working
day’ .

26. Notice I refer to kinds of code since type and class both have specific meanings in the
context of software.

27. Ullman, E (1995), ‘The Dumbing-Down of Programming’ Salon.com, 21 March
1995: <http://www.salon.com/21st/feature/1998/05/cov_12feature.html>.

28. CGI stands for common gateway interface. Perl, Javascript and CGI are the most
widely used scripting languages

29. Greenia, M W (2001), +LVWRU\�RI�&RPSXWLQJ��$Q�(QF\FORSHGLD�RI�WKH�3HRSOH�DQG�
0DFKLQHV�WKDW�0DGH�&RPSXWHU�+LVWRU\� (January 2001) Lexikon Services (UK) 2001.
Grace Hopper also created the first high-level language, COBOL.

30. Junger v. Daley, No 96-CV-1723 (N.D. Ohio, July 2, 1998).

31. Bernstein v. US Department of State, 945 F. Supp. 1279 (ND Cal. 1996).

32. Karn v. United States Dep’ t of State, 920 F. Supp. 1, 9 n.19 (D. D.C. 1996).

33. United States Court of Appeals Decision, Junger v Daley, April 4th 2000,
<http://samsara.law.cwru.edu/victo ry.txt <http://samsara.law.cwru.edu/victory.txt>>.

34. Perry Barlow, J (1994), The Economy of Ideas, Wired 1994, vol. 2.03: <http://www.
wired.com/wired/archive/2.03/economy.ideas_pr.html
<http://www.wired.com/wired/archive/2.03/economy.ideas_pr.html>>.

35. Schneier, B (1995), $SSOLHG�&U\SWRJUDSK\, John Wiley & Sons, NY, NY.

36. see, for example, Froomkin A M (1995), ‘The Metaphor is the Key: Cryptography,
the Clipper Chip, and the Constitution’ , 143 U. Penn. L. Rev. 709 (1995).
<http://www.law.mi ami.edu/~froomkin/articles/clipper.htm <http://www.law.miami.edu/
~froomkin/articles/clipper.htm>>.

37. Zittrain, J (1999) ‘The Un-Microsoft Un-Remedy: Law Can Prevent the Problem That
it Can’ t Patch Later,’ 31 Connecticut L. Rev. 1361 (1999).
<http://papers.ssrn.com/sol3/pre_papers.cfm?ABSTRACT_ID=174110
<./vhttp://papers.ssrn.com/sol3/pre_papers.cfm?ABSTRACT_ID=174110>>.

38. See, for e.g., R. Stallman,Patent Reform is Not Enough:
<http:// www.gnu.org/philosophy/patent-reform-is-not-enough.es.html
<http://www.gnu.org/philosophy/patent-reform-is-not-enough.es.html>>.

39. We mean free as in ‘free beer’ , not free as in ‘free speech’ . As Stallman notes, ‘Free
software is a matter of liberty, not price. To understand the concept, you should think of
‘free speech’ , not ‘free beer’ ’ . See:
<http://www.fsf.org/philosop hy/free-sw.html <./vhttp://www.fsf.org/philosophy/free-
sw.html>>.
In contrast, information wants to be free argues that all information should have zero
price. While information wanting to be free is sometimes confused with free software,
these are fundamentally different uses of the word.

40. Darnton, R, (1985), /LWHUDU\�8QGHUJURXQG�RI�WKH�2OG�5HJLPH� Harvard University
Press Cambridge, MA.

41. Lutzker, A P (1999), Primer on the Digital Millennium: What The Digital Millennium
Copyright Act and the Copyright Term Extension Act Mean for the Library Community,
March 1999: <http://www.ala.org/washoff/primer. html
<http://www.ala.org/washoff/primer.html>>.

42. Most proprietary licenses prohibit reverse engineering. The DMCA prohibits reverse
engineering for encryption software, creating criminal penalties as well as a private right
of action.

This proposal was supported in part by NSF CAREER grant 9985433, and an equipment
grant from HP. I would I would like to acknowledge J. Cohen and S. Garfinkle for their

thoughts.

