
Toward an Intelligent Tutoring System

for Teaching Law Students to Argue with Cases

Kevin D. Ashley and Vincent Aleven

University of Pittsburgh

School of Law,

Intelligent Systems Program and

Learning Research and Development Center

Pittsburgh, Pennsylvania 15260

Abstract

This paper describes a research project to devise
and test an intelligent, case-baaed tutorial program
for teaching law students to argue with cases. In or-
der to present pedagogically interesting lessons and

develop a Student Model, we have designed mem-
ory structures such as Argument Contexts and a

hierarchy of Issues in Case-Baaed Legal Reaaoning.
Using logical expressions in the knowledge repre-

sentation language Loom, we also explicitly repre-
sent case-based argument concepts such as a case’s

being on point to a problem, more on point than
another case, most on point of all the cases, a best
case to cite, and a counterexample to another case.
The program will be able to reason with the explicit
concepts in selecting cases from a Case Library, as-
sembling lessons and examples, analyzing student
inputs, and in generating explanations and feed-
back. We hope to demonstrate empirically that,

by providing law students a conceptual model of
the criteria for selecting and describing precedents

that would be useful in an argument, the tutorial
program will help them to learn to select and apply
cases more efficiently and to make more effective

arguments.

1 Introduction to Arguing with Cases

This paper describes a research project to design and

build a tutorial program to teach students to make ar-
guments with cases. Under the program’s guidance, stu-
dents will argue with the program; the program will ar-
gue back, and comment on the student’s arguments.

An important lawyering skill is the ability to compare
and contrast cases critically for the purpose of using them
in arguments by analogy. The law is rife with exam-
ples (e.g., If a defective coffee urn was held “inherently
dangerous” and the manufacturer liable, then surely the
manufacturer of a car with a defective wheel should be li-

able. [Levi, 1949]). Legal reasoning is not unique in this

regard. The ability to compare and contrast problems
and past cases is a mark of expert arguing in a variety of
domain contexts including mathematics [Lakatos, 1976],

tiummqytitim tf~tia~dtimat iti~tietit
the cqim us not mado or distdmted f= dime: ranrnercid advamags, the.ACM

copyright notice and ths title of b putdiraka and h dam appsu, and naics is

@f= that cq@ is by psrmkim cf the Assnciatim for Computing Marhintay,
To COPY OthUl+’iSO, OK tO rqxlbhb, roquira t f= lrldkm 8pCCi6C em.

@ ACM O-89791 -399 -X/91 /0600/CKk12 $1.50

scientific research, policy analysis [Neustadt and May,

1986], philosophy and ethics,

In the American legal system, and that of other com-

mon law jurisdictions (as distinguished from Continental

or Civil Code jurisdictions), a standard warrant justify-

ing a legal conclusion is to draw an analogy to p,ast cases

or precedents. A good precedent involves similar facts

whose decision of an issue favored the adversary’s side.

In law aa elsewhere, exactly what “similar” means is an

important but debatable question with possibly many

useful answers. An appropriate way to challenge the

warrant is to show that there is a distinction, that is,

a difference that justifies different treatment, or to find

other analogous cases to cite as counterexamples.

Even when an attorney relies on the authority of a

legal rule, whether drawn from a constitution, statute,

regulation or court statement, he or she must know how

to find favorable precedents, ones which applied the le-

gal rule in similar circumstances, and to argue that they

justify the same outcome in the current case. This is

so because it is rare that attorneys can construct a log-

ical proof that a legal term applies. Legal rules are not

ordinary rules. They contain open textured legal predi-

cates that are not adequately defined in terms of other

rules. See [Gardner, 1987]. Legal concepts are also dy-

namic; their meanings change as they are applied from

case to case [McCarty and Sridharan, 1981; McCarty and

Sridharan, 1982], Even logical connectors used in legal

rules can be ambiguous, because their scopes may not be

clearly specified [Allen and Saxon, 1987].

In order to bridge the gap between general legal rules

and specific facts, attorneys must resort to comparing

the problem to paat cases. Recent work in AI and Law

has adopted a number of approaches to modeling this

process: In past work we have employed Dimensions and

cases to link facts to conclusions about claims [Ashley,

1991a; Ashley, 1991 b]. Rissland and Skalak have ex-
tended the approach with rules to link facts to conclu-

sions about statutory rules and predicates [R&land and

Skalak, 1991], and Branting has employed matching facts

to precedents’ explanations to link the facts to conclu-

sions about claims and statutory rules [Branting, 1991].

There are other ways to bridge the gap, for example, by

arguing from the structure of a code of laws, the purposes

or policies of the code, the intent of the framers of a rule,

This work is supported by a National Science Foundation
Presidential Young Investigator Award and a grant from the
National Center for Automated Information Retrieval.

42

or linguistic analysis. It would appear that in Civil ju-

risdictions, attorneys routinely employ these other metho-

ds in formal arguments. Nevertheless, one would expect

that in informal arguments, expert attorneys (Civilians

and common law attorneys alike) are equally adept at

comparing and contrasting cases, recognizing that one

situation presents a stronger or weaker position than an-

other, distinguishing situations, and citing real or pc)sing

hypothetical counterexamples to test conclusions. Such

cognitive abilities are universally valuable in formulating,

assessing and explaining legal conclusions.

We believe that attorneys employ fundamental

argument-making skills that involve the cognitive abil-

ity to compare problems and cases. We shall refer to

these collectively as case-based argument-making abilit-

ies. They include:

a.

b.

c.

d.

e.

f.

g.

h.

Retrieving similar cases. Lawyers need to recognize the
kinds of facts that strengthened or weakened a legal con-
clusion in a past ca.-~ to assess whether the case would
be a good case to cite as a justification for a legal con-
clusion in a current problem. Fundamentafly, such fac-
tuaf strengths and weaknesses are the relevant similari-

ties among the cases; the caaes to look for in performing
a search of legal databases and libraries are cases that

share such strengths and weaknesses with the probllem.

Analogizing problems to cases. In citing a case in sup
port of a conclusion, lawyers need to be able to draw
an analogy between the problem and the case :hat justi-
fies treating the problem and the case in the same way.

Reciting the shared strengths and weaknesses is a basic
way of analogizing.

Distinguishing cases. Lawyers need to be able to respond
to arguments citing cases. One way is by distinguishing
the case from the problem. It involves identifying rele-
vant differences between the problem and case, such as a
strength favoring the winner in the case that is missing

from the problem. Distinguishing alao involves explain-
ing why the differences are reasons for not treating the
case and problem in the same way.

Identifying counterexamples. Another way of responding
is by citing a counterexample. This means finding other

cases that are just as anologous as or more analogous
to the problem than a given case (i.e., share the same
strengths and weaknesses and maybe some additional
ones, too) but which had a different outcome,,

Selecting best cases. Given a problem and a side in an ar-
gument to represent (i.e., plaintiff or defendant), lawyers
need to be able to select among the relevant cases those
that best support the side given the factual strengths and

weaknesses of its position. Best case selection requires
taking into account the analogies, distinctions and coun-
terexamples.

Assessing argument strengths. The lawyer needs to ass-
ess how strong an argument his or her side has in ILight
of the cages and counterexarrtples that can be cited for
and against the proposition.

Generalizing a rule of classification. The cl=sification
rule to be generalized from the best cases attempts to
differentiate between positive and negative examples and
classifies the problem along with one or the other.

Testing rules with counterexamples (reaf or hypotlheti-
caf).Testing that rule involves attempting to find coun-
terexamples in the libraries of cases or to generate hypo-
thetical cases which would demonstrate the rule’s limit>

tions, and suggesting appropriate reformulations of the

rule.

2 Why Learning to Argue with Cases

is Difficult

Currently, law school students learn the argumentation

skills primarily by participating in classroom discussions

in courses where teachers employ a Socratic method, of

which making arguments by comparing and contrasting

cases is an integral element. The practiced Socratic pro-

fessor stage manages an argument to convey a lesson,

perhaps to teach students about the meaning of a general

legal rule or concept or the significance of a principle or

policy. Significantly, the Socratic professor teaches stu-

dents about abstract legal concepts within the context of

the specific facts of a carefully crafted problem situation

and a handful of cases from the readings. The professor

lays bare an ambiguity in the rule or a conflict among

principles or policies by inducing students to argue for or

against a position in the problem situation.

Like Socrates’ ancient listeners, law students are ex-

pected to participate in the argument, but, unlike the

ancients, law students are expected to do more than say

“yes” at the master’s prodding. Law students respond by

performing the basic case argument tasks listed above:

selecting a case to cite, drawing an analogy in terms of

some proposed classification rule, responding by distin-

guishing or citing a counterexample or offering a different

rule. In order to steer the argument to serve pedagog-

ical goals, the professor may hypothetically modify the

problem’s facts to test the sensitivity of the students’

arguments to changes in various conditions.

A fascinating aspect of the law school Socratic method

is that a small number of formal case-argument skills are

applicable across a wide array of law school subjects. lj

a student has learned to participate in this adversarial

dialogue, he or she is prepared to learn all manner of

substantive legal areas. The same methodology basically

applies across the curriculum (although, admittedly the

“fit” is better with some law school subjects than others.)

These legal argument skills “scale up” in another inter-

esting sense. Although Socratic lessons may involve only

a small number of cases, legal rules and alternative view-

points, the argumentation skills they teach apply even

in the most complex legal arguments. They also “scale

down”. One can restrict lawyers and law students to the
task of making the best arguments possible given an ar-
tificially restricted collection of precedents, and they will
make as good arguments as the precedents allow. The
skills are still evident even though the problems are sim-

plified.

Although Socratic lessons teach fundamental argu-

ment skills, law schools could do a better job of teaching

law students to argue with cases [Paul, 1988; Jaff, 1986].

Only a few students get to engage in an argument during
class, the law school clmsroom can be a stressful environ-
ment in which to learn the skills, and not all law school

teachers are proficient at this method of teaching. Addi-

tionally, these important Iawyering skills are not directly

assessed in law schools. Typically, law school examina-

tions do not directly measure argument-making skills.

Beyond lack of practice, law schools also do not provide

students with an adequate conceptual model of arguing

with cases. Students appear to lack a basic conceptual

structure for making or responding to an argument citing

a case. Lacking that, they are unable to translate how

a case would be used in an argument into criteria for

finding and evaluating relevant cases. Abstract descrip-

tions of how to perform the skills, though helpful, are

not enough; students need practice making and respond-

ing to arguments characterized in terms of a conceptual

model

3 An Intelligent Case-Based Tutor

We believe that an intelligent tutoring system could im-

prove students’ case argument-making ability by provid-

ing both a useful conceptual model and practice. (That

computer-assisted instruction can be effective in the legal

domain, at least more effective than group instruction,

haa been documented by [Teich, 1986].) We are building

a tutorial program to teach students to make arguments

that compare and contrast cases. More specifically, the

system will teach a student (1) basic argument moves

that apply cases in analyzing a problem, and (2) basic

argument criteria that students can use to find the best

cases to employ in those moves. The argument moves in-

volve citing cases, distinguishing them, citingcounterex-
amples, real or hypothetical, and asserting rule-like jus-

tifications for the significance of similarities and differ-

ences.

The system will (1) explain the argument moves and

criteria for evaluating arguments, (2) provide the student

with opportunities to practice his/her skills, and (3) pro-

vide the student with feedback on his/her problem solv-

ing activities. It will place the student in a game-like,

adversarial context where students make and respond to

arguments, and prompt the student to explore alterna-

tive interpretations of a problem’s facts under compet-

ing rules or interpretations of rules. In responding to

students’ moves, the system will be able dynamically to

determine the cases that are most relevant for effective
moves and countermoves. The system will be able to

select examples that serve pedagogical goals such as il-

lustrating an explanation, or bring up issues that the

student ought to know about.

The program will administer lessons testing and im-

proving a law student’s case-based argument-making

ability. The lessons will comprise sets of materials, ar-

gument assignments and problem situations drawn from

different substantive legal areas. The materials will pro-

vide a general introduction to the legal area and a se-

lection of legal authorities including a set of legal cases
involving a small set of issues. Each problem situation
will describe a dispute between a plaintiff and defendant.

The assignments will direct students to make arguments

citing cases for or against a particular side in the problem

or to-defend against such arguments.

Examples of assignments include questions such as:

Which cases can you cite in support of the plaintiff’s
claim?

Which cases could the defendant cite?

Which is the best case to cite for plaintiff?

In citing the best case, which similarities between

the case and the problem should you emphasize’?

How would you respond to that case on behalf of

the defendant? Are there any relevant differences

between the problem and the caae?

Can you find any counterexamples to the case?

If you could make up a counterexample to cite on

behalf of the defendant what facts would it include?

The system will engage the student in a competition,

in effect, a mini argument. The tutor poses a problem,

asks the student to make a point, response or rebuttal

and offers a variety of possible moves. Some moves will

be better than others in that there will be good responses

to the less optimal moves. If the student chooses a less

than optimal move, the system will make a strong re-

sponse, illustrate the better moves by running the stu-

dent through the argument and explain why the move is

better by comparing the responses. The tutor will an-

alyze the student’s inputs to determine if the student

understands the kind of case that would satisfy the argu-

ment move’s constraints. The system will both explain

the more effective query and provide an example of the

best case or move.

In a first version of the system, the lessons will be based

on the model of arguing with cases implemented in the

HYPO program [Ashley, 1991a; Ashley, 1991b; Ashley,

1989a; Ashley and Rissland, 1988; Ashley and Rissland,

1987]. In that model, relevant similarities and differences

among cases are represented by factors. Factors are col-

lections of facts that make cases stronger or weaker for

plaintiff. Each legal domain, like trade secrets misappro-

priation, has a set of factors that have been recognized

by courts as relevant to a decision of such claims, and

any problem can be expected to present a collection of

factors some of which favor the plaintiff and others of

which do not. HYPO provides a general mechanism for

representing factors called Dimensions. HYPO makes and

responds to arguments from competing viewpoints about

who should win the dispute and pcses hypothetical to

strengthen or weaken a side’s position. On this model of

legal argument, an arguer justifies that a plaintiff should

win by citing precedents that involve the same collections

of competing factors where the plaintiff also won. An op-

ponent responds to such arguments by distinguishing the

case or citing counterexamples. Distinguishing involves

pointing out factors that the case and problem do not

share which justify not treating the case and problem

alike. Counterexamples include cases that involve the

same or more inclusive sets of factors shared with the

problem that have the opposite outcome. HYPO’s model

of arguing with cases and factors provides working defi-

nitions for such argument concepts as a case’s being on

point to a problem, more on point than another case,

meet on point of all the cases, a best case to cite, and

a counterexample to another case. These argument con-

cepts capture a realistic aspect of legai argument. HYPO’s

argument concepts make up the curriculum of the first

version of our tutoring system.

The lessons will be administered by the tutor running

on a personal computer or workstation (Our development

work has been performed on a Microexplorer, a kind of

Lisp machine consisting of a Macintosh II with a Texas

44

Instruments Explorer board.) Students will interact di-

rectly with a user interface that presents the problems

and situations, enables students to browse through the

materials, and solicits the students’ responses. Students

will not be able to write responses to the lesson assign-

ments in natural language text. Instead, the students

will construct their answers using tools provided by th~e

interface. Menus of options will be used to constrain thle

range of student responses. Since students and the sys-

tem will argue primarily by comparing case facts, the in-

put / output characteristics of the program can be fairly

constrained and yet still be interesting.

For each lesson, the cases and materials will reside in a

Case Library. The cases will be based on real legal cases,

but the opinions will not be reproduced. Instead, the

cases’ facts and the ultimate outcome will be described

in a simplified manner (based on HYPO’s Factual Predi-

cates).

The interface will provide the student with a set of

tools for retrieving cases from the library, selecting cases

to cite, and emphasizing selected features of a case fc)r

the purpose of drawing analogies or distinctions between

a cited case and a problem. Students will use a mouse

to select cases from a list, to select elements of ZL case’s

description to emphasize as a relevant similarity or dif-

ference, or to select among various browsing and cme

retrieval tools (e.g., to show all the cases that were won

by a plaintiff or that involved a particular factor.) The

interface will provide a help facility, including examples,

to assist students to learn to manipulate the tools.

4 Tutorial Program Architecture

The architecture of the system we are designing, shown

in Figure 1, comprises four modules: the Pedagogical

Module, Domain Expert, Student Model and Agenda

Manager. (Of the standard tutoring system modules de-

scribed in [Wenger, 1987], the User Interface is missing

from our architecture. We regard its functions as part

of the Pedagogical Module and Domain Expert.) In this

section, we describe the architecture in overview and il-

lustrate its intended performance with an example.

4.1 Architectural Overview

In the basic control loop of the tutor:

1.

2.

3.

4.

The Agenda Manager assigns a task to the Dialogue

Manager. A typical task involves administering a

lesson that advances the student through the cur-

riculum.

The Dialogue Manager selects one or more Issues

from the Student Model, selects a lesson that ad-

dresses the Issue(s), and poses a problem to the stu-

dent.

With the aid of the Tool Kit, the student responds

to the problem.

The Student Interpreter analyzes the response, up-

dates the Student Model accordingly, and posts new

task(s) to the Agenda Manager. The Agenda Man-

ager may inspect the Student Model to propose new

tasks. The cycle repeats with a new task and an

up-to-date Student Model.

I 1

‘“”h J-A“’”””k

IIPedagcglcd
Mcdule mRDlakgue

Manager

II
C&ems

I { I

I r Iw

Fimre 1: The architecture of the first Dhase of the tuto-

ri~ system comprises four modules: tie Student Model,

Domain Expert, Pedagogical Module and Agenda Man-

ager.

The curriculum is represented by a data structure

called Issues in Case-Based Legal Reasoning (part of the

Domain Expert’s knowledge). The overall goal of the

system is to make sure that the student knows all of the

Issues. The idea of organizing the domain knowledge as a

set of issues was taken from WEST [Burton and Brown,

1982]. The Issues are organized roughly in terms of con-

ceptual complexity; the basic order of presentation pro-

ceeds from simple to complex Issues, but, subject to that

general constraint, the order is determined dynamically.

Some of the Issues are:

1. Minimum criteria for citing a precedent –A prece-

dent c is citable for side s (plaintiff or defendant), if

it was won by s, and shares at least one factor that

favors s with the current fact situation.

2. Prefer the more-on-point precedent -If precedent c1

and Cz are both citable for the same side, and if c1

is more on point than CZ, c1 is better.

3. Prefer the undistinguishable precedent -If precedent

c1 and C2 are both citable for the same side, and

equally on point, and if ci is undistinguishable while
C2 is not, then c1 is better.

4. Prefer the untrumped point -A point to which there

is no response citing a more on point counterexample

is better than a point to which there is.

45

Other Issues pertain to teaching the factors that in-

,Iuence the outcome of a trade secrets misappropriation

case, concepts such as a case’s being more on point than

another, the pc+wible ways of responding to a precedent-

citing argument (by distinguishing the cited case or cit-

ing a counterexample), and evaluating overall argument

strength. These Issues are drawn from HYPO’s model of

legal argument and its Argument Evaluation Criteria, the

criteria HYPO implicitly implemented for selecting which

points and responses to make and in evaluating compet-

ing arguments [Ashley, 1991a, Appendix G].

In each cycle, the Agenda Manager takes the task with

the highest priority on the Agenda and hands it to the

Dialogue Manager, which is part of the Pedagogical Mod-

ule. The Pedagogical Module’s task is to question the

student, interpret the student’s answers and fashion ex-

planations. Let us suppose that the task is to advance

the student through the curriculum (i.e. to bring up new

Issues). In deciding which pedagogical Issues to pursue

with the student, the Dialogue Manager consults the Stu-

dent Model.

The Student Model keeps track of the parts of the cur-

riculum that the student appears to have mastered. It is

an “overlay” on the set of Issues. Roughly speaking, the

Student Model records for each Issue whether the student

knows it or not This means t hat at any time the student’s

knowledge is considered to be a subset of the Domain Ex-

pert’s knowledge; the st udent’s missing conceptions can

be modelled, but not his/her misconceptions. The over-

lay model was developed in SCHOLAR [Carbonell, 1970]

and WUSOR [Carr and Goldstein, 1977].

Having selected an Issue or Issues, the Dialogue Man-

ager has to decide how to conduct a lesson that brings

up the Issues. It selects an Assignment Type (see Sec-

tion 3 for a listing of the different kinds of assignments)

and an Argument Context. Argument Contexts consist

of an ensemble of cases, factors and a problem situation

(the current fact situation or “cfs”). They are assembled

manually by the program designer from among cases in

the program’s Case Library. The various ensembles of

cfs and cases raise pedagogically interesting Issues for the

student who must choose among the cases in construct-

ing arguments about the cfs. The Argument Contexts

are indexed in a Context Library by the Issues raised.

The tutor presents the cases in the Argument Context

to the student, and poses a question. The student per-

forms his answers by thinking, reading the cases with the

aid of browsing toola, and by employing retrieval tools in

the Tool Kit to search for cases to use in responding to

the tutor’s questions.

In analyzing a response, the Student Interpreter draws
on the Student Model and on the Domain Expert. Ba-
sically, the Student Interpreter compares the student’s
answers to those of the Domain Expert in light of the
Issues that the student is presumed to know and not to

know. Assessing whether the student’s answer evidences

mastery of an Issue presents a problem of credit assign-

ment. Our tentative approach is illustrated in the exam-

ple below. The Student Interpreter employs the Domain

Expert’s Deductive Retriever (described below) directly

to determine the “correct” or best answer to the question

that was posed to the student.

The Domain Expert provides optimal answers to the

Dialogue Manager’s questions, against which the stu-

dent’s answers are compared. In the first version of the

system, the Domain Expert implements HYPO’s model

of case-based argumentation (see Section ,5). Beside the

Issues and the Argument Contexts, the Domain Expert

comprises:

1.

2.

3.

4.

A Library of Cases; following HYPO, for each case the

outcome and the factors that apply are represented;

A set of Concepts of Case-Based Legal Reasoning.

Each concept is a relation, defined over cases or fac-

tors in terms of a logical expression, that plays a role

in legal argument. They include relevantly similar,

relevant difference, more on point, most on point,

and trumping counterexample.

A Deductive Retriever that accepts the logical def-

inition of a concept (or some composition of such

definitions) and returns all of the items, cases or

factors (i.e., Dimensions), in the Case Library that

satisfy the specifications.

A Tool Kit of tools associated with the various con-

cepts by which the student can analyze the Argu-

ment Context he is working in.

If the student’s answers evidence a mastery of the Is-

sue, the Student Interpreter informs the Student Model

accordingly. If not, the Interpreter generates additional

tasks to provide feedback and explanations. The updated

Student Model will lead the Dialogue Manager to revert

to more basic Issues, reinforce a lesson with additional

exercises, or proceed to more advanced Issues.

4.2 Example of Target Input/Output
Behavior

Here is an example of the kind of input/output behavior

we intend the tutor to support. The example is schematic

to focus on the kind or reasoning we would like the tutor

to perform; currently, the system does not generate this

1/0.

Let us assume that the Agenda Manager has passed on

to the Dialogue Manager the task of advancing to new

Issues. The Dialogue Manager has to choose a lesson that

brings upissues that are beyond, but not too far beyond,

the current scope of the student’s knowledge. It consults

the Student Model to find out which Issues are already

“known” by the student, which are currently “too hard”,

and which Issues “could be taught”. Assume that the

Student Model informs the Dialogue Manager that the

Issue Minimum criteria for citing a precedent” (Issue 1)

is “known”, that the Issue Prefer the undistinguishable
precedent (Issue 3) is “too hard”, and that the Issues

Prefer the more on point precedent (Issue 2) and Prefer
the untrumped point (Issue 4) “could be taught”. The

Dialogue Manager selects a lesson that is appropriate to

bring up the selected “could be taught” Issues. It decides

to assign the student the task of selecting from among a

number of precedents the one that is best to cite, and

retrieves an Argument Context.

The Argument Context contains four factors, three of

which favor plaintiff (namely, fl, C?, and R), and one of

which favors defendant (f4). Furthermore, the Argument

46

Context contains a current fact situation, cfs, and four

precedent cases (cl, c2, C3 and c4). The cases, their

outcome, and the factors that apply in each are:

Case Factors Outcome
Cfs fl, f2, f3, f4 n/a
cl fl plaintiff
C2 f2, f3, f4 plaintiff
C3 f2 , f4 plaintiff
C4 fl , f4 defendant

For clarity, we present the outputs schematically in

terms of variables standing for the cfs, cases, and fac-

tors. In the actual outputs, the system would refer to

cases by names, to factors by descriptive phrases, and

would provide students with tools for reading com]plete

descriptions of cases and factors .)1

The Claim Lattice of this Argument Context is shown

in Figure 2. A Claim Lattice is a graph that represents

the ordering, in terms of on-pointness, of a given set of

cases. (A case x is more on point than a case y, with

regard to a current fact situation cfs, if the relevant sim-

ilarit ies of y –i. e., the factors that y shares with cjs– form

a proper subset of the relevant similarities of c.) IEach

node of the Claim Lattice has a factor list and a case list.

Each node represents a group of cases that are all equally

on point, meaning that they all have the same relevant

similarities. The relevant similarities of a case are con-

tained in the factor list of the node in which the case

resides. The root node’s case list contains the cfs (and

perhaps other cases), its factor list contains the factors

that apply in the ctk. A link between two nodes indicates

that the factor list at the end of the link is a subset of the

factor list at the origin of the link. Therefore, the IIinks

of the graph represent the more on point relations that

exist among the cases; case x is more on point than case

y if and only if there is a path from z to y. One can infer

from the Claim Lattice of Figure 2, for instance, that the

relevant similarities of C3 are fll and f4, that C2 is more on

point than C3 (notice that C3’S relevant similarities form

indeed a proper subset of C2’S relevant similarities, as is

required by the definition of more on point), and that C2

is not more on point than C4 or cl.

1The text of the cfs is: America’s Best Computers Corp.

w. Dip” Geneml, Inc. ABC Corp. manufactured the Super
A 1200 minicomputer. Digi General ordered a Super A 1200
from a third party supplier. From the supplier it also obtained
a maintenance manual with design drawings, which it copied
and returned. Even though the drawings bore a mark pro-
hibiting copying, and the sales contract prohibited use of the
drawings for manufacturing, Digi General used the drawings
to produce its D-116 minicomputer. By using the drawings, it
was able to save 50% development time, compared to the time
it took ABC to develop the Super A 1200. ABC distributed
the same drawings, bearing the same restrictive legend,tc) 600
customers, users, vendors and trainees. ABC’s sales contracts

prohibited the use of the drawings for manufacturing. ABC
took additional security memmres, includlng plant security.

The factors that apply, and their corrcsPorrdin5 names used
in the example, are:

fl: competitive-advantage-gained
f2: disclosures-subject-t-restriction
f3: security-measures-adopted
f4: secrets-disclosed-outsiders

FACTORS: FACTORS,
f~, /,, /, f*, fd

CASES: CASES.

‘?? plamtif q plamffl

FACTORS:
f,, /*, f~, ~

CASES:
Cfs

FACTORS: FACTORS:
f,, f, f,

CASES: CASES:

Pro-plaintlft factors: f,, f2, ~ c~ dehdant c1 plamtctl

Prode fendant factoc f4

Figure 2: The Claim Lattice of the Argument Context

The lesson that the tutor selected is pedagogically in-

teresting, because the task of selecting the best case to

cite within the selected Argument Context involves the

Issues that the tutor decided to focus on (Issues 2 and 4),

but does not bring up the Issue that the tutor wants to

avoid (Issue 3). This is a result of the particular relations

that exist among the cases in the Argument Cent ext.

The precedents cl, C2 and C3 are all citable for plain-

tiff, meaning that they satisfy the Minimum cn’terva for

citing a precedent (Issue 1), described in the previous

section. They are citable because they were won by the

plaintiff, and share at least one pro-plaintiff factor with

the cfs. Plaintiff can make a reasonable argument citing

any of these cases. However, precedent C2 is plaintiff’s

best precedent. Let us see why. First, C2 is better than

c4. Since C4 was won by the defendant, it is not citable

for the plaintiff. Since C2 is, it is better than c4.

Second, C2 is better than cl. Notice that C4 is a trump-

ing counterezample to cl. This is so because it (c4) was

won by the opposing side (cl was won by plaintiff, C4

was won by defendant) and, as is clear from the Claim

Lattice, it is more on point than cl. It follows that de-

fendant can trump a point citing cl by citing C4 as a

counterexample. A point citing c2, however, cannot not

be trumped, since the Argument Context does not con-

tain a trumping counterexample to c2. According to Is-

sue 4 (Prefer the untrumped point), then, C2 is a better

precedent than cl.

Finally, C2 is better than c3. As is evident from the

Claim Lattice, C2 is more on point than c3. According to

Issue 2 (Prefer the more on point precedent), C2 is better.

To summarize, in order to find plaintiff’s best case in

this Argument Context, one has to (1) recognize that c 1,

c2, and C3 but not C4 are citable for the plaintiff (Issue 1),

(2) recognize that C4 is a trumping counterexample for c 1,

and apply Issue 4 to conclude that C2 is a better prece-

dent for plaintiff than is cl, and (3) recognize that C2

is more on point than C3 and apply Issue 2 to conclude

that C2 is better than C32. Also, although the discus-

sion didn’t focus on this, an important aspect of almat

any argumentation exercise (and certainly the exercise of

finding plainitff’s best case to cite in the current Argu-

zwe ~e interested in exploring the possibility of the

system’s automatically sasembling Argument Contexts from
c=es in the Case Library. It could follow a generate-and-
test approach, generating and testing collections of cases un-
til one waa found that allowed the “could be taught” Issues,
and disallowed the “too hard” Issues. Care should be taken
to adequately constrain the generator.

47

ment Context) is recognizing which factors apply in the

cfs and the precedent cases. This information will not

be given to the student; the student has to infer it from

a textual description of the cases. Moreover, the Claim

Lattice will not be presented to the student.

Notice that the Argument Context does not raise the

forbidden Issue 3 Prefer the undistinguishable precedent

(Issue 3), because there are no equally on point prece-

dents in the Argument Context. This is no coincidence.

The Argument Context was selected (among other rea-

sons) because it avoids this Issue.

The Dialogue Manager then presents the Argument

Context to the student, assigns him as attorney to one

of the sides, and asks him to select a case that makes a

good point. The student will be able to use the Tool Kit

to help him analyze a problem. Selecting a browsing tool

“TEXT”, the student will be able to read cases in a text

window. A tool called “PRO-PLAINTIFF-CASES” returns

the cases that favor the plaintiff on a claim. The student

can also use tools to verify his conclusions about the cases

in the Argument Context: By selecting “FACTORS c fl

. . . fn”, the student can verify that the listed factors jl

through fm apply in case c. The tutor will simply re-

spond with “good” or “no”. Using the tool “RELEVANT

SIMILARITIES c1 C2 fl . . . fn”, the student can verify that

the listed factors form the relevant similarities between

case c1 and C2. In the example, the following dialogue

might take place:

Tutor: The current fact situation is: cfs. Suppose
you are plaintiff’s attorney. Which of the following

cases would you cite: c1, c2, C3 or c4?

Student: TEXT cfe

Tutor: [Presents a textual description of cfk]

Student: FACTORS cfs fl ~

Tutor: Good

Student: FACTORS cfs f3 f4

Tutor: Good

Student: PR.Q-PT,AIKTIFF-GA SFS

Tutor: c1 C2 C3

Student: TEXT C3

Tutor: [Presents a textual description of c3]

Student: FACTORS C3 f2 f4

Tutor: Good

Student: REI,WANT sIM1l,A RITIES C3 cfs f2 f4

Tutor: Good

Student: CITE C3

Tutor: Yes, citing C3 would make a good argument,
since your opponent cannot respond by citing a
more-on-point counterexample. There is, however,
an even better precedent that You can cite. Which
precedent is that?

The Student Interpreter receives the student’s answer

(in this case, “CITE c3°). Its task is to analyze the stu-

dent’s answer, update the Student Model accordingly,

and decide what feedback and perhaps follow-up ques-

tions are appropriate. It will propose new tasks to the

Agenda Manager that achieve the feedback and follow-

Up.

Since the Student Model is an overlay on the set of

Issues, the analysis of the student’s answer is stated in

terms of Issues. In other words, the Student Interpreter

looks for evidence that the student knows, or doesn’t

know, particular Issues. In general, the analysis assumes

that the student knows the Issues involved in rejecting

moves that are inferior to the move that he chose, but

doesn’t know the Issues that are involved in selecting su-

perior moves. This approach was taken in WUSOR [Gold-

stein, 19821. The Domain ExDert is enlisted to determine. A

which of the alternative moves are better and which ones

are worse, and to analyze which Issues are involved in

recognizing the worse moves as being worse, and the bet-

ter moves as being better.

Let us see how the Student Interpreter, in coopera-

tion with the Domain ExDert. could carry out such an

analysis. Of the four ca.se~ in the Argument Context, C4

doesn’t satisfy the minimum criteria for citing a prece-

dent on behalf of the plaintiff because it was won by the

defendant (Issue l). The fact that the student didn’t

pick this case can be taken as evidence that he knows

issue 1. (One cannot be absolutely sure, however, that

the student knows the Issue. It could be that he simDlv

looked at case C3 first, found that this case was acce~~-

able for him, and didn’t come to look at case C4 at all.)

The fact that the student selected case C3 instead of the

more-on-point case C2 is evidence that he doesn ‘t know

Issue 2, because this Issue tells him to prefer the more-

on-Doint Drecedent. The fact that the student selected. .
case c3, and not case cl, for which there is a trumping

counterexample, is evidence that he knows Issue 4 (Pre-

fer the untrumped point).

After analyzing the student’s answer, the Student In-

terpreter informs the Student Model of its findings. This

may cause the labels (“known”, “could be taught”, or

“too hard”) of some of the Issues to change. The feed-

back that ;S appropriate depends on the ~iagnosis, and

also on the Student Model. The first conclusion was that

the student applied Issue 1. Since Issue 1 was one of

the “known” Issues, according to the Student Model, the

Student Interpreter decided that no feedback related to

this conclusion was necessary.

The second conclusion was that the student applied

Issue 4. Since this Issue was not “known”. some Dositive

feedback is necessary. The feedback that is app~opriate

is: “Citing C3 would make a good argument, since your

opponent cannot respond by citing a more on point coun.
terexample.” The Student Interpreter therefore posts a

task to the Agenda Manager to generate this feedback.

The third conclusion was that the student doesn’t

know Issue 2. It seems reasonable that the system’s re-

sponse should focus on this lack of knowledge. The St u-

dent Interpreter therefore proposes a task to the Agenda

Manager to discuss that C2 is a better precedent than c3,
The tutor starts executing this task by saying: “There

is, however, an even better precedent that you can cite.

Which precedent is that?”

In explaining its advice, the tutorial will provide a

combination of conceptual explanations, applied defini-

tions and, where possible, an example of how an oppo-

nent would respond to the student. Thus, in explaining

why C2 is better than c3, the system (the Explanation

Generator) would offer a conceptual explanation and an

applied definition:

Tutor: (definition as applied:) C2 is a better prece-
dent to cite for the plaintiff than C3 because C2 is

more on point to the cfs.

(conceptual explanation:) In general, if a precedent

is more on point than another precedent, the more-
on-point precedent is better.

(definition as applied:) C2 is more on point than
C3 relative to the cfs because C2 shares every factor

with the cfs that C3 does (namely f2 and f4) but
also a factor that C3 does not share with the cfs: f3.

In some instances, the tutor will be able to provide

another kind of feedback explanation; it will argue back.

For instance, if the student had chosen to cite cl, the

tutor would also be able to argue back at the student:

If you cite cl for the plaintiff, defendant will trump
your point by citing C4 as a more on point or trump.
ing counterexample.

5 Explicitly Representing Case

Argument Concepts

A central element of the design of the tutorial program

involves making explicit the representations of the core

argument concepts and relations. These argument con-

cepts are closely related to the Issues that make up the

program’s curriculum, and serve es a basis of the sysitem’s
interpretation of student responses, and subsequent gen-

eration of feedback and explanations. We have repre-

sented these argument concepts and relations with logi-

cal expressions in the knowledge representation language

Loom. Defining the concepts expressly should facilitate

the tutor’s ability to explain and apply the concepts. As

is illustrated below, the explicit definitions of the ;argu-

ment concepts can be used to perform many interesting

inferences.

Loom is a structured inheritance system, or KL-ONE-

style system [MacGregor, 1988; Woods and Schmolze,

1990]. One can view Loom as a deductive retriever that

manages a database of propositions, and is able to per-

form deductive queries on this database. Before propo-

sitions can be aaeerted into the database, a vocabulary

needs to be defined. The vocabulary consists of concepts

and relations; roughly speaking, concepts correspond to

the unary predicates of first-order logic, and relations to

n-ary predicates. Loom has a v@ number of definition

constructs, including the facility to state definitions in a

language that is close to first-order logic. A definition

usually states the necessary and sufficient conditions for

the given concept or relation.

Using Loom, we expreaaed definitions for the basic con-

cepts of the HYPO model, namely Case, Factor, and

Side, and also for the basic relations: a case’s being

won by a certain side (outcome), a factor’s favoring a

particular side (favors), and a factor’s applying to a

particular case (applicable-factor). These concepts

and relations are the “primitives” of our knowledge base,

meaning that it cannot be inferred from other facts in the

database whether they apply in a particular situation or

3Alternatively, and more true to Loom’s heritage,, one
could liken Loom to a semantic network system, and think
of the concepts as nodee, and of relations as links between
nodee.

not. Primitive concepts and relations apply only ~vhen

this has been explicitly asserted.

Using these primitive concepts and relations as build-

ing blocks, we expressed definitions for many argument

concepts in Loom. For instance, here, using Loom, are

the definitions for shared-factor and more-on-point:

(defrelation shared-factor
: dornalns (Case Case)
: range Factor

:is (satisfies (?cl ?c2 ?f)
(:and (Case ?c1)

(Case ?c2)

(Factor ?f)
(applicable-factor ?c1 ?f)

(applicable-factor ?c2 ?f)))
: attributes :mult iple-valued)

(de frelation more-on-point
: domains (Case Case)

: range Case
: is (: satisf ies (?c1 ?c2 ?cfs)

(:snd (Case ?c1)
(Caee ?c2)
(Caae ?cfs)

(: f or-all ?f
(: implies

(:and (Factor ?f)
(shared-factor ?c2 ?cfs ?f))

(applicable-factor ?ci ?f)))
(: for-some ?f

(: and (Factor ?f)
(shared-factor ?c1 ?cfs ?f)
(:not (applicable-f actor 7C2 ?f)))

: at tribut es : multiple-valued)

These definitions state the sufficient conditions for the

relations shared-factor and more-on-point. In En-

glish the first definition says: “a Factor f is a shared

factor of Ceses cl and C2 if it applies in both cl and c2°.

The second definition says, in effect: “a Case cl is more

on point than a Csae C2 with respect to a Case cfs (typi-

cally the Case that represents the current fact situation),

if the factors that are shared between C2 and cfs form a

proper subset of the Factors shared between c 1 and cfs)”.

As the example illustrates, more complex defini-

tions are composed of the simpler ones. The defini-

tion of shared-factor is built out of the primitive

concepts case and Factor, and the primitive relation

applicable-factor. The relation more-on-point, in

turn, employs the relation shared-factor, as well as

the primitive relation applicable-factor. The relation

most-on-point, whose definition is is shown in the ap-

pendix, refers to more-on-point. The definition of this

relation can be stated in English as: “A Case c is most

on point, with respect to the current fact situation cfs, if

no Case is more on point.”

The appendix shows the Loom representation for other

relations including relevantly-similar, relevant-difference,

citable, best-case-tc+cite, trumping-cex (trumping or

more on point counterexample) and unt rump ed-best-

case, These relations are the same ones discussed in
[Ashley, 1991a; Ashley, 1991b; Ashley, 1989b]. Formerly,

however, these relations were represented only procedu-

rally in HYPO, not in a form in which a program could

manipulate or explain them.

49

After the concepts and relations of an application area
have been defined, facts (propositions) can be asserted
using the Loom command tellm. A fact either ex-

presses that a certain individual is an instance of a cer-
tain concept, or that a certain relation holds among two

or more individuals. For instance, to represent the factor
Competitive-Adnantage-Gaaned, which favors the plain-
tiff, we created an individual named f8 by the following
command:

(tellro (:about f8
Factor
(factor-name “COMPETITIVE-ADVANTAGE-GAINED”)

(f avers plaintiff)
))

As a result of this command, Loom stores the new Fac-
tor, f 8, and the associated information in its database.
All Dimensions (factors) related to trade secrets misapp-
ropriation, HYPO’s original domain, were represented in
this manner. We also created individuals to represent the

cases in HYPO’S Case Knowledge Base, one individual for
each case. For example, the Analogic case, which was
won by plaintiff, and in which Competitive-Advantage-

Gained and two other factors apply, was represented as
follows:

(tellm (:about case7
Case

(case-name

“Analogic Corp. v. Data Translation, Inc.”)
(outcome PLAINTIFF)
(: filled-by applicable-factor f4 f7 f8)

))

Loom’s query language allows one to retrieve any as-
serted fact, and any logical consequence of the asserted

facts and the definitions. For example, if the database
contains the facts that cfs is a Case in which the Factors

f 2, f 4 and f 7 apply, then the query

(retrieve ?f (shared-factor caae7 cfs ?f))

returns f4 and f7, as one would expect. If it has been
asserted that case23 is a Case in which only Factor f4

applies, then the query

(ask (more-on-point case7 csse23 cfs))

returns T, since case7 is more on point than case23 with
respect to current fact situation cfs; the factors that
case23 shares with cfs (namely, f4) form a roper sub-

Tset of the factors that case7 shares with cfs namely, f4

and f 7). To retrieve plaintiff’s best cases to cite (finding
the best cases to cite for each side in the dispute is one

of HYPO’s key operations), one simply poses the query:

(retrieve ?C (best-case-to-cite ?C cfs plaintiff))

Explicitly representing the argument concepts and re-

lations in Loom will be useful in (1) designing retrieval

tools, (2) constructing Argument Contexts, and (3) ex-

plaining concepts. The concept definitions can be con-

ceptualized as filters which may be applied to the Case

Library to retrieve only those cases that pass through the

filter (i.e., satisfy the tool’s conceptual definition.)

Using the concepts, one can implement retrieval tools

that students can use to verify their conclusions as to

how the concepts apply to the current Argument Con-
text. Using the tools, the student can ask for a “yea/no

answer” =- to whether a particular

‘This is an oversimplification. Loom
logical consequences.

argument cimcept

does not deduce all

applies to a particular set of cases and/or factors. AS

the example of Section 4.2 illustrated, students \vill

have access to a Tool Kit including retrieval tools like

PRO-PLAINTIFF-CASES, PRO-DEFENDANT-CASES, FAC-

TORS, PRO-PLAINTIFF-FACTORS, AND PRO-D EFEXDA?i T-

FACTORS. AS they gain proficiency with the more

advanced concepts, students will be able to use

tOOk like CITABLE, RELEVANTLY-SIMILAR, RELEVANT-

DIFFERENCE, SHARED-PRO-WINNER-FACTOR, SHARED-

PRO-LOSER-FACTOR, MORE-ON-POINT, MOST-ON-

POINT-FOR-SIDE, BEST-CASE-TO-CITE, TRUNIPING-CEX,

UNTRUMPED-BEST-CASE. These tools are readily imple-

mented by means of simple expressions in Loom’s query

language. We anticipate that these tools will be repre-

sented graphically by icons (as in an Apple Nlacintosh or

Windows 3 style user interface) and that students will be

able to select tools by mouse to search the Case Library.

Retrieval tools like these, implemented with argument

concepts and relations represented in Loom, are also use-

ful for the system designers because it allows us to con-

struct Argument Contexts easily and to perform a large

variety of inferences relating to these Argument Con-

texts. For example, in order to generate an Argument

Context containing real cases from the program’s Case

Library with which one could teach the sample lesson

of Section 4.2, we constructed a query like the follow-

ing (The actual query is written in Loom and expressly

refers to a number of the concepts defined above and in

the Appendix such as more-on-point and citable):

Retrieve all cases (cfs cl C2 C3 c4) such that: .
● cl, C2 & C4 are pro-plaintiff, C3 is prc-defendant
● cl, C2 & C4 are citable for plaintiff

● cl is more on point than C2 relative to cfs
● C3 is more on point than C4 relative to cfs

● neither cl nor C3 has all the factors that apply to cfs

● neither cl and C4 are as, less, or more on point than
each other

● neither C2 and C3 are as, less, or more on point than
each other

A set of five cases satisfying these constraints would

raise all of the pedagogically interesting issues of the Ar-

gument Context in Section 4.2. With twenty cases in the

Case Library, the Deductive Retriever generated eight

Argument Contexts in 3 minutes and 10 seconds. Four

of the Argument Contexts involved a real case called

Structural Dynamics as cfs; four involved the Telex v.

IBM case as cfs. Each Argument Context had four other

real cases that satisfied the various constraints described

above. We plan to use these Argument Contexts as the

basis of some tutorial seesions in which we “manually”

teach law students to argue with cases. It should be

noted that it is a difficult and time consuming mental ex-

erciee for humans to come up with such pedagogically in-

teresting Argument Contexts from a collection of twenty

cases. In addition, this kind of inference, where the cfs

as well as the cases are not specified beforehand, would

be impossible for HYPO to perform.

We anticipate that the explicit representation of the

concepts and relations involved in case-based argument

also will be useful for the purpose of generating ex-

planations. For example, from the Loom definition of

more-on-point, generating the applied definition in the

sample output explaining why C2 is more on point than

50

C3 is fairly straight forward. We hope, too, that Lc)om

will help in devising conceptual explanations such as the

one above.

6 Planned Evaluation and Experiments

We believe that the tutorial program will be an effective

teaching tool because it incorporates HYPO’S conceptual

model of case-based argument in which the relevance of

cases is closely linked to their potential uses in an argu-

ment. Using the tutorial program, students can explic-

itly relate their needs in making an argument to queries

for relevant cases. This is more difficult when students

use, for example, full text retrieval services like Lexis and

Westlaw where the relationship of the key word queries

to a st udent’s legal argument needs is much more obtuse.

We intend to evaluate the developing system by run-

ning experiments on a variety of problems with actual

law school students. (See [Littman and Soloway, 1988]

for a discussion of evaluating tutoring systems.) We be-

lieve that law students’ abilities to making case-based

arguments will be measurable through their performance

with the case argument tutor. Using Student Models, we

will be able to measure how far students get in master-

ing the curriculum, that is, how far they get in satisfying

the assignments of graduated difficulty. It will also be

possible to measure the time that it takes students to

master particular argument skills or the skills associated

with the most complex argument concepts and the di-

rectness of the paths they take through the curriculum

until they can demonstrate proficiency. Using the tuto-

rial program, it will be possible to compare experts’ imd

novices’ abilities to make arguments effectively and effi-

ciently. We hope to demonstrate that practice with the

tutorial program is an effective way of improving novice

law students’ abilities to argue with cases.

7 Conclusion

This paper describes a research project to devise and test

an intelligent, case-based tutorial program for teaching

law students to argue with cases. In order to represent

pedagogically interesting lessons and develop a Student

Model, we have designed memory structures such as Ar-

gument Contexts and a hierarchy of Issues in Case-Baaed

Legal Reasoning. Using logical expressions in the knclwl-

edge representation language Loom, we also explicitly

represent case-based argument concepts such as a case’s

being on point to a problem, more on point than an-

other case, most on point of all the cases, a best case

to cite, and a counterexample to another case. The pro-

gram will be able to reason with the explicit concepts

in selecting cases from a Case Library, assembling Argu-

ment Contexts and examples, analysing student inputs,

and in generating explanations and feedback. We hope to

demonstrate empirically that, by providing law students

a conceptual model of the criteria for selecting and de-

scribing precedents that would be useful in an argument,

the tutorial program will help them to learn to select iind
apply cases more efficiently and to make more effective

arguments.

References

[Allen and Saxon, 1987] Layman E. Allen and Charles S.
Saxon. Some Problems in Designing Expert Systems to
Aid Legaf Reasoning. In First International Conference

on Artijicia/ Intelligence and .Law, Northeastern University,

Boston, 1987.

[Ashley and Rissland, 1987] Kevin D. Ashley and Edwina L.
Rissland. Compare and Contrast, A Test of Expertise. In

Proceedings AAAI-8’7. Seattle, WA, August 1987.

[Ashley and Rissland, 1988] Kevin D. Ashley and Edwina L.

Rissland. Waiting on Weighting: A Symbolic Least Com-

mitment Approach. In Proceedings AA AI-88. St. Paul,

MN, August 1988.

[Ashley, 1989a] Kevin D. Ashley. Defining Salience in Case-

Based Arguments. In Proceedings IJCAI-89. Detroit, MI,

August 1989.

[Ashley, 1989b] Kevin D. Ashley. Toward a Computational

Theory of Arguing with Precedents: Accommodating Mul-

tiple Interpretations of Cases. In Second International

Conference on Artificial Intelligence and Law, University

of British Columbia, Vancouver, BC, 1989.

[Ashley, 1991a] Kevin D. Ashley. Modeling Legal Argument:

Reasoning with Cases and Hypothetical. MIT Press, Cam-

bridge, 1991. Based on Ashley’s 1987 PhD. Dissertation,

University of Massachusetts, COINS Technicaf Report No,

88-01.

[Ashley, 1991b] Kevin D. Ashley. Re~oning with Cases and

Hypothetical in HYPO. International Journal of Man-

Machine Studies, 1991.

[Branting, 1991] L. Karl Branting. Building Explanations

from Rules and Structured Cases. International .Journa[

of Jfan-&fachine Studies, 1991.

[Burton and Brown, 1982] R.R. Burton and J.S. Brown. An

Investigation of Computer Coaching for Informal Learning

Activities. In D. Sleeman and J.S. Brown, editors, lnte//i-

gent Tutoring Systems, pages 79-98. Academic Press, Lon-

don, 1982.

[Carbonell, 1970] Jaime R. Carbonell. AI in CAI: an Ar-

tificial Intelligence approach to Computer-Assisted In-

struction. IEEE Transactions on Man-Machine Systems,

11(4):190-202, 1970.

[Carr and Goldstein, 1977] B.. Carr and I.P. Goldstein. Over-

lays: a Theory of Modeling for Computer-Aided Instruc-

tion. Technical Report AI Lab Memo 406, Massachusetts

Institute of Technology, Cambridge, MA, 1977.

[Gardner, 1987] A. vdL. Gardner. An Artificial lnteUigence

Approach to Legal Reasoning. MIT Press, Cambridge,

1987.

[Goldstein, 1982] I.P. Goldstein. The Genetic Graph: a Rep

resentation for the Evolution of Procedural Knowledge. In

D. Sleeman and J.S. Brown, editors, Intelligent Tutoring

Systems, pages 51-78. Academic Press, London, 1982.

[Jaff, 1986] Jennifer Jaff. Frame-Shifting: An Empowering

Methodology for Teaching and Learning Legal Reasoning.

Journal of Legal Education, 35:249-267, 1986.

[Lakatos, 1976] I. Lakatos. Proofs and Refutations. Cam-

bridge University Press, London, 1976.

[Levi, 1949] Edward H. Levi. An Introduction to Legal Rea-

soning. University of Chicago Press, 1949.

[Littman and Soloway, 1988] David Littman and

Elliot Soloway. Evaluating ITSS: The Cognitive Science

Perspective. In Martha C. Poison and J. Jeffrey Richard-

son, editors, Foundations of Intelligent Tutoring Systems.

Lawrence Erlbaum Associates, HillsdaJe, NJ, 1988.

51

[MacGregor, 1988] Robert M. MacGregor. A Deductive Pat-

tern Matcher. In Proceedings AAAI-88, pages 403–408,

Saint Paul, MN, August 1988,

[McCarty and Sridharan, 1981] L. Thorne McCarty and

N. S. Sridharan. The Representation of an Evolving S ys-

tem of Legal Concepts: II. Prototypes and Deformations.

In Proceeding IJCA1-81, Vancouver, BC, August 1981.

[McCarty and Sridharan, 1982] L. Thorne McCarty and

N. S. Sridharan. A Computational Theory of Legal Argu-

ment. Technical Report LRP-TR-13, Laboratory for Com-

puter Science Research, Rutgers University, 1982.

[Neustadt and May, 1986] R. E. Neustadt and E. R. May.

Thinking in Time. Free Press, New York, 1986.

[Paul, 1988] Jeremy Paul. A Bedtime Story. Virginia Law

Review, 74:915-934, 1988.

[Rissland and Skalak, 1991] Edwina L. Rissland

and David B. Skalak. CABARET: Statutory Interpreta-

tion in a Hybrid Architecture. International Journal Oj

Man-Machine Studies, 1991.

[Teich, 1986] Paul F. Teich. Research on American Law

Teaching: Is there a Case against the Case System? Jour-

nal of Legal Education, 35:167–188, 1986.

[Wenger, 1987] Etienne H. Wenger. Artificial Intelligence

and Tutoring Systems. Morgan Kaufmann Publishers, San

Mateo, CA, 1987.

[Woods and Schmolze, 1990] William A. Woods

and James G. Schmolze. The KL-ONE Family. Techni-

cal Report TR-20-90, Center for Research in Computing

Technology, Harvard University, Cambridge, MA, August

1990.

Appendix – Definitions of Concepts of
Case-Based Legal Reasoning

(defrelation relevantly-similar

:domain Case

:range Csse

:is (satisfies (?.1 ?.2)

(:and (Case ?.1)

(Case ?.2)

(:for-some ?f

(:snd (Fsctor ?f)

(shared-fsctor ?c1 ?c2 ?f)))))

: attributes :multiple-valued)

(defrelation citable
:domsins (Case Case)
:range Side
:is (satisfies (?c ?cfs ?s)

(:and (Case ?.)
(Csse ?cfs)
(Side ?s)
(outcome ?c ?s)
(:for-some ?f

(: snd (Factor ?f)
(frivom ?f ?s)

(shared-fsctor ?. ?cfs ?f)))))

:attributes :multiple-valued)

(defrelation relevant-d ifference-l

; pro-loser fsctor that applies
; only to the current fact situation

:domsins (Case Case)
:range Factor
:is (:satisfies (?c ?cfs ?f)

(:and (Case ?.)
(Csse ?Cfs)
(Factor ?f)
(oppmite (favora ?f)
(outcome ?.))
(applicable-factor ?cfs ?f)
(:rmt (applicable-factor ?C ?f))))

:attributes :multiple-valued)

(defrelation as-on-po,nt

.dom~ns (Case Case)

:rsnge Csse

:1s (.satlsfies (?c1 ?c2 ?cfs)

(:and (Case ?c1)

(case ?.2)
(case ?Ck)
(ssm.%as (shsred-factor ?.1 ?cfs)

(shsred-factor ?c2 ~cfs))))

attributes :multiple-vdued)

(defrelation mcmt-on-point

:domain Csse

:range Csse

:is (satisfies (?c ‘cfs)

(:and (C=e ?.)

(Csse ?cfs)

(: for-all ?c1

(:implies

(:snd (Case ?.1)

(nequ.si ?.1 ?cfs))

(:rmt (more-on-point ?cl ?c 7cfs))))))

: attributes multlple-valued)

(defrelation mcst-on-point-for-. ide

:domains (Precedent Case)

:rsnge Side

:is (satisfies (?c ?cfs ?side)

(:and (Precedent ?.)

(Case ?cfs)

(Side ?side)

(outcome ?C ?side)

(neq ?. ?cfs)

(: for-all ?.1

(:implies

(:rurd (Csse ?.1)

(outcome ?c1 ?side)

(neq ?.1 ?cfs))

(not (more-on-point 7.1 ?c ?cfs))))))

:attributes :multiple-vslued)

(defrelation best-case-to-cite

:domsins (Csae Cass)

:rsnge Side

:is (satisfies (?c ?cfs ?side)

(:and (Case ?c)

(Csse ?cfs)

(Side ?side)

(: for-some ?f

(:snd (Fsctor ?f)
(favors ?f ?side)
(shsred-factor ?. ?cfs ?f)))
(most-on-point-for-side ?C ?cfs ?side)))

: attributes multipl~valued)

(defrelation’untrumped-best-csse

:domains (Case C-e)

:range Side

: is (:satistles (?c ?cfs ?side)

(and (Csas ?.)

(Csse ?cfs)

(Side ?side)

(best-c-to-cite ?. ?cfs ?side)

(:for-all ?cex

(:impliea (Case ?cex)

(:not (trwnping-cex ?cex ‘c 9cfs))))))

:attributes :multiple-valued)

(defrelation trumping-cex

:domains (Csae Caae)

:range Case

: is (:satisi%s (?cex ?c ?cfs)

(:and [g= ‘??)

(Case ?cfs)

(oppceite (outcome ?cex)

(outcome ?c))

(mom-on-point ?cex ?. ?cfs)))

: attributes :multiple-valued)

52

