
An Issue-Oriented Approach to

Judicial Document Assemblyl

L. Karl Branting

Department of Computer Science

University of Wyoming

Laramie, Wyoming 82071-3682

karl@leolus .uwyo .edu

1 Introduction

One of the most pervasive problems confronting

the judicial system in the United States during re-

cent decades has been the delay and congestion of

court dockets resulting from the explosive growth

in case filings [Sne89]. The volume of cases filed

in U.S. state courts reached nearly 100 million

in 1989 [R091]. Computer programs to enable

judges to use their time and expertise more effi-

ciently can therefore potentially make a significant

contribution to the judiciary.

One task that lends itself well to automation

is assembling judiciaJ opinions, decisions, and or-

ders, Automating the mechanics of constructing

judicial documents can free judges to direct more

of their attention to the central judicial functions

of evaluating the credibility of evidence and inter-

preting statutes and precedents.

2 Two Approaches to

Judicial Document

Automated

Assembly

Two approaches to judicitd document assembly

can be distinguished. Conventional document as-

sembly programs use a document-oriented approach.

1Support for this research was provided by a grant from
the National Center for Automated Information Retrieval.

Extensions to XLISP used in the implementation of Law-

Clerk, including the entire graphical interface, and portions

of LawClerk’s code were written by Patrick Broos.

Permissionto copy without fee all or pan of this material is granted provided
that rite copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

@ 1993 ACM 0-89791-606-9/93/0006/0228 $1.50

The focus of these systems is typically on automat-

ing the selection of document components, such

as paragraphs and clauses, and instantiating user-

provided values for variables embedded in those

components [Lau92]. The problem-solving method

of these systems can be characterized as hierar-

chical re~nement: Such systems typically contain

a separate template for each document type to-

gether with a set of rules for instantiating the

template. Elements required to instantiate a tem-

plate may themselves be templates, e.g., “sub-

documents” in CAPS and “submodels” in Scrivenir

[Lau92].

However, judicial decisions and orders have an

important characteristic that other legal documents

in general lack: they express a justification for a

legal conclusion in terms of a set of legal rules and

findings of fact from which the legal conclusion

follows. Issue-oriented document assembly is an

alternative approach bet ter suited for such doc-

uments. The issue-oriented approach makes use

of an explicit representation of the legal rules un-

der which a decision of a particular type can be

rendered. Text is associated with assignments of

truth values to the legal predicates occurring in

the rules. The system uses the rules to build a jus-

tification reflecting a judge’s rulings on each issue

relevant to the ultimate decision. A document is

generated by assembling the text associated with

the truth value assignment of each legal predicate

occurring in the justification.

There are four advantages of the issue-oriented

approach to judicial document assembly. The first

is that issue-oriented systems are more flexible be-

cause they permit documents reflecting various com-

binations of issues to be generated dynamically.

Document-oriented systems, by contrast, typicaJly

require combinations of issues to be anticipated,

because these systems generally lack a model of

the operative legal rules and therefore cannot model

the dependencies among legal predicates that de-

termine valid combinations of issues.

A second advantage is that explicit represen-
tation of legal rules permits an issue-oriented ju-

dicial document assembly program to function as

a decision support system. Simulating the judge’s

decision process permits such a system to insure

that (1) the judge rules on all and only the issues

relevant to the case and (2) the judge’s decision

refers to all relevant evidence.

Third, declarative representation of legal rules

permits the system to explain, in terms of the over-

all goal of resolving conflicting claims, both why

it is eliciting particular information from a judge
and how it reached a given conclusion.

Finally, issue-oriented systems are easier tc] main-
tain, because accommodating a change in the law

requires changing only the affected legal rules and

their associated text rather than an entire decision

template,2

3 Control Strategies for Issue-

Oriented Judicial Document

Assembly

The issue-oriented approach to judicial document

assembly uses an explicit representation of legal

rules to construct a justification consistent with

the judge’s ruling, which is then used to create a

judicial document. The centrzd design decisions

in such a system therefore concern (1) how the

justification is constructed and (2) how the docu-

ment is assembled from the text associated with

the justification.

3.1 Constructing Justifications

Constructing a justification for a legal decision
from legal rules is similar to the task performed

by rule-based expert systems. It differs primarily

21t should be noted that CAPS and Scrivenir provide

command languages capable of expressing complex 1egal

rules and have some explanation capability, and Scrivenir

uses a declarative representation of legal rules [Lau92].
Thus, notwithstanding that most CAPS and Scrivenir ap-

plications have followed a document-oriented approach,

issue-oriented systems couId presumably be implemented

wit hin these environments.

in that the purpose of constructing a justification

is to model the judge’s decision rather than mak-

ing an independent judgment. The justification-

constructing portion of an issue-oriented judicial

document assembly system (hereinafter the jus-

tifier) must therefore elicit the judge’s ruling on

each issue relevant to the ultimate decision.

Perhaps the simplest approach to construct-

ing a justification is to use the same depth-first,

backchaining, satisficing search strategy used in

the PROLOG programming language, querying

the user when a goal is reached for which there are

no applicable legal rules. By requiring the judge to

rule on the open-textured predicates that appear

as subgoals, this strategy (1) insures that the judge

rules on every issue necessary to support the ulti-

mate decision in the case, while at the same time

(2) deferring to the judge on every issue involving

evaluation of credibility or interpretation of legal

authorities.

However, there are two situations in which this

strategy requires modification. First, an impor-

tant form of decision support that an issue-oriented

judicial document assembly system (JDAS) can

provide is insuring that the judge’s decision refers
to all relevant evidence. This requires that the

system have some model of the connection be-

tween evidence and legal predicates. In LawClerk,

described below, this connection is expressed by

prima facie rules. When the judge is queried about

a legal predicate, LawClerk informs the judge what

evidence in the case record tends to establish and

what evidence tends to negate the predicate. Find-

ing all evidence that either supports or negates a

predicate requires an exhaustive search strategy

using prima-facie rules.

Second, the use of a depth-first search strategy

for legal rules assumes a model of judicial parsi-

mony in which a legal issue should be resolved

on the basis of exactly one legal rule. Once a

rule has been found that satisfies a predicate, it is

unnecessary to consider whether alternative rules

might lead to the same result. However, in many

trial courts and administrative agencies it is not

unusual for decisions to be rendered on multiple

grounds. Modeling a decision rendered on mul-
tiple grounds requires an exhaustive, rather than
a satisficing, search. Thus, the most appropriate

control strategy for the justifier may depend on

the conventions of the judlcid body for which the

JDAS is intended.

3.2 Mapping Justifications to Documents

A second issue in issue-oriented JDAS’s concerns

the process of creating a judiciaJ document from a

model of the judge’s justification for the decision.

This process may be either incremental, with the

text associated with an issue added to the docu-

ment as the issue is decided, or nonincremental,

with the construction of the document beginning

only after the justification has been completed.

The simplest incremental approach is to ap-

pend to the document the text associated with

each ruIing by the judge as the ruling is made. The

disadvantage of this single destination approach

is that a ruling on a single issue may have ef-

fects in several different parts of an opinion, e.g.,

both in the Conclusions of Law and in the Deci-

sion section. Alternatively, a multiple destination

approach uses an opinion template representing

the sections of an opinion into which multiple text

items associated with a single legal issue can be

writ ten. As the judge rules on each issue, text

associated with the ruling is appended to each af-

fected section of the opinion.

However, the effectiveness of both incremental

approaches depends on two properties of the judi-

cial documents being produced. The first is issue

locality, the property that text associated with the

resolution of one legal issue is independent of the

text associated with any issue addressed later in

the decision. The second is that the order in which

legal issues are addressed by the justifier is the

same as the order in which issues should appear

in each section of the document.

If the target documents lack issue locality or

if the justifier doesn ‘t address legal issues in the

order in which they should appear in the docu-

ment, a nonincremental approach permitting use

of complex mappings from justifications to docu-

ments is necessary. One approach to creating doc-

uments from justification structures is described

in [Bra91a].

4 Related Research

A prototype issue-oriented judicial document as-

sembly program, JEDA, was developed by Vish-

was Pethe, Judge Charles P. Rippey, and L. V.

Kale [PRK89]. JEDA uses PROLOG’s depth-first,

satisficing search strategy and performs incremen-

tal mapping from justifications to text. JEDA

uses mixed-initiative data entry: uncontested facts.

(e.g., names the parties, docket number) and al-

legations concerning a case (e.g., medicaJ reports,

test results) are entered by filling in a series of en-

try forms. During a consultation, the justifier so-

licits rulings from the judge concerning legal pred-

icates occurring as subgoals.

Judge Rippey, an Administrative Law Judge

at the U.S. Department of Labor who has used

JEDA since 1987, reports that JEDA reduces the

time necessary to write decisions on claims for ben-

efits under the federal Black Lung Benefits Act by

a factor of at least two [P RK89]. Unfortunately,

JEDA has not been accepted by other ALJ’s on

Judge Rlppey’s division [R1p91].
A key limitation of JEDA is its inability to ac-

commodate changes in the law or to apply to do-

mains other than Black Lung Benefits Act cases.

JEDA’s knowledge of statutory rules, precedents,

and boilerplate text are hardcoded and cannot

be changed without rewriting the program itself.

Moreover, JEDA’s case format, record types, rules,

and boilerplate language are all tailored exclusively

for cases arising under the Black Lung Benefits

Act. As a result, JEDA cannot be applied to cases

of any other type without extensively rewriting

program code.

5 LawClerk: An Issue-Oriented

JDAS Shell

LawClerk is an issue-oriented JDAS shell under

development at the University of Wyoming de-

signed to address the limitations of JEDA. Law-

Clerk uses a declarative representation of rules,

issue templates, and entry forms that permits it

apply to a variety of different domains and to ac-

commodate easily changes in the law or in the id-

iom of a particular judge or document type.

The initial implementation of LawClerk (ver-

sion 1.0) uses depth-first, satisficing search with

legal rules and exhaustive search with prima-facie

rules and multiple-destination incremental map-
ping from truth-value assignments to document

sections. Data entry is mixed-initiative: informa-

tion other than rulings is entered by filling in en-

try forms, and rulings are obtained interactively.

Law Clerk version 1.0 is written in XLISP, a com-

pact public-domain LISP dialect implemented in

C. XLISP’S interface was extended using Borland’s

C++ TurboVision library to support pop-up menus,

dialog boxes, editing windows, and mouse-sensitive

push-buttons.

The Food Stamp Fraud Consultant

The behavior of LawClerk 1.0 can be illus-

trated by the Food Stamp Fraud Consultant, a

prototype JDAS for Food Stamp Fraud cases im-

plemented using Law Clerk 1.0 and developed in

conjunction with the Colorado Division of Admin-

istrative Hearings.

5.1 Food Stamp Fraud

Under the Code of Colorado Regulations 12CR8

~B-4425, Colorado food stamp offices are respon-

sible for investigating cases of alleged fraud in ob-

taining food-stamp benefits and for initiating ad-

ministrative hearings on such cases. A food stamp

recipient who is shown to have committed an “in-

tentional program violation ,“ i.e., made a “false

or misleading statement, or misrepresented, con-

cealed or withheld facts” may be disqualified from

receiving additional food stamp benefits for 6 months,

12 months, or permanently depending on whether

the recipient has had O, 1, or 2 previous disquali-

fications.

5.2 Entry of Case Information

Interaction with the Food Stamp Fraud Consul-

tant is in two phases. In the first phase, infor-

mation other than legal conclusions is entered by

filling in values for fields in entry forms of the fol-

lowing types:

● Case caption

● Food stamp application

● Allegations

● Admissions

● Denials

● Hearing notice

● Hearing

Only the case caption and hearing forms are re-
quired to be filled out. A set of completed entry

forms for a given case constitutes the case record.

Because it does not involve legal conclusions,

this information can be entered by clerical person-

nel. All attributes of the entry forms, including

the number and type of forms and the number,

placement, datat ype, and label of every field in

each form, are represented declaratively and can

therefore be easily modified with a form editor.

5.3 Consultation with Judge

The second phase of interaction with the Food

Stamp Fraud Consultant is the consultation with
the judge, during which the program prompts the

judge to rule on each issue, i.e., assign a truth

value to each legal predicate, relevant to the out-

come of the case. A legal predicate is deemed rel-

evant if it appears as an antecedent of a rule that

applies to the ultimate issue in the case (e.g., dis-

qualification from food stamp benefits) or if it is

an antecedent of a rule applying to a relevant pred-

icate. When the Food Stamp Fraud Consultant is

told or infers that a predicate is true or false, it

retrieves a text template associated with a truth-

value assignment for that predicate, instantiates

it, and presents it to the user for editing. When

the text satisfies the user, it is added to the ap-

propriate section of the opinion under construc-

tion. After the Food Stamp Fraud Consultant has

determined the truth value of all relevant facts, it

presents a draft of the final opinion to the user for

a final edit.

The consultation begins with the user selecting

from a menu the ultimate issue in the case. 3 As-

sociated with the ultimate issue is a set of initial

actions, i.e., template/case-section pairs. The ini-

tial actions contain templates for the portions of

each section of the opinion that are independent of

the outcome of the case. For example, one initial

action is to instantiate a template stating whether

the parties were represented by counsel and writ-

ing the instantiated template to the prologue of

the opinion.

LawClerk then backchains through its legal rules

for disqualification. The top-level rule for disqual-

ification is as follows:

#s(legal-rule

consequent (disqualification

?person

?period
?a~~unt)

3Currently, only one ultimate issue is implemented in the

Food Stamp Fraud Advisor, (disqualification ?person ?period

?a mount), i.e., ?person is disqualified from receiving food

stamps for ?period and is liable for ?a mount in overissuance.

-))1

antecedents ((intentional-program-violation

?person)

(disqualification-period

?person

?period)

(fs-overissuance

?person
?fs~

?amount))

citation “Section B-4425.32”)

This rule expresses the requirement that to estab-

lish disqualification from food-stamp benefits, one

must establish that an intentional program viola-

tion was committed and determine the applicable

disqualification period and the value of the food-

stamp overissuance. Under this rule, the top-level

goal of establishing (disqualification Jones ?period

?amount) gives rise to the subgoal of establishing

that Jones committed an intentional program vi-

olation. The following rule expresses the require-

ments for establishing this subgoal:

#s(legal-rule

consequent (intent ional-program-violat ion

?person)

antecedents ((applied-for-benefits

?person)

(certified-to-receive-benefits

?person)

(misrep-or-omit
?statement

?person

?misrep-type)

(intentional
?statement

?person

?misrep-type)

(received-penalty-notice

?person)

citation “Section B-4425.1. 1“)

Under this rule, establishing an intentional pro-
gram violation requires establishing that a per-

son applied for and was certified to receive food

stamp benefits, that the person intentionally mis-

represented or omitted information, and that the

food stamp application contained a notice inform-

ing the person of the penalties of misrepresenta-

tions or omissions.

When LawClerk reaches a goal to which no

legal rules apply, it searchs for prima ~acie rules

.

having either the goal or its negation as their con-—
sequent. Prima facie rules express an evidentiary

relationship between case facts and the legal pred-

icates they tend to establish or negate. For exam-

ple, the following prima facie rules express the ten-

dency of allegations of unreported employment to

confi~m, and denials of unreported employment to

negate, the existence of unreported employment:

#s(prima-facie-rule

antecedents

((access ‘(allegations

unreported-employment

employer)

current-case-record))

consequent (unreported-employment

?person))

#s(prima-facie-rule

antecedents

((access ‘(response

denial

unreported-employment)

current-case-record))

consequent (not (unreported-employment

?person)))

After determining the applicable prima facie rules,

LawClerk asks the user to rule on the issue, pre-

senting the supporting or negating evidence iden-
tified through the prima facie rules, e.g.,:

Is it the case that Jones had unreported

employment income?

Supporting evidence: The Denver Food

Stamp Fraud OfFice alleged that Jones

had unreported employment income.

Negating evidence: Jones denied having

unreported employment income.

This use of prima facie rules insures that the

judge will be aware of any evidence in the case
record relevant to the current legal issue.

When the judge is asked to rule on the truth
of a legal predicate (as opposed to supplying a

date, amount of money, or other value) the user is

presented with the choice of ruling “Yes,” “No,”

or asking “Why?” If the “Why?” option is cho-

sen, LawClerk responds by identifying the imme-

diately superior goal. For example, if the user is

asked whether Jones applied for food stamp ben-

efits and the user asks “Why?” LawClerk prints

the following explanation:

[I.e., Why I am 1 trying to determine

whether Jones applied for food stamp

benefits?] I’m trying to determine whether

Jones committed an intentional program

violation. This conclusion would follow

under Section B-4425.1.1 from the fol-

lowing:

Jones applied for food stamp benefits.

Jones made a false or misleading state-

ment, or misrepresented, concealed, or

withheld facts.

. . .

Repeated invocations of “Why?” will access suc-

cessively higher goals until the top-level goal is

reached.

When the judge rules on an issue, the actions
corresponding to the truth value assignment of

the predicate are retrieved, and the template in

each action is instantiated, presented to the user

for editing, and written to the appropriate sec-

tion. Templates in LawClerk 1.0 are lists contain-
ing strings, references to the case record, or Lisp

expressions that evaluate to strings. For exam-

ple, a portion of the template for the predicate

“applied-for-benefits” is:

(<cr> <cr><np>”. “

“On “

(datelist-to-string

(access ‘(fs-application fs-application-dates)

current-case-record))

(caption respondent abbreviated-name)

“ applied for FS benefits for a household”

“ consisting of”

(fs-application number-of-family-members)

“ family members. “

Hard returns and paragraph numbers are indi-

cated by <cr> and <rip>, respectively. The ex-

pression (caption respondent abbreviated-name) refers

to the abbreviated-name subfield of the respon-

dent field of the caption form. LawClerk’s tem-

plate language is currently being revised to be

more comprehensible to technically naive users.

LawClerk’s model of a judge’s justification for

a decision is a goal tree [BS84], consisting of the

rule invocations and judicial rulings that justify
the outcome of the case, constructed in the process

of backchaining. The syntax for the justification

is a simplified version of the explanation syntax

used in GREBE [Bra91b]:

<explanation> ::= (<goal> ruling) I

(<goal>
<rule-name>

<explanation> *)]

(<function-tuple>

has-value

<value>) /

(<function-tuple>

succeeded) I

((unless <goal>)

failed

<goal>)

<goal> ::= <tuple> I not(<tuple>)

<tuple> ::= (<predicate> <symbol>+)

<function-tuple> ::= (<function-name>

<Lisp-expression>*)

<value> ::= <symbol> I <number>

The simplest explanation, “(<goal> ruling),” merely

indicates that the judge ruled that <goal> is true.

This explanation does not attempt to represent

the factors that the judge used to justify this rul-

ing. In explanations of the second type, (<goal>

<rule-name> <explanation> *), <goal> follows from
rule <rule-name> given the explanations for <rule-

name>’s antecedents.

Since LawClerk performs incremental mapping

from truth-value assignments to document sections,

creation of a static goal tree is not necessary for

the construction of the judicial document. How-

ever, the goal tree permits the system to provide

answers to “Why?” and “How?” questions by the

user.4

6 The Pragmatic

of Issue-Oriented JDAS’S

The development of LawClerk was guided by lengthy

discussions with administrative law judges, staff

attorneys, and judges, primarily at the Colorado

Court of Appezds (where the author was formerly

employed) and the Colorado Division of Admin-

istrative Hearings. In the course of these discus-

sions, and as a result of an initizd evaluation of

the Food Stamp Fraud Consultant by the ALJ’s

of the Colorado Division of Administrative Hear-
ings, several conclusions emerged.

4Only “Why?” questions are currently implemented in

LawClerk 1.0.

233

First, no issue-oriented JDAS is likely to be

widely accepted unless it is capable of being eas-

ily updated to reflect changes in law or institu-

tional custom. Support personnel in administra-

tive agencies and trial courts typically have lim-
ited technical experience, so the process of up dat-

ing the JDAS must be understandable even to a

technically naive user.

Second, it is nontrivial in practice to determine

a class of judicial documents amenable to issue-

oriented JDAS’S within a given decisional body.

Characteristics of suitable documents include the

following:

● A predictable set of issues. An issue-oriented

JDAS is feasible only if the issues that can

occur in a case can be preenumerated and

text templates associated with each.

s A high volume of cases. Development of an

issue-oriented JDAS is economical only if the

development costs can be amortized across a

large number of cases.

● Variable combinations of issues. An issue-

oriented JDAS is useful only if there is suf-

ficient variability in the combinations of is-

sues arising in cases that simpler document-

oriented techniques are impractical.

AppeIlate court decisions are poorly suited to

issue-oriented JDAS’S because the issues that arise

on appeal tend to be very unpredictable. Highly

routine orders are also unsuited to issue-oriented

JDAS’S when there is insufficient variability to jus-
tify the overhead of modeling the decisional pro-

cess. By contrast, administrative decisions are of-

ten well suited to issue-oriented JDAS’S, as illus-

trated by the experience of JEDA. Similarly, or-

ders and decrees in courts of general jurisdiction

and appellate courts are well-suited to the extent

that they involve permutations of a predictable set

of issues. However, considerable analysis and ne-
gotiation is generally necessary in practice to de-
termine a class of judicial documents having the

right balance between predictability (of issues aris-

ing in most cases) and variability (of combinations
of issues occurring in any given case) and suffi-
ciently high case volume to justify development of

a JDAS.

A third issue, discussed above, is that some

decisional bodies adhere to a policy of strict ju-

dicial parsimony under which a single legal issue

is resolved on the basis of exactly one legal rule,

whereas others permit legal issues to be resolved

on multiple grounds. Whether the control strat-

egy of the justifier in applying legal rules should be

exhaustive search or satisficing search depends on

this choice of legal idiom. A general-purpose shell

should be capable of supporting both strategies.

Fourth, JEDA and LawClerk employ a mixed-

initiative data entry scheme under which informa-

tion other than rulings can be provided in data en-

try forms, and rulings are obtained interactively.

However, some ALJ’s have expressed a preference

for an interface in which all information, including

factual findings and rulings, is entered in a single

form after which the JDAS assembles the opin-

ion noninteractively. Once again, general-purpose

shell should provide support for both approaches.

Status of the LawClerk Project

In view of the results of the preliminary eval-

uation, Law Clerk is currently undergoing the fol-

lowing revisions:

●

●

●

●

b

Revision of the justifier’s control strategy to

accommodate both parsimonious and multiple-

ground decision styles.

Provision for both mixed-initiative and non-

interactive justifier modes.

Improved editing capability. LawClerk cur-

rently includes an editor for legal and prima-

facie rules, and an editor for text templates

associated with legal predicates. However,

neither is yet sufficiently self-explanatory to

be usable by a technically naive judicial staff

technician. In addition, an editor for en-

try forms has yet to be developed, although

the declarative representation of these forms

makes devising such an editor straightfor-

ward.

Extension of the justifier’s explanation ca-

pability, which currently includes presenting
all arguments for and against a given issue

and answering “Why?” questions, to include

“How?” and “Why not?” question types.

Addition of a facility to permit the user to
retract or change actions.

The revised version of LawClerk will be tested in

Colorado Division of Administrative Hearings, the

Wyoming Office of Administrative Hearings, or

one or more Wyoming District Courts

234

7 Conclusion [R091] David B. Rottman and Brian J. Ostrom.

Caseloads in the state courts. State
This paper has described an issue-oriented approach Court Journal, 15(2), Spring 1991.
to judicial document assembly that uses an ex-

plicit representation of legal rules to construct a [Sne89] Aidney C. Snellenburg. New approaches

justification consistent with the judge’s ruling which to reducing court delay and conges-

is then used to create a judicial document. Law- tion. State Court Journal, 13(3), sum-

Clerk is a domain-independent issue-oriented JDAS mer 1989.

shell that uses a declarative representation declar-

ative representation of rules, issue templates and
entry forms that permits it apply to a variety of
different domains and to accommodate easily changes

in the law or in the idiom of a particular judge

or document type. A preliminary evaluation of

the Food Stamp Fraud Consultant, an application

implemented in LawClerk, indicates that general

purpose JDAS’S require considerable flexibility y in

control strategy and data entry modes and must

be capable of being updated by technically naive

support personnel.

References

[Bra91a]

[Bra91b]

[BS84]

[Lau92]

[PRK89]

[Rip91]

L. K. Branting. Building explanations

from rules and structured cases. inter-

national Journal of Man-Machine Stud-

ies, 34:797–837, 1991.

L. K. Branting. Integrating Rules and

Precedents for Classification and Ex-

planation: Automating Legal Analysis.

PhD thesis, University of Texas at

Austin, 1991.

B. Buchanan and E. Shortliffe. Ru2e-

Based Expert Systems. Addison-Wesley

Publishing Co., Menlo Park, 1984.

M. Lauritsen. Technology report: Build-

ing legal practice systems with today’s

commercial authoring tools. Law and

Artificial Intelligence, l(l), 1992.

Vishwas P. Pethe, Charles P. Rippey,

and L. V. Kale. A specialized expert

system for judicial decision support. In

Proceedings of the Second International

Conference on A rtificial Intelligence and

Law, pages 190-194, Vancouver, B.C.,

June 13-161989.

Judge Charles P. Rippey, 1991. Personal

communication.

