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Abstract

The theory of non-monotonic reasoning has interesting

applications for theformalization and automated use of legal

concepts, specially:

●

●

●

drawing conclusions from a logically inconsistent, but

hierarchic, regulations [1, 30];

similarly, establishing facts from a set of inconsistent

testimonies, partially ranked by confidence;

using presumptions (such as the presumption of inno -

cence) in the face of possibly contradictory evidence.

In this pape~ we use a logic [37, 38], that ranks contra-

dictory formulae using two new paraconsistent variants of

conjunction: “but” and “on the other hanfl. Its algebraic
proof theory is presented.

1 Introduction

When representing legal knowledge (laws, norms, etc.)

in expert systems, the knowledge anatyst is often faced with
logical contradictions between different law tlagments. Ex-

pert systems based on classical logic collapse when faced

with contradictions, since any consequence can be drawn

from a single contradiction in classical logic, spoiling thus

the whole knowledge base in face of a single fault: On the

other hand, many legal texts use logical contradiction and

hierarchy as a systematic structuring mean[29]. Fortunately,

this problem is solvable in most modem expert systems, using

meta-knowledge on the precedence of legal texts.

A similar problem occurs in the fact base, when contra-

dictory testimonies must be used to try to establish facts;
again, this problem is often solved using meta-knowledge.
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Lastly, the same mechanism can be used to model presump-

tion, which can be understood as resolving a contradiction

between a rule in the knowledge base and stronger evidence

from the fact base.

Although the operational solutions usually found in ex-

pert systems oflen allow a correct treatment, they lack a

logical basis. In this paper, we propose a logic to draw sound

conclusions from a legal hierarchy, and examine its logical

properties.

The need for such a logic has been recognized for long

by theorists of law [27, 18], but the mathematical basis (non-
monotonic logics) has been developed only recently, starting

with [1]; see [25, 33] for an overview.

2 Logical basis

In this section, we outline the mathematical basis of our

approach: the formal definitions are given in appendix. Our

framework, like [1, 11], is parameterized by the underlying

logic. The examples of this paper will use classical logic

for simplicity, but an accurate modelling of legal reasoning

requires a temporal and deontic logic [16]. This parameter

logic must be presented in the form of a model theory, in

the style of the institutions of [12]. In contrast, [1] require a

consequence relation (a proof theory). As a supplementary

parameter, our theory require the definition of a closeness

between models, a “partially ordered distance” (A. 1).

Example 2.1 The measure of closeness proposed by [6] for

propositional logic is the number of predicates having a dif-

ferent truth value in each of the two models; this definition:

. does not extend to Ilrst-order logiv,

Q is sensitive to replication (using two different names for

the same predicate.)

Example 2.2 (Al) Here, we use the following two sets of

predicates value as a measure of closeness: those that are

false in the first model and true in the second, and con-

versely. Closeness is measured by set inclusion: when both

sets are empty, the two models are perfectly close (and indeed

identical,)



Example 2.3 (AZ) The extension of this measure to tirst-

order logic involve some subtleties to deal adequately with

equality [36].

2.1 Syntax and semantics

Given such a model theory and a closeness between mod-

els, our main object of study is the posec a partial reliability

order [1] among witnesses.

Example 2.4 Poirot tries to resolve a case where important

documents have been stolen from an office. He is faced with

3 witnesses: Anna, Bob and Cliff. He has no reason to give

more credit to Bob or Cliff, but knows that Ann% the room

maid, is a more reliable witness. So the reliability order is

here:
Anna <~ Bob, Anna< w Cliff.

Each witness has a testimony: a formula of the original logic.

Example 2.5 ● Anna says: “I have seen Mr. Bob enter-

ing the office.”

. Bob says: “I did not enter the office. I have seen Cliff

entering the office.”

● Cliff says: “I did not enter the office. I have seen

somebody (either Anna or Bob) entering the office,”

Taking A, B, C as atomic propositions for “Anna entered

the office”, etc., we obtain:

● At = @(Anna) = B

● Bt = @(~ob) = (+ A c)

● C’t == cP(clifl) = (-IC A (A ~ -@))

opwhen dealing with paraconsistent sets of regulations,

the terms legal hierarchy, precedence, law, logical content

are used, respectively.

Based on this ordering, we define the models of a poset as

the models that are closest to the models of the testimonies,

according to the usuat lexicographic ordering:

~~G~~VwEW,hW~h~V~t <wUJ, ht <h:

where h~ represents the distance between the candidate

model, and a model of w‘s testimony. So a model is bet-

ter than another if for any witness, either the model is closer

to some model of the testimony, or it has a good excuse: a

more reliable testimony to satisfy strictly better.

Example 2.6 Here, as the testimonies are contradictory, no

model can satisfy all of them, but some models are more

likely than others, A model where nobody entered the office

(A, B, C are all false) is clearly less likely than a model

where only Cliff entered the office, since at least this one
agrees with the testimony of Bob. However, a model where

only Bob entered the office is even more likely, since this

one agrees with the testimony of Anna, and Anna is more

reliable.

To have a textual expression of posets, we introduce oper-

ators, that are posets with names instead of some testimonies.

A name is just a placeholder that will later be replaced by a

poset. The two operators mentioned in the abstract are the

simplest operators of this kind, with two placeholders: “but”

(noted /) gives precedence to its second argument, while “on

the other hand” (noted ]1)Wats its two arguments as equatly

reliable. We also have the single-node empty poset as op-

erators. These operators are complete, in the sense that any

finite poset is equivalent to some expression of our syntax,

Our definitions thus give as models of 41 /& the models of

q5zthat are the closest to 41. When dl and 42 are consistent,

this reduces to @l A qk

Example 2.7 Poirot’s mental poset can now be described as

(Bt II Ct)/A,, pronounced

Bob says: “I did not enter the ojjlce. I have seen Cliff

enten’ng the o#jice.” On the other hand Cli#says: “I did not

enter the office, I have seen somebody (either Anna or Bob)

entering the office.” But Anna says: “I have seen Mr. Bob

entering the oflce.”

This expression can now be solved by atgebraic manipu-

lations, see 2.2.

The operation [G] takes a poset G, and returns its class

of minimal models, Since, in our approach, sentences are

considered as detining classes of models, [G] can thus be

used as a sentence of the original language, and in particular

used as a testimony.

In summary, the syntax of our logic is:

G::= G1/G2 I GIIIGZ I al~

@::= #o I [G]
where G, G1, G2 are expressions denoting posets, @is a for-

mula of the extended logic (denoting a class of models), 40

is a formula of the original logic (e.g., propositional logic).

2.2 Proof theory

From the semantics, we can derive the validity of the

following proof rules. We use equivalence of posets (A.2.2),

and note that our operators form a kind of ring:

Im GIIGs G

As G111(G211G) a (GlllG2)ll~
Id Glla s G

IdT GIIT E G ifG#@

Ab GIIIE1

Corn G1l\& s ~llGl

ImB (G/G)E G

Ad3 G1/(G2/~) E (G1/G2)/~

Idl .ES/GZ G

Id2 G/D E G
IT1 T/GE G ifG#O

IT2 G/T E G ifG#O

Abl .L/GE 1

Ab2 G/J_ E 1

DZS G1/(G21[G) = (G/ G)ll(G/G3)



This equivalence is a congruence for all our operations:

RG q4@qbt4~zqh
RO G1=G2H GIIIGs ~llG

RBI G1 E Gz t GIIGz fi/G

RB2 G1 E G2t G/G2S G/Gl

RA G1 E Gz t- [Gl] @ [~]

All rules of the original logic (e.g. propositional logic) apply,

even to formulae of the extended language,

Considering a formula as a graph is a transparent opera-

tion:

~~P [4] + 4
Finally, we have two powerful rules:

OR [G[n := ((j, V q52)]] + ([G[n := #1]] V [G[n := 42]])

K7 ([ G1/@l] A [G2/rj2]) + [oP(G~, G2)/(@l A @z)]

In the first, G is an operator containing the name n. This rule

reflects the fact that our logic is model-based.

In the second, op is a pure binary operatov in particular, it

can be any combination of /, II, 0.

The rules above do not depend on a specific closeness:

they are applicable in any default institution. The following

rules can be derived (a proof indication is on the right):

WS [G/q5] + # (K7)

And ([ G/~,] A [G/q$2]) + [G/(@I A 42)] (K7)

K3 ([G] A E) + [G/.E] (K7)

ORB [G/((jl V 42)] + ([ G/(#2] V [G/(#J2]) (K7; OR)

ABA [G/#l] A 42 + [G/(~l A 42)] (K7)

HL [41/#21 @ (1#1 v [h/#2]) A h (K7)

IMP [Gl] + [Gz] t- [Gl] + [op(G~, Gz)] (K7)

01 +, 1- -1[~~11+,] (Ah)

BI1 --+1 1- 7[41/#2] (Ab2)

B12 -+2 1- 7[41/42] (Abl)

Col q+ v 42 t- [~1/#] v [q$2/#] * @ (K7, OR)

C02 ~1 v #2 1- [G] + [G/#1] V [G/q$2] (ORB, BTI)

CM [G/@,]= 42 [G/(41 A ~z)] + #3 (K7)

[G/q$l] + @,

When the institution is comected, i.e. there is a morphism

between any pair of models (as is the case with our proposi-

tional institution) we may use:

L [G1/G2] + [GI/[G2]]

Note that these rules are invariant under uniform substi-

tution: by replacing a propositional symbol by a formula in

a theorem, we obtain another theorem.

All rules above are sound, but clearly not complete for

any specific default institution. To treat our propositionat
institution, the following rule alone is already complete:

OG [G] + V{+ I d(@, Y) c iVfzn(d(~, Y))}

where:

●

●

+ is a consistent conjunction of literals (notationally

identified with a set of Iiterals).

Y is a labelling of W (the witnesses of G) by consistent

conjunctions of Iiterals, such that Y?(w) + 0(w).
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. The distance d (+, Y) is the Iabelling or G given Dy

d(+, Y)(w) = ~1 I 1 G Y(w) A (71) E ~}, with the

constraint that any literal 1 appearing in a Y must be

decided upon in +: 1 G #or (--T1) E +.

● The order between dist antes is given by the lexico-

graphic combination of set inclusion,

From this rule an algorithm to reduce extended formulae to

propositional formulae is easily derived [37], showing the

decidability of the logic.

For our tit-order institution, the second-order rule 2E

(described in appendix B) is complete.

3 Legal applications

This section shows through simple examples how our

logic is can be used in several areas of legal reasoning,

3.1 Ranking testimonies

Example 3.1 We are now in position to solve our example

2.4. Poirot’sposet is: ((lB A C7)II(1(7 A (A ~ -IB)))/B,

The reader can check, using the model-theoretic definitions,

that the models of this poset are the same as those of 7A A B.

The implicit reasoning performed by our logic is the fol-
lowing: Anna is reliable, so that B is true (we apply rule

WS). Cliff says that either Anna or Bob entered the office,

and is not contradicted. Knowing that Bob entered the of-

fice, Anna did not. About Cliff, we have two contradictory

testimonies, and no one is more reliable than the other, so we

do not conclude (but certainly we do not want to conclude

every formula, as with classical conjunction).

This result can also be obtained by rule O G, We have two

implicants for V( Chfi), namely (1) A A lB A 76’ and (2)

--IA A B A 1 C. For the others witnesses we can merely take

Yi(w) = o(w).

●Taking $l=lAAB AC:

- d(+l, Y2)(A?zna) = Jzs

- d(@l, Y2)(Bob) = TB

- 4+1, Y2)(CW) = -’l C

eTaking~2=~AABA~c:

- d(#2, Y2)(Anna) = @

- d(#z,’Pz)(Bob) = -TB A C

- 4742, ‘I?2)(W7) = 0

These distances are incomparable for the lexicographic or-
dering. We easily check that other values for $ and Y are
not minimal.

Putting brackets around a poset is not innocuous: it can be
thought as reporting conclusions drawn from other sources,

without citing them. In [11, 35], an operation [41 /~2] was

introduced, without recognizing the nature of its constituents.

The combination of several testimonies often gave paradox-

ical results, as first noted in [15], and shown in the following

examples.



Example 3.2 The example of [15] is the following: Poirot

arrives at night in a city. He meets a witness telling him that

they are two restaurants in town, where they are, and that

their opening hours ensure that at least one of them is always

open. He goes to the closest one, and horn faraway he sees

the lights on. But when trying to push the door, he sees that

the door is locked and that there is nobody inside.

Let A, B represent the fact that the closest (resp. farthest)

restaurant is open. The detective first learns A V B, then (more

reliably) A, and finally --d. If we use the operation [../ ..] to

integrate new, more reliable information, we obtain first [(A V

B)/A] = .4, and then [A/--u4] = +, so that the detective

should paradoxically believe nothing about restaurant B. But

if we use the operator ../.., we obtain (A V B)/A/+, which

has the same models as -d A B, as intuitively expected.

ExampIe 3.3 Assume that our detective sent a young assis-

tant to question Bob and Cliff. From their testimonies he

concludes [(+3 A C) 11(1C A (A # -IB))] = (A A --IB).

Our logic reconstructs the assistant reasoning: Whether Cliff

entered the office is disputed. But nobody contests that either

Anna or Bob did, nor that Bob did not. So Anna did.

He then reports his opinion to the detective, who concludes

(AA +)/B = (AA B): since he does not know why his

assistant believes Anna entered the office, he does not cancel

that conclusion.

Example 3.4 The Attorney General has a supplementary but

highly unreliable testimony: a tramp reporting that Cliff en-
tered the office. If he takes the opinion of his detective

(which has no opinion about this, as seen above) and of the

tramp, he will conclude that Cliffentered the office. Formally

C/[((lB A C)ll(mC A (A @ -dl)))/B] is C/(lA A B),

which is simply C A 1A A B: Since no contradictions are

present, “but” reduces to “and”.

If the Attorney had questioned the witnesses directly, he

would instead have the mentaI poset: C/((lB A C) II (= C A

(A @ ~B)))/B, from which he can conclude that C is

disputed between Bob and Cliff, and that the testimony of

the tramp adds no value to the one of Bob. So he would

conclude -IA A B, like the detective.

3.2 Hierarchies of iaws

An interesting application of our logic aIlows drawing

conclusions horn a contradictory set of laws, where a prece-

dence is known.

Example 3.5 ‘l’he legal tradition admits that constitutional

law (C) has precedence over common law (M), and over

administrative regulations (Ah no precedence is admitted
between the last two. This precedence can be described

by (MI IA)/ C, where C, M, A are expressions of our logic,
probably containing further precedence operators,

Assume that:

. the constitution states that expressing a personal opinion

is not reprehensible;

● the common law states that expressing publicly a slan-

derous pemonal opinion is reprehensible

. an administrative regulations says that this is reprehen-

sible, or at least prejudicial.

Using the atomic proposition R to represent that expressing

publicly a slanderous personal opinion is reprehensible, and

P, that it is prejudicial, we obtain (RII(R V P))/-R, which

has the same models as P A -R, as usually admitted.

Most laws contain implicit or explicit suppositions that

have lower precedence, so that even within a single legal text

a hierarchy may be present.

Example 3.6 [27] The French Civil Code only lists the cases

where a settlement is void, the implicit assumption is, obvi-

ously, that any settlement not listed is valid. We have thus

common sense ( CS) telling us that acts (in particular, settle-

ments) are normally valid: (V z, act(z) + lvoid(z))while

the Civil Code (CC) gives some more specific opposite in-

formation, for instance:

“Any settlement between wife and husband is void”

V z, (seti~ement(z) A conjugal + void(z)

The Civil Code even contains places for explicit exceptions:

“The marriage contract (MC) can, however, establish a dif-

ferent rule”. So the expression treating this example is :

CS/CC/MC.

3.3 Presumptions

Presumptions are clearly a non monotonic form of legal

reasoning: their meaning can only be understood as a norm

that has to be defeated by facts and other legal texts taking
precedence.

Example 3.7 The Belgian law (BL) states that innocence is

presumed

V z : person, ~ : crime,lguiliy(z, ~)

However, the fiscal law (FL) inverse the onus of proofi in

some cases, the defendant has to prove his innocence. This

exception to a presumption can be represented by:

vz, f.fisca~(f) A suspected(z, f) + guihg(z, f)

Sitnihtrly, the introduction of European directives (ED) into

the Belgian civil law inverse the onus of proof for producers:

V z,f, g.produces(z, g) A causes(g, ~) + guzhy(z,~)

In any case, these presumptions can be canalled by testi-

monies T, that can be treated as shown above. The resulting

expression is thus BL/(F-L[ [ED ) / T. This shows the inter-

est of treating testimonies, exceptions and presumptions in a

uniform logical setting.

4 Related work

The relations with non-monotonic logics, counterfactuat
conditionals (in particular [23]), databases updates [41] arc

described in [37]. They are strong links with model-theoretic

Iogics like preferential logics [40, 19, 20] (see [3 l]), initial

models and their extensions used in algebraic specifications



[12, 3, 17,26] (see [36]), circumscription [21, 14] (see [36]).
Actually our first-order institution (A.2) yields a new variant

of circumscription dealing adequately with equality [36].

Hem, we will only describe the practical differences with

other logics for the specification of law. [25, 32] reviews

most of them with application to legal reasoning in mind.

Many of these approaches (default logic [28], autoepis-

temic logic [22]) are proof-oriented we talkabout the

provedness of facts. This is indeed adequate to deal with

onus of proof, but in presence of disjunctive information, it

may yield unexpected results.

Example 4.1 The presumption of innocence can be for-

malised in e.g. default logic [28] as

inn = : M Vliable(z, o!) 1- nliable(z, o!)

if it is not proved that person x is liable for damage d, then

we assume (s)he is not

Furthermore, companies are liable for damages caused by

their employees during the normal course of their work, and

for which they are themselves liable:

comp = h%b~e(z, d) A dw’ingtoo?’k~or(z, ~, c) A

cau.sed(f, d) * liable (c, d).

M‘s consider the case where two movers, Murdoch and

Matthew, have broken a precious vase while working in a

customer’s house. None of them accepts the responsibility

of the fact. So we know that:

fact = liable(Mu, Broken) V liable(Ma, Broken)

(and the obvious facts about causation, etc.). Default logic

concludes that none is liable (as expected, due to the pre-

sumption of innocence) but also that the company is not

liable, since none of its employees is liable. This conclusion

is indeed supported by the letter of the law, but is intuitively

(and jurisprudentially) unexpected.

In our approach, we use classical sentences instead of

defaults:
innocence = VX, d.mliable(x, d)

We formalise the problem as:

innocence/ V z, f, c, d. comp/fact.

We obtain two incomparable models, each satisfying

comp and fact. They differ by which mover is liable. So we

do not conclude the liability of any of them. But the liability

of the company can be concluded, because in each model it

is liable.

Syntactically based logic (including [28, 1,5, 13, 24]) are

often unable to derive universal norms.

Example 4.2 Let’s try to represent in default logic [28] the

(now abrogated) Belgian law saying that:

Parents are liable for the deed of their minor children; ...

but parents aren’t penally liable for the deed of the children
above 18.

First note that using a default

liable(z, d) A minor(z) A child(z, y) : M liable(y, d) h

liable(y, d)

won ‘t work. We have first to remind that liable is merely

an abbreviation for “liable in civil and penal courts”, and to

distribute to obtain two defaults; then we have to give priority

to the “18-rule”. In general this will be done by adding a

control predicate to the antecedent of the less reliable rules,

that will appear in the consequent of the more reliable ones.

Here, for simplicity, we will just translate the”1 8-rule” by a

material implication.

liableC(z, d) A liableP(z, d) A minor(z) A child(z, y) :

M liableP(y, d) 1- liableP(y, d)

liableC(z, d) A liableP(z, d) A minor(z) A child(x, y) :

M liableC(y, d) t liableC(y, d)

liableC(z, d)A iiabieP(z, d)A above18(z)A child(z, y) +

lliableP(y, d)

This representation works as expected on cases. However,

we would like also to derive universal rules like: Parents are

always liable in civil court for their minor children. This is

clearly impossible using default logic.

In our approach, the corresponding expression is:

[(VZ, y, d.liableC(z, d) A liableP(z, d) A minor(z) A

chiid(z, y) + liableP(y, d)

IIVZ, y, d.liabieC(z, d) A liabieP(z, d) A minor(z) A

child(z, y) + habieC(y, d))

/Vz, y, d.liableC(z, d) A hableP(z, d) A above18(z) A

child(z, y) + miiableP(y, d)]

Using the rule 2E, we simplify this expression to
Vz, y, d.(iiableC(z, d) A liableP(z, d) A child(z, y) +

((above18(z) + mliableP(y, d))

A (minor(o) + liabieC(y, d))

A (minor(z) A =above18(z) + liiabieP(y, d))),

For practicality, the logic should allow several levels of

exceptions. In the absence of this feature, it is still possible to

obtain the desired results, but the interaction between various

exceptions has to be controlled manually. In our experienm,

this control code can be larger than the formalisation of the

norms themselves. In some approaches, any error in this

control code causes art inconsistency (e.g. both P and notP

are considered true, in the notation of [39]).

A proposal found in [5, 32] is to associate an integer (the

priority level) to each rule, This approach has an impor-

tant danger built-in: it tends to order artificially norms. For

instance, if two legal knowledge engineers build separate for-

malisations of legal bodies, that are later merged, exceptions

from both formatisations will be interspersed without rational

justification, depending on the particular numbers that each

engineer chose. Our approach uses instead a partial order on

exceptions: when no precedence is given between two rules,
both conclusions are deemed acceptable.

Entire legal hierarchies are often taking precedence over

other ones (see example 3.5). Our syntax expresses this

easily, in contrast to e.g. the level numbering system.

In some (rare) cases the ordering of norms has to be dy-

namic.

Example 4.3 [9] The British law states that the marriage law

applicable to an individual is the marriage law of the country

where he resides. However, some other British Acts are still
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applicabl% assuming than some of them have lower prece-

dence than marriage law (call them A), and others higher

precedence (call them C), we would represent this hierarchy

by e.g.: resio!e(hly) + [A/MI/C] A reside (l+ance) ~

[A/M~/C]

where MI designates the marriage law of Italy.

In summary, our logic combines the following features:

● partial ordering of laws (like [1, 14], unlike [5, 32]);

● algebraization of this partial order (new);
● model-theoretic definition (like [2 1, 19], unlike [ 1, 28,

24]), leading to a better treatment of disjunction and

quantification.

We have argued that each of these features is desirable. Ac-

tually, they are independent: we can construct a number of

logics, each with a different subset of these features.

5 Further research

In the tint-order case, the set of theorems is not recursively

enumerable, making automated deduction non-terminating.

We are currently looking at an implementation based on well-

founded orderings [2].

The base logic should be extended to handle the many

modalities needed in legal reasoning. We have tried the tem-

poral and deontic logic of [10], adding a closeness extending

OUE3 (A.2).

The applicability of our logic to large legal systems has

not yet been tried out. Structuring concepts from the school

of algebraic specifications [12] can be useful here: our logic

has been designed to accommodate them easily.

The syntax of our logic is not fully satisfactory. We would

prefer to have a single syntactic category, allowing to mix

freely 11,/and A,l,

Our logic does not deal with the source of precedence

among laws. This not a problem for two classical principles

of precedence, lex posterior (newest laws take precedence)

and kc superior (laws issued by a higher authority take prece-

dence). The third one, la specialis (laws more specfic (to

the case at hand?) take precedence), has to be coded as in

example 4.3. A system where the content of laws is exam-

ined to determine automatically their specificity relative to

the current case, like [7, 24] is superior here. Note that a

precise definition of specificity is currently a debated issue.
The interaction among principles of precedence is also

debated. We are currently exploring a multi-level version of

our logic, where the precedence is itself the result of a non-
monotonic, paraconsistent reasoning (useful to express e.g.

the principles of [4]; this has also applications in the theory

of inheritance hierarchies [8]).

6 Conclusion

From a legal point of view, our logic proposes a practi-

cal and theoretically well-grounded approach to the reason-

ing from hierarchies of laws, testimonies, presumptions, and
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some forms of common sense. The need for such a logic has

been identified by theorists of law [27] for long; several such

logics are now developing, based on various non-monotonic

foundations.

From a logical point of view, our logic proposed has has

a simple model-theoretic foundation. Its proof theory, pre-

sented in 2.2, is sound and complete. Its algebraic character

allows short proofs.

A Definitions

A.1 Default institutions

Our definition is parameterimd by a default institution,

which is given by:

●

●

●

●

●

a category Sign of signature~

a functor L : Sign + Sets, giving languages L(Z)

linked by translations Trz;

a contravariant functor h! : Sign -t Cat ‘P, giving

interpretations M(X) and their morphisms Me@,

linked by forgetful functors noted Ii.

a family of satisfaction relations +X between the inter-

pretations of Z and its formulae.

a functor Comp : Sign + Cat ‘P, such that, for each

Sigma:

the objects of Comp are Mor, the morphisms of

Int;

Comp is a preorder, that is, there is at most

one morphism of Comp between two objects of

Comp;

the identities of Mor are initial (minima) in Comp;

the morphisms of Mor that are minima in Comp

are called agreement~ they must form a subcate-

gory Ink;

In~ is weakly abstract: 3 h : M -+ N ~ Into *

VI#GL(X), M!=q$+N!=q5;

O-symmetry: each agreement h : M + N has

a reverse amement hR : N -+ M such that
(hR)R= h.;
O-equivalence: for any morphism h : B + C and
ag~ements a: A--+ B,c:C+D, a;h ~h~

h: c.

Example A.1 Our propositional default institution.

A signature is here a set of propositional symbols. A mor-

phism of signatures is a function mapping the propositional

symbols of the source signature to some propositional sym-

bols of the target signature. Given a signature Z, the language

L(X) is given by the usual syntax

~::=fiA~2 I lfl \ P

where f, fl, jlz are propositional formulae, and p E X is a
~ropositional symbol. The translation !lki corresponding to a

morphism of signatures zsimply replaces all occurrmxs of a

propositional symbol by its image under Z. Int (Z) is the usual

class of propositional interpretations, i.e. functions from X to



{7’, F}. The morphisms of interpretations are simply pairs

of interpretations. The forgetful functor I~ constructs the

inverse image of an interpretation: it forgets the propositional

symbols that are not in the range of i, takes the value of i(p)

for p (thus renaming and possibly duplicating propositional

symbols). The satisfaction relation is as usual: we define

~(~) by recursion on formulae, andpose M F ~iff fi(~) =

T. Up to here, all is standard.

The new part is the functor Comp expressing closeness

between interpretations. Intuitively, if there is a morphism of

Comp from (Ml, N1 ) to (Mz, A5), it means that Ml is less

different from Aj than Mz is from NZ We define a morphism

of Comp as a pair ((MI, lVl) < (Mz, Nz)) such that

{P EZIM1*PAN1 FP}<{PEX IM2RPAN2FP}

{P~~l~I YPA~I*P} G{PCZl M2Fp AN2*p}.
Itis easy to check that this defines indeed a default insti-

tution.

Example A.2 Our first-order default institution

A signature Z is a triple:

w S, a set of sortq

● O, a set of operators with fimctions a : 0 -+ S* giving

the sort of their arguments and a : 0 + S, the sort of

their result;

● P, a set of predicates with a : P -+ S* as above.

A morphism of signatures Z1 -+ &is a triple of functions

(is, 20, iP), respecting sorting, i.e. cz(io(f)) = is(al(f))

forf E 01, and CYz(io(f)) = iS(al(~)) for! E 01 or P1.

We also assume to have a set of variables X with a : X --i S

giving their sort. A term of sort s is eithe~

● a variable of X of sort s, or

● an operator of result sort s applied to terms of its argu-

ment sorts.

L(Z) contains~ormulae ~, that may be:

● conjunctions: #l Adz

. negatiorm lg$l

● universal quantifications: V x : 9, 41
● literals: p(tl, . . . . in)

where

c #1 ~42 me formulae,

● P ~ p%,...,%;
● ii, . . . ,tmareterms ofsortssl, . . ..sn.

An algebra A gives

● fOr each sort s, a Set 3A (called the carrier of the sort);

● for each operator f, a function fA horn the carriers of

the argument sorts to the canier of the result sort;

● for each predicate p, a relation pd between the CiiITierS

of the argument sorts.

Here, interpretations have an internal signature 2A con-

taining Z, an interpretation is thus a pair (ZA, A), where

A is a subjective Z4-algebra (see below). A valuation V

is a function that for each variable yields its value, i.e. a

member of the cmier of its sort. We say that V‘ NV V, if
Vz e X6\ {v}, v’(z) = v(z).

The f?’duation VA k the function that (?Xten(k v
by assigning to each term of TZA (X ) a value so- that

VA(f(tl, . . ., k)) = fA(VA(tl),..., VA(%)). There is a
single ground evaluation, noted eA, that gives a value to

each (internal) ground term. If eA is Subjective, the algebra

is called subjective.

A morphism of interpretations can only exist between

interpretations having the same internal signature. It is called

a correspondence between (X4, A and (2A, B), defined as a

family of relations N, between the carriers of A and 1?, with

the following properties:

1.

2.

3.

compatible with internal operator~ V f E OA ;

sl, . . ..s~ +SEO; al-,lbl, . . ..anbnnbn ~

fd(al,..., a~)~#fE(bl,...,b~),

tOtak VaESA, ~bEsB, a-, b,

subjective Vb E sB,~a~ $A,am~ b

An atgebm A satisjies a formula 4 for a valuation V, noted

A kv #,ifi

.Ai=v41A 42iff Al=v41 and A!=vq$

●AI=V14 iff Ai=v @is false

●AFVVV,4 iff Ai=v, #forti V’wv V

An interpretation (ZA, A) satisjies a formula 4 iff A sat-

isfies 4 for all valuations.

Although the definitions given here are not exactly those

of classical first-order logic, it can be shown that they are

equivalent for classical purposes.

The closeness that we will use is a direct extension of the

propositional one. Here, we have to know which elements of

the carriers correspond to each othe~ therefore a morphism

of Comp is a double correspondence horn a correspondence
N : A -+ B to another ~’ : A’ -+ B’ with the same internal

signature is a family of relations%, indexed by sorts between

pairs of corresponding elements, with the same properties as

correspondences:

1. compatible with internal operators: V f : S1, . . . . Sn -+

s c O; (al, bl) w,, (a(, b~),..., (an, bn) w,n

(ai, b&) * (fatal,..., an), fE(bl, bn))bn)) =,

(fA(~,..., a~), fE(b~, b~)),~)),

2. totat: Vs E S, V(a, b) c -; 3(a’, b’) G -’; (a, b) %$

(a’, b’),

3. su~ective: Vs c S, V(a’, b’) G J; q(a, b) G

-; (o,, b)%, (a’, b’),

Furthermore a morphism of Comp goes from close in-

terpretations to farther ones, so that it should obey: for all

(a’, b’) such that (a, b) % (a’, b’):

● PA(a)A~pE(b) +pA~(a’)A=pE~(b’)

● ‘pA(a) ~p~(b) + lpAl(a’) APB/(b’)

Lastly, to ensure that Comp (Z) is a preorder, a morphism of

Comp should be minimum (for set inclusion) among double

correspondences.
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A.2 Reliability posets

A.2.1 Syntax

We define a poset for a given signature Z as:

. a finite set W of witnesses.

● a partial preorder < ~ on W (Intuitively, v < w means

that v is more reliable than w).

● a function @fkom W to formulae, called the testimonies.

A family of morphisms ~ for a poset G is a set of mor-

phisms indexed by the witn~sses of G, originating from a

single model: Mor(G) = {h I 3 e, dW; hW : e -+ dv, dW ~

GW}. The ordering among families is lexicographic: ~ ~ G

$eVw~W,hw~h~v3t<ww, ht <h;.

Min( G) are the minimal morphisms of Mor( G) for this

ordering, i.e. Mzn(G) = {~ 1 ~ 6 MoT(G) ~ ~ E

MOT(G), 1 <a ~}. An interpretation e is a model of

G (noted e ~ [G]) if it is the domain of a minimal fam-

ily of morphisms: e c [G] iff 3 ~ c &fin(G); V w E

W; dom(hv) = e.

A.2.2 Operators
Operators allow to create new graphs by combining existing

ones. A n-ary operator is a poset, but it can be labelled

either by formulae or by names. These names represent the

arguments of the operator. When there are no formulae, it is

pure. When there are no names, it is a poset. A substitution

or an environment is a function from names to operators. The

application of a substitution a to an operator G, noted Gcr,

where a=[nl:=Gl, ..,, nm := Gin], gives a new operator

G’ defined by:

● W’ is {(w e W, w’ E c(O(W)))}

● ✍

● ✍

the order between rt6des originating from the same

witness is the order of the argument: (w, WI) ~ w I

(w, WZ) iff WI So(w) W.

the order between nodes tlom different witnesses

is the order of the operator G: (w, WI) < ~ t

(w’, ~)iff w SW w’where w # w’.

Q’((w, WI)) = O(wl)if w @ doma;

O’((w, w1)) = O(w) if@(w) isnot a name.

● G/G’ ( G but G’), deems G less reliable than G’. This

operator can be used to integrate new information taking

precedence.

● G IIG’ (G; on the other hand G’?) gives no precedence

to G nor G’. This operator can be used to integrate new
information in a sceptical way.

. the single node operators takes a formula and makes a

poset of it. This operator will not be noted.

. the empty poset operator, ET.

‘IWO posets G, G’ are deemed equivalent (G = G’), if

there is a relation N between Mor( G) and MOT( G’), such
that h - h’ + dmn(h) = dom(h’), and whenever hl -

h;, k - &, hl <~ lU iff hi <~1 &. llvo operators are

equivalent if any substitution that yields a poset for one of

them, yields an equivalent poset for the other.

B Rule for our first-order institution

To, present this second-order rule, we need abbreviations:

●

●

●

●

●

●

●

As a preliminary step, we need to replace the many-

sorted fonmdae by the single-sorted ones allowed by

second-order logic. This is a simple and standard tech-
nique called relativization [34], that replaces sorts by

predicates.

For each witness w c W, we introduce a copy of the

set of predicates PW, that will give the value of each

predicate in the closest model of the testimony.

For each sort s E S, we introduce a predicate 9’ con-

taining elements that are not generated by the external

signature.

(P’, p~) S (P, P~) abbreviates

&(VZ (P’(s) A lP~(~)) * (P(;) A =Pw(~)))
A (VZ, (vp’(i) A p~(;)) a (rep(Z) A pW(E))), ex-

pressing the order on our “distance” between models.

we use the usual abbreviation (P’, Pj ) < (P, PW) for

(P’, F’~) ~ (P, PW) A V(P, PW) < (P’, P~).

(P’, ~’) ~ a (P, ~) abbreviates the lexicographic or-

dering: AWew(P’, P~) s (P, P~)vVt<w(P’, P{) <
(P, P,)

Z’ERM(S’) is the conjunction of:

- the algebra is well-typed:

Af,,,...sn+sco vz [Ai<n si(oi)] * W(F))
- variables are terms: &~~ V s.s’(z) + s(z)

- functions yield different results:

A ~ :eo,j#g

(7

‘d;, j.~(i) A ?(~) =+ -I(f(~) = ‘

9Y)
- each function is injective: &~ ~ V 5, ~. F( i) A

i’(ij) Af(i) = f(~) =$ &<n Zi = yi

- fi,mctions do not yield variables:

Af:;+reo V3, Z;) * =~’(f(~))
- the algebra is subjective:

V(~~)~csJAf,;+rGo v ii, F(Z) A

1;(5) s I.(f(i)) A&5 VLS’(Z) + L(z)] +

[/Le5 VZ.S(Z) = L(a)]
Theformula R(G) is defined as:

~ S’. TERM(S’) A Aw~ w @(w)[Pw/P]A /
3P’, ~’. &ew O(w)[P~/P] A (P’, ~’) <G (p,~)

It characterizes exactly the models of [ G], so that:

2E [Gl] @ [~] iff R(G1) e R(G).
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