
Using Genetic Algorithms to Inductively Reason

with Cases in the Legal Domain

Anandeep S. Pannu

Intelligent Systems Program

University of Pittsburgh

Abstract

Reasoning pragmatically (rather than using theories
of jurisprudence) from cases has been established as
a viable model of legal reasoning. Cases are recog-

nized as encapsulating specific knowledge tied to a
context. The reasoning done with cases lead to solu-
tions that are tied to situations. To generalize these
solutions, the use of machine learning techniques is
often necessary. Induction from cases, seen as ‘exam-
ples’ with a ‘classification’ in a domain, is one of these
techniques. A Genetic Algorithm based approach to
inductively learn features of a case in a legal case-
base that leads to specified classifications is described
in this paper. This knowledge can then be used to
reason about cases that are ‘interesting’ by virtue of
their features and classification, and to predict clas-
sifications of other cases. This method is contrasted
with other well known techniques in machine learn-
ing. The claim is made that prototgpe exemplars can

be generated efficiently and that operational informa-
tion from any domain (ie. cases) can be used to guide
the generation, using variants of this technique.

1 Introduction

Case-based reasoning (CBR) ‘is accepted as a viable
legal modeling technique in AI. The law is an ill-
structured domain and the case-based approach at-
tempts to make up for the lack of an authoritative
strong model by modeling weaker methods for draw-
ing and supporting legal conclusions (Ashley 1992).
CBR avoids the problems inherent in a heuristic rule-
based approach because it confines itself to symbolic
comparison, inference and justification rather than
trying to find the ‘right’ answer (as rule-based ex-

perts systems purport to). Cases are ‘operationafiza-

tions of domains’ (Kolodner 1993) that are anchored

to specific circumstances or situations and any com-

parison, inference and justification in CBR is also

Permission to copy with&t fee all or part of this msterial k Srsnted provided
that the copies nre not made or distributed for direct commercial advsntsge, the
ACM copyright nodce snd the title of the publication snd its date appesr, and
notice is given that copying is by permission of the Association for Computing
Machinery. To Copy oIherwisc, or to mp”blish, rcquirra a fcc andk aPGGiriG
pemrission.

0 1995 ACM 0-89791-758-8/95/0005/0175 $1.50

anchored to these circumstances.

Every CBR program assumes the existence of a

partial domain theory for analyzing problems by com-

paring cases (Ashley 1992). The ‘operationalization’

of the domain is interpreted through the (implicit

or explicit) partiaf domain theory and representation

implemented by a CBR program. The usefulness of
a CBR program is determined by the user’s assess-

ment of the reliability y of the advice given by the pro-

gram. This is easy to do in a case-based reasoning

program, because the explanations in a CBR are an-

chored in specific circumstances allowing the user to

draw connections between ‘abstract explanatory con-

cepts whose definitions he may not know and concrete

facts with which he may be more familiar’ (Ashley

1992).

HYPO (Ashley 1990) is a CBR program which

rises a partial domain theory of precedents based on

Factors, but presents the results to the user (assumed

to be familiar with the law) in a manner such that

the user need not understand the underlying the-

ory. HYPO justifies a conclusion about a problem

by drawing an analogy to a similar past case and ar-

guing that the problem should be decided the same

way. Employing examples to focus a listener on im-

portant features, fike HYPO does, helps the listener

to assess the reasonableness of advice.

While learning from cases, even when cases are

considered as just clusters of features, this property

of transparency should be preserved. Cases have a

set of facts representing the ‘circumstances’ of the

case and have a ‘result’ which is the classification

that the circumstances of the case lead to. In this

paper the problem of classifying cases using the cir-

cumstances of the cases is addressed and a technique

for inductive learning from cases using Genetic Al-

gorithms is described. Cases are seen ss examples

tied to particular situations and the examples pro-

vide evidence about features that lead to particu-

lar classifications. The technique is used to gener-

alize from the examples and extract features that

lead to particular classifications. This technique used

in a program called GAINC (Genetic Algorithm for

lNduction from C=es) is a generative rather than de-
ductive or statiaticaJ technique. Information is kept
in the same form as a case in the case-base, ie. in

uninterpreted symbolic form rather than numeric or

175

(say) decision tree form. The generation of a ‘perfect’

prototypical exemplar for a particular classification is

the goal of the program. The fitness function used by

the GA is based on a general notion of ‘distance’ and

‘similarity’ which is usable across case-bases and do-

mains.

In the next section factors are described and the

problem of inducing knowledge about attributes of

factors is introduced. Two welf known machine learn-

ing techniques and their weaknesses vis a vzs the

problem at hand are analyzed in the third section.

The GA technique is introduced in the section fol-

lowing. The performance of the GA is analyzed in the

fifth section. Inferences that can be made from the

learned knowledge are explained and thetechnique’s

generalizabilit y to other legal reasoning systems is ex-

plored. Insubsequent sections comparisons are made

with statistical learning programs in the law, and the

advantages of the GA based technique are enumer-

ated.

2 Factors and the Case-Base

HYPO (Ashley 1990) is a program that exemplifies

the adversarial case-based reasoning approach. HYPO

task is to anafyze legal disputes involving trade secret

laws. In such a dispute the plaintiff claims that the

defendant has gained an unfair competitive advan-

tage by gaining access to the plaintiff’s confidential

product-related information. In every case there are

some factors that favor the defendant and some fac-

tors that favor the plaintiff. Factors are a kind of

expert knowledge of the commonly observed confec-

tions of fact that strengthen or weaken the plain-

tiff’s arguments. Generally, factors that strengthen

the plaintiff’s arguments are favorable to the plain-

tiff and factors that weaken theplaintiff’s arguments

favor the defendant.

In HYPO, dimensions represent a factor and also

whether a factor favors the legaf claim of a plaintiff

(Ashley 1990). This knowledge is provided by the

domain expert (in this case the creator of HYPO,

Kevin Ashley) tothe HYPO system.

CATO (Aleven & Ashley 1992) is apedagogicaf

program which is based on HYPO and uses it’s un-

derlying partiaf domain theory to teach students how

to reason with cases. It has a larger csse-base than

HYPO and identifies more factors. CATO’S knowl-

edge sources consist of a Case Knowledge Bsae of

forty six legal cases indexed by twenty dimensions in

the trade secrets domain of the law.

As mentioned above, dimensions represent the fac-

tors that experts judge are important collections of

facts for winning legaf claims in the trade secrets do-
main of law. HYPO uses cases from its CKB as prece-
dents to provide a basis for how to resolve competing

factors in a new case. Typically a trade secret dispute

is likely to involve a collection of competing factors,

some favoring the plaintiff and some favoring the de-

fendant. According to (Ashley 1992), ‘Legaf experts
are likely to agree that these factors are important

in deciding the case but they often disagree on how

important each factor is or how the conflict should

be resolved.’ Note that legal experts agree on what

the factors are and which side they favor but disagree

on the relative importance of these factors and their

effect on the outcome.

HQW did this agreement on which factor favors

the plaintiff and which favors the defendant come

about? In this paper is it is claimed that collection

of factors that favor the plaintiff or the defendant

can be inductively generated from our Case Knowl-

edge Base, specifically from knowledge of the factors

present in each case and its outcome. As is hinted at

by the disagreement about the effect of factors, there

is an assumption that factors are not linearly sep-

arable - ie. the effect of a factor on winning/losing

a case cannot be calculated in isolation from other

factors present in the case. Since each factor has an

effect dependent on what other factors are present in

a case; non-linear interactions make it meaningless to

consider each factor in isolation, resulting in a need

for search in the space of factors.

The objective of this paper is to address the ques-

tion of whether knowledge can be induced from a set

of cases represented as a set of features with a clas-

sification. The relative merits of using dimensions

versus factual predicates will not be addressed. The

‘s fact that factors are constructs is not materiaf since

the technique does not have the knowledge that fac-

tors are constructs and considers each one of them

as just a feature in a feature vector (explained in the

next section). However, the use of easily understood

constructs such as factors makes it easier to judge the

merits of the technique for humans.

3 What Machine Learning techniques could

be applied?

The task therefore, is to find out what factors are pro-

defendant and which factors are pro-plaintiff from

cases which have information about outcomes and

the factors leading to an outcome, in a domain where

there is no authoritative deductive model. Given the

circumst antes, induction - defined as ‘ rdf inferential

processes that expand knowledge in the face of un-

certainty’ (Holland et a/ 1986), is a promising avenue

to explore.

A look at some of the major paradigms in sym-

bolic machine learning that could be candidates for

learning the effect of factors given the information

that is available, would now be in order. First we

look at what information is available in the cases.

To simplify matters a case from CATO’S case-base

is represented as a vector of attribute values (each

representing a factor) and a indication of an outcome.

Each attribute position can have one of two binary

values ie. either a ’17 indicating that the factor repre-
sented by the attribute is present or a ‘O’ indicating
that it is absent in that particular case. The first

attribute in every case represents the outcome and ~

is also a binary value. A ‘O’ represents the fact that

the plaintiff won the case and a ’1’ indicates that the

defendant won the csse.

Since there are twenty dimensions representing

factors in cases, the vector is twenty one bits long

(i:cluding the outcome bit). The factor that each at-

tribute represents and a case from the database are

176

m
-i-

x

3

4

5

6

7

8

9

10
11
12

13

14

15

16

17

18

19

20
21.

Represents

Outcome (Win Plaintiff= O / Defendant =1)

Disclosure-In-Negotiations

Info- Reverse-Engineerable

Info-Independently-Generated

Bribe-Employee

Employee-Sole-Developer

Identical-Products

Agreed-Not-To-Disclose

Agreement-Not-Specific

Security-Measures

Secrets-Disclosed-Outsiders

Info-Known-To-Competitors

No-Security-Measures

Unique-Product

Brought-Tools

Competitive-Advantage

Knew-Info-Confidential

Vertical-Knowledge

Outsider-Disclosures- Restricted.

Restricted-Materials-Used

Invasive-Techniques

Table 1: Bit positions and Representations

Speedry 111100000000000000000

Case Name Speedry
Won by Defendant

Factors Present
Disclosure-In-Negotiations

Info-Reverse-Engineerable

Info-IndeDendentlv-Generated

Table 2: A case in CATO’S case base

shown in Table 1 and Table 2 respectively.

The problem could now be viewed in two ways;

which correspond to two major sub-divisions of in-

ductive (or empirical) machine learning (Dietterich

& Shavlik 1990).

One way to look at the problem is to say that

the concepts ‘factors-favoring-plain tiff’ and ‘factors-

favoring-defendant’ are to be learned. Supervised

concept learning involves inducing concept descrip-

tions to be learned from a set of positive and negative

examples of the target concepts. Examples are rep-

resented as points in an n-dimensional feature space

which is defined a priori and for which all the legal

values of the features are known (DeJong & Spears

1991). In the representation used above, each case is

an example. An outcome in which a plaintiff wins is

a positive example for the concept ‘factors-favoring-

plaintiff’ and a negative example for the concept ‘factors-

favoring-defendant’. Similarly an outcome in which a

“defendant wins is a negative example for the concept

‘factors-favoring-plain tiff’ and a positive example for

‘factors-favoring-defendant’.

Once the problem is formulated this way there
are many standard learning algorithms (and repre-

sentations) to chose from; for instance decision trees

(Quinlan 1986) used by the ID3 algorithms. Unfor-

tunately the domain considered is not so amenable to

these weli known techniques. The reasons for these

are enumerated below.

1.

2.

3.

The problem considered resembles the mdti-

plexor problem. Multiplexer problems fall into

the general area of trying to induce a descrip-

tion of a k-input boolean function from input/output

examples (DeJong & Spears 1991). Here the

case is expressed as a boolean string and the

output is a binary digit (outcome). Because no

single individual input ‘line’ is useful in distin-

guishing class membership, information-theoretic

approaches like ID3 have a particularly hard
time inducing decision trees for multiplexer prob-
lems.

There is uncertainty (in the form of noise) in-

volved in the examples in the database. An

example with the same factors present may be

won by the plaintiff in one case and won by the

defendant in another csse. Decision trees have

no easy way to represent this uncertainty and

cannot ‘smooth out’ the noise resulting from

contradictory examples.

Even if there were a decision tree that was gen-

erated from the examples, the resulting dweci-

sion tree is a predictor of whether a case can

be won / lost when a test example is presented

to it. That is, the decision tree representation

has to be post-processed in some way to get

the representation of uZ[factors that predict a

plaintiff/defendant win (it that were possible at

all).

Unsupervised inductive learning does not depend

on explicit classification of examples by an expert.

Instead the learning systems try to ‘look for regu-

larities’ in the examples presented to them. Most

unsupervised learning programs search for regulari-

ties that take the form of “clusters” of vsJues (exam-

ples are usually presented as vectors of values) and

so is called clustering. An example in these meth-

ods is represented as a vector of feature values plus a

classification label. In the formulation of a case, the

vectors would be formed by representing the factors

ss the vector of features and the outcome of the case

w the classification label.

All exemplar-based methods learn by storing ex-

amples as points in feature space (Cost & Salzberg

1993). The feature vector of a case in our problem

can be clustered into one of the clusters “plaintiff-

wins” or “defendant-wins”. A model can then be de-

veloped that specifies which factors predict that the

plaintiff wins and which factors predict that the de-

fendant wins. Unfortunately this technique also does

not fit the problem domain well, for the following

reasons.

1. The classifications of the examples are “case

won by plaintiff” or “case won by defendant”

and not “factors favoring plaintiff” or “factors
favoring defendan~. The information being sought
is an aggregate property of the examples. ‘I’his

177

means even if a chssification model of the do-
main is constructed with this technique, post

processing would be required to extract the in-

formation needed.

2. In the domain being considered it is quite pos-

sible to have ‘contradictory’ categorization ie. a

feature vector with exactly the same features

(factors) and opposite categorizations (outcomes).

It is not clear how the exemplar-based learning

can handle inconsistency in the instances pre-

sented to it.

$3

3. The exemplar being sought is the ‘perfect ex- ~-atUre ~

emdar’. That means that it must contain all

the’ factors that result in a plaintiff/defendant

win and not contain the factors that weaken the

case for the plaintiff/defendant. This exemplar

(or one near perfect) is not likely to be found in

any case base. So an exemplar-based learning

system would not be able to learn this (except

maybe when unusual combination of examples

are presented to a best-example learning system

(Kibler & Aha 1987))

4 A new technique for inducing knowledge

An alternative formulation of the problem that is

a combination of strengths from supervised learning

and clustering, and uses a generative mechanism to

generate exemplars (instead of just classifying exam-

ples presented to it) is introduced in this section.

Assume as before that examples are presented as

vectors of features with an outcome and an exemplar

(or prototype) of a certain classification needs to be

found. This exemplar should be ‘closest’ to all the

exemplars that provide support for the outcome that

the prototype represents and ‘furthest’ from the ex-

emplars that do not have the same classification. In

addition the prototype should be an ‘average’ of all

the examples that have the outcome that the pro-

totype represents. To understand what this means

in feature space, look at Figure 1. Here a vector of

three features is considered (excluding the outcome

bit - which is not considered as a part of feature space

but is represented separately).

The shaded circles represent the examples (eg. cases

from the Case Knowledge Base) that have the same

outcome as the prototype we are” trying to find (eg. cases
won by the defendant). The dark circles are the ex-

amples with the opposite outcome (ie. cases won by

the plaintiff). The prototype itself is represented as

a filled in rectangle. As can be seen from the figure,

the prototype is close to the examples that provide

support to it and furthest from examples that do not.
In addition it is in some way an “average” of the cases

that support it.

Advantage is also taken of the single representa-

tion trick (Barr et al 1981) used in machine learning,

in which instances and instance generalizations are

expressed in the same language. This trick is used

in reverse, here the concepts induced. are expressed

in the language of cases, rather than expressing in-
stances in the generalization language.

/’

Feature 1

I

p

❑
Generat~d
Exempl#

@
o

,/”J==

\ Feature 2

0

Exemplar Generation in Feature Space

Figure 1:

Obviously there is a need to define the concept

of distance in feature space so that concepts such as

‘closest’ and ‘furthest’ can have some meaning. Use

is made of the concept of distance used in instance-

based learning programs (Cost & Salzberg 1993). When

features are numeric, normalized Euclidean distance

can be used to compare examples, However when

feature values have symbolic, unordered values (eg.

the Ietters of the alphabet, which have no natural

inter-letter “distance”) resorting to simpler metrics

(Iike counting the number of matches) is required.

The distance metric used is an important part of our

technique and wiLI be described in a later section.

The problem of findhrg the prototype according to

a measure of distance is exponential in complexity,

since an exhaustive search would possibly have to

consider the powerset of the features time the number

of cases in the case-base.

What method can be used that generates this

prototype making full use of the information aheady

available in the cases and which does not have a worst

case exponential runtime? The answer lies in Genetic

Algorithms (GAs). GAs are search rdgorithms based

on the mechanics of natural selection and natural ge-

netics (GoIdberg 1989). GAs maintain a population
of members, usually called ‘<genotypes” and classi-

cally represented as a binary string, which can be mu-

tated and combined according to a measure of their
worth or “fitnessn as measured by a task dependent

evaluation function.

GAs perform adaptive search by evolution of strings.

There is a result by Holland (1992) that states ‘de-
spite the processing of only n structures each gen-

eration of a GA, there is useful processing of some-

thing of the order of n3 structures in parallel with no

178

special bookkeeping or memory other than the pop-

ulation itself’ (intri-nsic pamllelism). Another resu-lt

from Hoiland (Goldberg 1989) states that an expo-

nential nnmber of trials will be assigned to the ob-

served best building blocks.

This is the crux of the technique - avoiding expo-

nential complexity but getting near-optimal results

by generation of feature vectors in feature space. The

other important parts are the coding and the fitness

function.

GAs require the natural parameter set of theop-

timization or search problem to be coded as a finite-

length string over some finite alphabet. So it is as-

sumed that a potential solution may be represented

as a set of parameters. The parameters (known as
genes) are joined together to form a string of values

(known a.s a chromosomes).

This scheme fits well with the representation of

cases as vectors of features. The cases can now be

‘strings’ over the alphabet ‘O’ and ‘l’. The potentiaf

solution can also be represented in the same form.

The coding described above is for the cases in the

Case Knowledge Bsse. The question to be considered

next is of how the evolving population of strings will

be coded and what the population represents. Since

it is not known if a crossover of an arbitrary string
with other strings will result in a string represent-

ing win for the plaintiff or a win for the defendant,

the least significant bit in the string (representing the

outcome) cannot be set. This problem is overcome by

formulating the problem as either evaluating a best

fit instance for a defendant win or a plaintiff win each

time the GA is run. If an exemplar is required that

induces the factors for a plaintiff win, the least sig-

nificant t blt is uniformly set to O ; and if an exemplar

with factors responsible for a defendant win is needed

the least significant bit is set to 1 uniformly (only in

the evolving population).

This means we have two ‘populations’ - one for

the actual cases represented as strings and the other,

the evolving population, which is used in the search

for a superfit instance (see Figure 2).

, The fitness evaluation function chosen is based on

the distance measure used by the k-nearest neighhw

algorithrn(KNN). The K NN algorithm classifies fea-

ture vectors according to the” vectors k closest neigh-

bors. Each feature is taken to be a dimension in

the search space. The samples (csses/feature vec-

tors/strings) from the case-base are placed in this di-

mensional space and are labeled with their classifica-

tion (eg. whether the case was won by the defendant

or the plaintiff). An unknown sample can be placed

in the space based on its feature values and then can

be classified based on its k nearest neighbors where k

is set to some integer value.

The distance between fe~ture vectors is defined as

&j = {~~=1 (Xia - Xja)’} z ((Kelly & Davis 1991)

Where i and j are the ith and jth vectors of fea-

tures being compared. Xi. is the value of the (zth

attribute for the ith “vector Xja is the value of the

ath attribute for the jth vector. This gives a Eu-

clidean measure of distance, even though the features
are symbolic. Since only binary strings are being con-

sidered, the dist ante between each feature is either O

Uniform ------ .. .
Setting
for first
bit in string

..~..”.

Genetic Algorithm

Lase uase

-—

Evolving
Population

Figure 2:

or 1.

The k-nearest neighbor algorithm just classifies

new examples that are presented to it. It has to be

adapted to generate the perfect prototypiml exemplar

that is being sought. The objective of the GA is to

find an optimum point in feature space so as

●

●

to minimize the distance for alf such feature

vectors (or strings as feature vectors are re-

ferred to in GAs) with known classifications (ie.

the strings representing the cases) for which the

classifications agree with our generated strings

classification (pro-defendant or pro-plaintiff).

to rnar:mize the distance for all such feature

vectors with known classifications for which the

chssifications do not agree with our generated

strings classification.

The following fitness function accomplishes this

Fitness =
~{y,m ,‘_ (X=m-xga)z}+–p{ ‘_ (X,.-X,.)2}*

X;=l’Z:=,(X’”-C:)’;*

(1)

Where

x ranges over the strings that do not have the

same classification as the generated string. In case

the string is generated to identify the pro-defendant

factors; z would contain the strings that have pro-

plaintiff resnlts.

y is the complement of the strings (in the universe

of strings from the case-base) comprising the set that

x ranges over. That is the strings with the same

“outcome” or classification as the generated string.

n is the total number of cases in the c=e-base.

Xga is the a:h attribute of the GA generated fea-
ture vector.

179

XV. and Xza are the a’h attributes of the feature

vectors in the set over which y and z respectively

range. X,~, in the denominator, is the ath attribute

of the entire set of strings (i ranges from 1 to n.

s is the size of the string or chromosome - the
. .

attributes m each X; are a,l . , a;,. In the strings

from CATO’S case-base the s is twenty (excluding the

classification bit).

The essence of the fitness function is that it max-

imizes the sum of the distances from the generated

string of the non-compatible classifications and min-

imizes the sum of the distances from the generated

string of the compatible classifications. The first frac-

tion is the ratio of the sum of the distances of known

classifications that are not the same as the classifica-

tion being searched for, to the total distance from alz

strings . Since this is additive it wilf be maximized.

The second fraction is the ratio of the sum of the dis-

tances of known classifications that share the same

classification as the GA generated string to the total

distance from all strings and will be minimized due

the negative sign in front of it. The sum of the two

ratios is optimized to get the prototypical exemplar.

The above fitness function however takes into ac-

count only the rfiflemnces between the strings. There

needs to be a measure which factors in the similarity

between features - this time rnarimizing the similar-

ity between the generated string cases with similar

classifications and minimizing the similarity between

cases with dissimilar classifications.

The new measure is incorporated into the fitness

bv adding
8,-” ,

, ~,,m(.)-~d’”” ~~, ~..fs1m(~)
la,

~=1~(i~)1=1
to the fitness calculated by (1) above.

The function F(a) return; 1 if the ath attribute

of a feature vector is the same as the ath attribute of

the generated string and returns O otherwise. s is the

size of the feature vector and n is the totaf number

of feature vectors. sim constitutes the set of feature

vectors that have the same classification as the string

being generated and dsim is the set of feature vectors

with different classifications. As in (1) above the first

sum is to be is maximized and the second minimized

(due to the presence of a preceding negative sign).

5 Experimental setup and results

The algorithms and associated utility programs were

written in C. The algorithm for the GA was the one

given by Goldberg (Goldberg 1989) (sometimes called

the SGA - Simple Genetic Algorithm). Some of the

GA specific techniques that were used are described

in this section.
The initial population is the strings that make up

the ‘zero-eth’ generation. These strings are used as
the ‘seed’ to start the evolution process. It is nec-

essary that the strings cover the entire search space

u-niformly and are not biased towards a region in the

space. In the experiment the population is gener-

ated by first taking in the population size desired as

a parameter. Then each bitof each of the strings is

generated randomly. This increases the probability

that the strings so generated represent every region

0.9 ~

0.8- ~ ._J—-+-’”-A
._ .- .__. - ----”

0.7+ ‘ /—._.
/. -.-” --

~~”~~, , _
~ 0.6: ,% /-. I ,..-. —
3:
-a :/’--- ~–. ‘ ,1
>O. sy s .,,

0.2 ‘
t

Number of Generations

‘— Maximum FitnesS!

\ ----- Mini.r.m Fitness

– ‘– .–. Average FitnesS

Figure 3: GA Run for Plaintiff Exemplar

in the search space ie. a fair initial distribution. The

least significant blt of each of the strings is then set

to the value that represents the side for which the
string is to be generated.

The GA used has the usuaf reproduction, crossover

and mutation operators. The parameters for the prob-

abilities of crossover and mutation were set at the

rate found to work for most GA applications (Gold-

berg 1989). They were varied to get the best results

but proved robust to in the face of variation. Sin-

gle point crossover was used and stochastic remain-

der without replacement was the selection procedure

(Goldberg 1989). Since the algorithm described by

Goldberg handled only objective functions that re-

turned a positive value; and the objective function

that ‘was used could result in negative values the al-

gorithm had to be modified to incorporate a trans-
lation ~unction. This function made sure that the

fitness value returned by the objective function was

properly translated so that no negative fitness values

were ever assigned to a string. The scaling function

was called once in every ‘generation’ for each member

of the population.

Figures 3 and 4 show graphs of the results of run-

ning GAINC with maximum fitness, average fitness

and minimum fitness for each generation. The fac-
tors identified by GAINC as pro-plaintiff are given

in Table 3 and the factors identified by GAIN C as

pro-defendant are given in Table 4.

The relative importance of any single feature is

assumed to be the same as that of any other in the

string, but in the domain of law this is not always

true. Some features are more influential than oth-
ers in deciding the outcome of the case. How can
the features relative importance be induced from the

case-base using the technique outlined above?

180

0.2 +

.w - Co. co. w-ur .la
l- Nwmm=?*ln b-l

Number of Generations

c

— Maximum Fitnes$

-— —__ Minimum Fitness

- “–’-. Average Fitness

Figure 4: GA Run for Defendant Exemplar

Global max

Fittest Chrom

1

2

3

4

5

8

10

11

12

14

17

20

0.868980

DI1llloololllol oo1oo1

Disclosure-In-Negotiations [d)

Info-Reverse-En~neerable (dj

Info-Independently-Generated (d)

Bribe-Employee (p)

Employee-Sole-Developer (d)

Agreement-Not-Specific (d)

Secrets-Disclosed-Outsiders (d)

Info-Known-To-Competitors (d)

No-Security-Measnres (d)

Brought-Tools (p)

Vertical-Knowledge (d)

Invasive-Techniques (p)

Table 3: The factors identified as pro-defendant

Global max

Fittest Chrom

6

7

9

13

14

15

16

18

19

20

1.125633

Pooooollolooollllolll

Identical-Products (p)

Agreed-Not-To-Disclose (p)

Security-Measures (p)

Unique-Product (p)

Brought-Tools (p)

Competitive-Advantage (p)

Knew-Info-Confidential (p)

Outsider-Disclosures-Restricted (p)

Restricted-Materials-Used (p)

Invasive-Techniques (p)

Table 4: The factors identified as pro-plaintiff

Global max

Fittest Chrom

1

2

3

5

6

7

8

10

11
12

17

1.056203

8.167.189.534.71 8.356.27

8.905.069.618.089.10 5.490.00

0.080.040.005.060.00 0.002.43

Disclosure-In-Negotiations (d) weight 8.16
Info- Reverse- Engineerable (d) weight ‘i.18

Info-Independently-Generated (d) weight 9.53
Employee-Sole-Developer (d) weight 8.35

Identical-Products (p) weight 6.27
Agreed-Not-To-Disclose (p) weight 8.90
Agreement-Not-Specific (d) weight 5.06

Secrets-Disclosed- Outsiders (d) weight 8.o8
Info-Known-To-Competitors (d) weight 9.1o

No-Security-Measures (d) weight 5.49
Vertical-Knowledge (d) weight 5.06

Table 5: The weighted factors identified as pro-

defendant

rGlobal max

Fittest Chrom

5

13

14

15

16

18

19

1.418576

6.751.840.780.675.29 0.00

0.042.474.551.140.71 0.089.22

5.738.009.960.168.31 9.573.76

Disclosure-In-Negotiations (d) weight 6.75

Employee-Sole-Developer (d) weight 5.29

Unique-Product (p) weight 9.22

Brought-Tools (p)weight 5.73

Competitive-Advantage (p) weight 8.00

Knew-Info-Confidential (p) weight 9.96

Outsider-Disclosures-Restricted (p) weight 8.31

Restricted-Materials-Used (p) weight 9.57

Table 6: The weighted factors identified as pro-

plaintiff

The KNN algorithm (more specifically the weighted

KNN algorithm) provides clues in this regard. Con-

sider the distance measurement to be multiplied by a
weight Wga, which has been set to the value 1.0 in the

technique considered so far. Therefore the modified

fitness function would be

~:=, {~:=, w,.*(X.-x9a)’}*

Setting waa ,where w,. represents the weight of

the ath featu~e in the GA-generated string, to 1.0 for

every factor means that each factor has the same rel-

ative importance. However the weight can be made

fine grained by assigning more than one blt to every

factor in the string. The values chosen for weighted

GAINC are eight bits for each factor, allowing the

factor to take 256 values normalized between O and

10. Arbitrarily it was decided that a factor which had

a weight value below 5.0 was ‘absent’ in the string

whereas a factor with a weight value above 5.0 was

‘present’ wherever the decision needed to be made.
The 256 values were Gray coded to avoid Hamming

Clifls (Whitley & Shaner 1988). The results of run-

181

1.2-1 ,6-

1.4- , \ .--,.. ”’.’~.. ‘..= -,!,”
(-d

1,~-. ,-’
- - \~.7 .ti.!p ,-- ‘ , I

1- j,._” ‘ .
‘,1 . ..!..’...

0.9- ---” .,... ...>-.
z .L, ,.- ----

W
c ~,~ ~- .p_, \-’J’
.:
&

-0.4-

Number of generatioftS

I
Maximum fitnes’

Minimum Fitness;

~ ----- Average fitnes~
I

Figure 5: tl’eighted GA Run for Plaintiff Exemplar

nirrg weighted G.-IINC aregiven in Table 5 and Table

6. Figures 5 and 6 show graphs of the results of run-

ning weighted GAINC with maximum fitness, aver-

age fitness and minimum fitness for each generation.

The results of running the GA have been encour-

aging. In ‘Table 4, the GA correctly classified 10 of

the 11 pro-plaintiff factors and did not mis-classify

any of them. In Table 3 all the predefendant fac-

tors were identified - but the GA mis-cl=sified three

pro-plaintiff factors as prmdefendant. (A (d) follow-

ing a factor name means that the factor is judged

to be pro-defendant and a (p) following a factor in-

dicates that the factor is judged to be prc-plaintiff

by a human expert.) This means that the G.A has a

91 ‘Z success rate at correctly clasifjting pro-plaintiff

factors and s3% success rate at correctly classif~-ing

pro-defendant factors. The misclassified factors could

be seen to be dependent on the particular case-base

(t~hich hss a relatively small number of cases) since

for example, the factor Bribe-Emptoyee (p) which is

misclassified as a prc-defendant factor occurs in 3

cases -which are decided for the defendant but only

2 which are classified M prc-plaintiff (assuming of

course the other factors contributing to the result

have minimal effect). This is reflected in Table 5 (for
the weighted G.% run] which shows that the weight

for the factor Bribe-Employee (p) is just below the

threshold to be considered to be pro-defendant. (It

is 4.71 ~shereas the threshold is 5,0),

The results of the weighted GA are a mixed bag

- it mis-classifies only 2 pr~plaintiff factors and clas-

sifies all pr~defendant factors correctly. Only 6 of

11 prc+plaintiff factors are identified = prc-plaintiff

however. The results for the weighted and non-weighted

G.\ are reasonably consistent with each other. The

Number of Generations

1

i— Max!mum fitnes$
I

i Minimum fitne~ /

Average fitness

Figure 6: Weighted GA Run for Defendant Exemplar

analysis of a factors weight as generated by the weighted

exemplar would provide the user an idea of the rela-

tive importance of a factor in deciding the classifica-

tions.

6 Using the induced knowledge

\Vhat is the utilit y of the prototype exemplars of clas-

sifications, generated by the G.A? The answer lies

in using the similarity and d~tance measures that

have been used to induce the knowledge. In doing so

the pragmatic view is taken that a legaf model can

be ‘b~ed upon a simplified model of legal reasoning

(Popple 1994).’ The GA has a simple and transparent

knowledge representation structure irt which the user

is able to see the solution ‘evolving’ and assess the

reliability of the advice generated. These advantages

are crucial to machine based legal reasoning and it

is not necessary to build complex systems to achieve

useful results.

Consider Figure 7, in which two dimensional fea-

ture space is being considered. The prototypical ex-

emplars for the two classifications A and B have been

generated. Looking at Case A it is seen that it is

‘closer’ (in terms of the inter string distance that has

been defined) to Case B that has a difierrnt classifica-
tion than it is to it’s own exemplar. tYhat does this

mean? An analysis of the situation provides some

answers. The factors present in Case A which caused

it to be ‘pushed’ across the boundary to a different

ck.sification may give useful information about the

domain. This was implemented in GAIXC by mea-

suring the distance of each case from its exemplar and

then comparing these cases to cases which had op-

posite classifications but a distance (measured using

of the art in statistical led rea.sonirw and is used a

‘“, $? CaseA “ ‘.1
* ,..; ‘. .,

k.. “’ . ~

,/,. , PrototypicalExemplar‘-—
/— /“.,

/’
0 ‘ Y“”

//’ o Case B ,,/ \
\

/ .,
&

\

I ClassificationB
-0/

\/,
o .//‘.

‘“~’” ‘
Figure 7:

the Euclidean distance metric as used in the nearest

neighbor algorithms) less than that from the exem-

plar. The factors in each case were then flagged for

inspection by the user.

Though GAINC is not developed as a predictive

program, unclassified (ie. unknown outcome) cases

could be classified using the fitness function devel-

oped for GAINC and distance measurement from the

exemplars, The fitness function (either the weighted

or unweighed fitness function) could be used to com-

pare the fitness of the unclassified case by

1. setting the bit to indicate that the case was

won by the defendant (as for the GA string in

a defendant run) and evaluating the fitness.

2. Repeating step 1 above but thk time setting

the bit to indicate that the case was won by

the plaintiff.

3. Assigning the classification that has the higher

score to the case.

The distance of the case from the exemplar of

different classifications can also be measured and the

case can then be assigned the classification of the

nearest exemplar.

Note that none of the methods should be consid-

ered to be predictive, but GAINC is set up so that

the user can explore various hypotheses and see how

they are supported by the case-base.

7 Comparison with other pragmatic approaches

SHYSTER (Popple 1993) is a pragmatic legal expert

system which deals with case law and is designed to

be used by lawyers. SHYSTER represents the state

basis for comparison. Lik~ GAINC, ~HYSTER USeS

a representational structure that is simple, since ac-

cording to Popple (1993) this simplifies knowledge

acquisition. Like GAINC, SHYSTER also represents

it’s cases as ‘points in space, the dimensionality of

which is the number of attributes.’ It is, like GAINC,

generaLizable to more than one legal domain.

SHYSTER, however, is designed to make pre&c-

tion.s about the likely result of a case, where the

prediction is based upon previously decided cases.

GAINC is more of an exploratory tool, it is best used

to check the user’s hypotheses about the cases in the

case-base presented to it; to see what knowledge can

be induced from features and classifications depen-

dent on those features. The knowledge so induced

is an aggregate property of the csae-base and can

be used to analyze particular cases. SHYSTER com-

pares an instant case to all preceding cases that apply

in it’s model of legal res.soning. GAINC uses infor-

mation available in the csse-base, whereas SHYSTER

depends on the user for input about properties of its

cases. Once such input is based on the concept of an

ideai point. An ideal point represents the best case
for a given result. In constructing the the perfect
prototypical exemplar GAINC would automatically
see the emergence of these ideal points. SHYSTER’s
weights it’s attributes (which is controversial see Ash-
ley (1990)) using a statistical measure. Weighted
GAINC generates weights that are supported by the
case-base, to measure relative importance of factors.
GAINC uses Ashley & Rissland’s (1988) advice to
postpone weighting as long as possible - that is to
the point when it is evaluating the fitness during the

run. SHYSTER calculates attribute weights beforw

reasoning begins, since each attribute is calculated

by taking the inverse of its variance across the case-

base. Since the attributes in SHYSTER are decided

by the user it has to make sure that the attributes

are stochsstica.lly independent (so that, in the worst

csse, the user does not define the same attributes

to SHYSTER under a different name). In GAINC,

it is expected that there will be stochastic depen-

dence between attributes and the distance measures

are sensitive to this (Punch et al 1993). The most

significant t difference is that the calculations which

SHYSTER uses to reach it conclusions and construct

its legal arguments are not visible to the user. In

GAINC the string evolution can be seen and its fit-

ness assessed for reasonableness by the user, since the

string is in easily interpretable symbolic form. There

exist techniques and packages for graphical visualiza-

tion (Clark 1994) and explanation (Louis et al 1993)

of GAs that would make this task even easier.

8 Conclusions

A new technique for induction from cases was de-

scribed in this paper. This technique is of use in

pragmatic legal expert systems (Popple 1993) and a

few inferences that could be made from knowledge

induced by the technique were discussed. This tech-
niqne is generally applicable, not only in the legal

domain but also in any domain where the primitives

183

can be represented as feature vectors with classifica-

tions. For instance if there exists a case-base that

cent ains factors pertaining to awards made in dam-

age claims with the classifications being damages-

less-than-20000, damages-between-20000-and-50000,

damages-lxtween-50000-and-1000OOand so on; GAINC

could be run with the factors represented as feature

vectors. The factors (one of which might be whether

major injuries were sustained) leading to particular

classifications could be induced. The distance and

simiJarit y measures could be changed from the ones

used so far and ss long as they retained the abil-

ity to quantify differences and similarities - the tech-

niques would be useful. The advantages vis a vis

runtime complexity and perspicuity was compared

with a state of the art statistical legal expert sys-

tem. Further work in this area should concentrate

on evaluation of classifications and the generation of
‘interesting’ cases ; and on integrating GA visualiza-

tion and explanation techniques into GAINC.

References

Aleven, V & Ashley, K. D. (1992). Automated Gen-

eration of Examples for a Tutorial in Case-Bzsed

Argumentation. In Proceedings o~ the Second Inter-

national Conference on Intelligent Tutoring System.

MontresJ.

Ashley, K. D. (1990). Mode[ing legal argument :

Reasoning with Cases and Hypotheticds. MIT Press,

Cambridge, MA.

Ashley, K. D. (1992). Case-Based Remoning and

its implications for Legal Expert Systems. Artificial

Intelligence and .Law:l pp. 113-208. Kluwer Aca-

demic Publishers, Netherlands.

Ashley, K. D. & Rissland, E. L. (1988). Wait-

ing on Weighting: A symbolic least commitment ap-

proach. Proceedings of the Seventh National Confer-

ence on Artificial Intelligence (AAAI-88). St. Paul,

MN.

Barr, A. , Feigenbaum, E. A.& Cohen, P. (1981).

The Handbook of Artificial Intelligence. Reading, MA:

Addison-Wesley.

Clark, G. (1994). Visualization of Genetic Algo-

rithms. Technical Report EPCC-SS94- 07. Edinburgh

Parallel Computing Center. University of Edinburgh.

Edinburgh, UK.

Cost, S. & Salzberg, S. (1993). A Weighted Near-

est Neighbor Algorithm for Learning with Symbolic

Feature=. MCZGhinGLearning, 10, pp. 57-78.

DeJong, K & Spears, W. M. (1991). Learning

Concept Classification Rules using Genetic Algorithm.

“Proceedings, 12th International Joint Conference on

Artificial Intelligence, 651-656. Sydney, Australia.

IJCAI.

tee, CA.

Goldberg, D. (1989). Genetic Algorithms in search,
optimization and machine learning. Addison-Wesley,

Reading, MA.

Holland, J. H. (1992). Adaptation in Natural and

Artificial Systems. MIT Press, Cambridge, MA.

Holland, J. H. , Holyoak, K. J ., Nisbett, R. E. &

Thagard, P. R. (1986). Induction : Processes of in-

ference, Learning, and Discovery. MIT Press, Cam-

bridge, MA.

Kelly, J. & Davis, L. 1991. Hybridizing the Ge-

netic Algorithm and the K Nearest Neighbors Clas-

sification Algorithm. Proceedings of the J th Interrza-

tional Conference on Genetic Algorithms and their

Applications. Morgan Kaufmann:CA.

Kibler, D. & Aha, D. W. (1987). Learning Repre-

sentative examples of concepts : An initial case study.

Proceedings of the Fourth International Workshop on

Machine Learning (pp. 24-30). Morgan Kaufmann,

Irvine, CA.

Louis, S. , McGraw, G. & Wyckoff, R. O. (1993).

Case-based reasoning assisted explanation of genetic

algorithm results. Journal of Experimental and Z’he-

oretical Artificial Intelligence. 5. pp21-37. Taylor &

Francis.

Popple, J. D. (1993). SHYSTER : A Pragmatic

Legal Ezpert System. Ph. D thesis , AustrsJian Na-

tional University, Faculty of Engineering and Infor-

mation Technology, Dept of Computer Science.

Punch, W. F. , Goodman, E. D. , Pei, M. , Chia-

Shun, L. , Hovland, P. & Enbody, R. 1993. Fur-

ther Research on Feature Selection and Classification

Using Genetic Algorithms. Proceedings of the Inter-

national Conference on Genetic Algorithms. Cham-

paign:IL.

Whitley, D. & Shaner, D. (1988). Representation

Issues in Genetic Algorithms. Technical Report CS-

88-102. Colorado State University, Fort Collins, CO.

Dietterich,, T. G. & Shavlik, J. (1990). Readings
in Machine Learning. Morgan Kaufmann, San Ma-

184

