
The Credit Act Advisory System (CAM):
Conversion From an Expert System Prototype to a

C++ Commercial System.

George Vossos” John ZeIeznikow* Allan Moore+ Dan Hunter-

CAAS is a rule-based expert system which provides advice
on the Victorian Credit Act 1984. It is currently in
commercial use, and has been &veloped in conjunction with
a law firm. It uses an object-oriented hybrid reasoning
approach. The system was initially prototype using the
expert system shell NExpert ObjecL and was then converted
into the C++ language. In thk paper wc describe the
advantages that thk methodology has, for both commercial
and research development.

ducti~

CAAS is an example of a legal knowledge based system
which aids in the process of statutory interpretation. The

system reasons using a deductivel reasoning approach,
referencing hypertext and databases only when needed. As
such, the system does not perform any type of case-based
reasoning with precedent cases. CAAS was never intended
to replicate the expertise of a solicitor, but only to duect a
lawyer unfamiliar with the Victorian Credit Act2 to obvious
breaches of the Act.

The system’s goal is classifying loan transactions as either
regulated, non-regulated or exempt under the Act. Once a
classification has been determined, the user can proceed to
interrogate the system as to reasons for its decision.
Further, she has the option of viewing any statutory
requirements associated with the particular classification.
Advice provided by the system is based on facts entered by
the user in response to questions posed by the system.
Practitioners can experiment with hypothetical. CAAS
was designed using object-oriented design principles that
enhance performance and permit the system to:

9 advise whether certain credit contracts fall
within the ambit of the Victorian Credit Act
and related legislatio~ and if so, list legal
obligations with which the creditor may need
to comply;

. determine whether certain transactions are in
breach of the Credit Act and explain why;

Penmssmn to copy without fee all or part of this material is granted prcwided
that the copies are not made or distributed for dinxt commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by ptnmission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission,

Q 1993 ACM 0-89791-606-9/93/0006/0180 $1.50

. enable users to easily input the characteristics
of a problem case into the system in a non-
technical manner, using menus and form%

● permit client data to be sav~ retrieved and
amended;

. allow the user to browse through the sources
of the law using hypertext techniques;

. allow users to pose hypothetical questiom;

● produce reports capturing and explaining the
reasoning of a decision, and

● allow users to check penalties and other
statutory requirements set down by the Act.

At Allan Moore & Co. Pty (’the fii’), solicitors perform
the task of diagnosing Credit Act related legal problems.
Solicitors receive correspondence from clients and must act
quickly to resolve the problems and provide concise
commercially-oriented advice. The current manual handling
of the problem-resolution process suffers from the
following disadvantages:

.

.

In most legal firms practitioners develop
expertise in specific areas of the law. If the
relevant expert is unavailable, then so is the
expertise. If the expert leaves the f~ much
of the expertise is lost.

Solicitors work on the pridple of maximizing
willable time’. Experi~ced ‘staff members ar~
unliiely to sacrifke time to take on the
additional ‘non-billable’ task of traiximg
replacement staff members.

Solicitors at the fikrn carry out three basic functions for
credit law queries: administration, diagnosis and referral.
WhilsL administration and referral were &termirted to be
functions of conventional technology, diagnosis required
the application of Artificial Intelligence technology.

A software solution tightly integrating these functions was
&signed and deployed. Initially, a proto~ing approach
was taken to development, allowing intended users to
participate in the design of the system while at the same

1so

time pleasing management by developing an initial model
of the system which they were able to monitor. The
prototype was designed using Neuron Data’s NExpert Clbject
Development Environment: an interactive interpretive
environment that makes use of graphical editors and
browsers. Once the prototype had the approvttl of
managemen~ it was converted to a generic C++ program
running under Microsoft Windows 3.1. During this
conversion the technical &sign was only slightly modifkd
to fit the message passing paradigm of C*.

The fust step in CAAS ‘s development involved capturing
the firm’s expertise in credit law and then translating this
into a decision support system. In order to facilitate
modelling, the knowledge engineers decided to opt for an
expert system (ES) shell that

● supportd a rich set of Imowledge representation
schemas;

. provided an application interface library (API) into
and out of the main operating kernel;

. provided access to some of the more common
databases; and

. supported the rapid prototyping development
methodology.

After careful deliberation with the domain experts, it was
decided that a hybrid objec+oriented-rule-based approach
best represents the heuristic knowledge needed to reastm in
this domain. An advantage of this approach was that the
knowledge-base could be designed to fully exploit the power

of the object-oriented paradigm3 while at the same time
taking advantage of the inference engine’s explora~tory
power. Adopting this methodology greatly simplified the
design and implementation of our knowledge-base. It was
possible to develop the system with minimal programming
which convince the fii of its value. Art associated long
term benefit was that the resultant knowledge-base was
easier to port and maintain, as the various knowledge
sources (classes, objects and rules) were clearly identifkble.

We adopted a si&wards chaining inference engine strategy
combining both forward and backward chaining of
production rules. The system pursues a consultation by
initially asking top level questions and then selects art
appropriate hypothesis to pursue given the facts
volunteered by the user, in addition to any new deduced
assertions. The assertions are deduced by forward chaining.
From this point onwards the system resorts to backward-
chaining to frame questions.

Once the knowledge base correctly represented the decision
making process of the experts, it was integrated with a
graphical user interface (GUI), hypertext and a datablase.
HyperCard was chosen as the ideal platform to perform this
integration due to its i) support for rapid prototyping,
ii) adherence to object-oriented principles, iii) full
hypertext support and iv) the ability to call out to the host
language and invoke binary code. Through the binary cnde
interface we were able to access the knowledge-base.

When the behaviottr of the prototype was spprova it was
ported to a PC baaed environment to be compiled into a
binary format using a C++ compiler and Wtiows 3.1 We
chose C++ because itis truly object orienti runs on IBM-
~S and is wmtrtercially available. Though the use of C++
dictated the way we approached the design of the expert
system (in the use of petri-nets, as described below) it did
not change the fimdamental nature of the expert system.

The porting process involved i) simulating the GUI and
hypertext elements of the prototype under Windows 3.1;
and ii) porting the knowledge-processing of the ES into
C+t. Converting HyperCard GUI and hypertext elements
was simplifkd by combining tools such as the Borland C++
Resource Editor and Borland C++ OWL programming class
library. To simulate the expert system module, we specified

the expert system in the form of a petri-ne~ and translated
this specification into C++. Class slots were used to
represent system states, while their associated values were
used to represent transitions from one state to the next.
Once in this form, the petri-net was converted into a C++
program with meta-slot control simulated by message
passing. This port to a 3GL environment was facilitated by
ensuring that the expert system prototype adhered to the
meta-slot control strategy. This type of modelling
displaced control from the inference engine and trapping
and handling control in the system was given to slot
‘daemons’. In addition, specifying the expert system
module as a petri-net meant that the developers could
graphically validate the system. Significantly, this
architecture and methodology is applicable in building
future commercial legal expert systems.

~-j. Extracts of code used in CfiS, which helps
illustrate the breakdown of the design into two main C++
classes, the Slot and the KB classes.

typedef char* Field;
eauan BooL (FALSRTRUEJJNKNOWN,I-IEU’) ;

class Slot
(
friend class KB;

Field Neme
VType Vahtq //union type

wntaining INT or STR
Field Why;
Field CotrtmenC
Field PromptLhe;

public:
//constructors

Slot(FielA SlotType, AVal, Field Field Field}
Slot(wnst slot&);

//destructor
-Sloto;

);

class KB

(

//hypothesis slots

181

slot*
slot*
slot*

slot*
slot*
slot*

slot*
slot*
slot*

loanInit;
loanInit2;
ldefcrd,
.

//meta-slot daemons
n_sdate85;
n_sinwriting;
n_crvic;
. . . .

//attribute slots
SDate85;
sInwriting
CRVIG

public:
//constructor

I(.B()
//destructor

-KB();
I/generic ‘get’

determines/allocates values to slots

ruled out because it i) requires specialised software and
hardware platforms and ii) haa no way of justifying
conclusions reached. The advantage of the hybrid rule-
based/ object-oriented approach is simplicity—the
knowledge base is in a format that facilitates
maintainability.

Our experience haa revealed that prototyping is a useful
technique for developing knowledge based systems.
Rototyping reduces the risks of producing a system which
does not match user requirements, is too expensive or is
unreliable. Not all systems however lend themselves
equally well to prototyping. The CAAS knowledge base
application was a particularly good candidate since

. the requirements were illdeiimd, and

method that ● the expert system was interactive, relying
extensively on user dialogues

BOOL get(Slot**);
//knowledge methods: these

correspond to top level hypothesis)
BooL LmmInito;
BOOL L0anInit20;
BOOL LDefCred(}

..... ..
);

~ Translation into C++ of the LmmInit role.

BOOL KB::LoanInito
r

if(get(&SDate85)
get(&SInWriting)
get(&CRVic)

)
(

loattinit->Value.actualVal.iVal = TRUE;
return L0anInit20;

)

Develownt considerations . ArcNcture

The value of CAAS lies in its knowledge representation and
control strategy. Knowledge is captured in claases, objects
and roles specillc to the domain. Development proceeded by
acquiring necessary knowledge from domain experts,
programming the knowledge into CAAS, demonstrating the
diagnostic behaviour to experts, then refiig behaviour as
needed. CAAS uses the knowledge base to engage the user
in a question-and-answer dialogue. This approach is natural
for the solicitor, because the client is often on the
telephone, and the solicitor must determine the exact nature
of the problem by querying the client.

Developing CAAS involved many steps. The most
important of these were-

speclf kstion - Specifying CAAS could not be as &tailed
as for conventional systems largely because the knowledge
that would emerge could not be known until well into the
process. CAAS specifications were therefore left as a list of
aims, These aims were modified during development as
technical problems were resolved.

Feasibility y - The feasibility stage of the development
~ocess involved analysing the resources required, the sire
and difficulty of the task and the resources and time
necessary for the successful completion of the project.
Twelve months was allocated for the completion of the
whole system.

Knowledge Acqu Islt Ion -We decided to adopt the
engineer-driven approach. Here, the knowledge engineer
learns as much as possible about the domain from the expert
and then proceeds to translate the newly acquired knowledge
into a representation that is suitable. The knowledge
engineer began with the statute and was able to develop a
first draft representation of the knowledge. Consultation
with the legal specialists consequently aimed to refine the
knowledge base.

User Interface & Human Factors - One of the
requirements that was implicit in developing CAAS was the
need for a sophisticated user interface. Intended users of the
CAAS system were not using a computer system to access
dead data but rather, manipulating knowledge. This
manipulation needed to be performed intelligently if users
were to be properly supported in the tasks that they conduct.

Two alternative Artificial Intelligence technologies were system Integration - To be successful, a tight

candidates for developing CAAS, but neither met the iirnt’s integration of the modules was fundamental. It W&3S

needa. Case baaed reasoning was assessed as too slow for insufficient to have separate applications handling each of

the requirements of this project and its diagnostic behaviour the nee&d functions; instea~ the movement between

too difficult to control. Neural network technology was expert system, database, and hypertext modules had to be
seamless and natural. The CAAS system should not be

viewed just as an Al applicatio~ but rather a solution where
AI has a key role in concert with other technologies.

System Modification - Maintaining or updating the
knowledge-base will tdways involve a knowledge engineer.
It is unfeasible to allow domain-experts to change the
contents of the knowledge-base, as the code is in binary
form. Any changes made to the system will require changes
to the source code which in turn involves having to re-
compile and re-link the program code. The task of
maintaining a knowledge base of objects and rules is
considerably more dlfflcult than maintaining a database of
facts.

Initially, CAAS was developed on a strictly commercial
basis. AlIan Moore k Co wished to gain a marketing edge
by developing a powerful, user-friendly expert system.
CAAS has met these criteria and has done so at a relatively
cheap cost.

The developers of CAAS have been performing research in
the IKBALS (Intelligent Knowledge Based Legal Systems)
project. IKBALS has attempted to integrate rule-based
reasoning, case-based reasoning and intelligent
information retrieval using the principles of distributed
artificial intelligence and intelligent and co-opemting
information systems. The pxting of CAAS to the C++
language has suggested to the IKBALS project techniques
for developing such intelligent co-operating legal
information systems (ILCIS), and the IKBALS project has

developed a methodology for designing such ILCISS.5

In constructing CAAS, we have &veloped a framework for
building commercial legal expert systems using C+t, rather
than relying on more expensive expert system shells. The
system is being commercially marketed to organisations
which provide credit. The generic nature of the system
facilitates interfacing and integrating to existing aofvware
such as document modeling and precedent management., As
a follow up, the fti has asked us to develop legal expert
systems in the areas of bankruptcy, debt recovery, privacy
and civil procedure. This work is currently in progress.

* Database Research Laboratory, Applied Computing
Research Institute, LaTrobe University, Bundoora Victoria
3083, Australi~ Tel: +61-3-563-6552

+ Allan Moore & Co. Pty, Solicito~, 11 Bank Place,
Melbourne, Victori% Auatrali% 3000, Tel: +61-3-602-
2411, Fax: +61-3-602-1505

- Law School, University of Melbourne, Psrkville Victori%
3052, Tel: +61-3-510-7655

1 The production rules forming the knowledge base are

heuristic rules supplied by experts horn Allan Moore & (Co.
As such the system does not dwectly model or reason with
statutes or precedents per se

2 The ~ 1984 (Vie) and the ~
,..

~ 1984 (Vie). For further information
on the Act sea Cavanafi S. W. and Barnes, S. , Consumer
Credit LAW in Australia - Gntmentaries on the New Credit

Legislation, -wort&, 1988; Dttggan A. J., Begg S. W.,
Lanyon E. V., Regulated Credit- tk Credit and Security

Aspects, ~
. . 1989;Levine, J.

R., Vktorian Consumer Credit Legidation with
Atttwtutions, ~

. . .
1984.

3 object hier~hi~ inheriting both slots and tnWhOdS Were

used quite extensively.

4 A Petri net is a directed graph with two kinds of nodes,
places and trartaitio~ interconnected by arcs - in such a
way that each arc connects two different kinds of nodes (ie.

a place and a transition). Such a graph is called a bipartite
directed graph. For more on Petri Nets, see Rosenberg, G.
(cd.), Advances in Petri Nets MM, Lecture Notes in

Computer Science, Volume 483, Springer Verlag, Bedim

1990.
5 For ~m information on this project SS% Zdfdkow

J., VOSSOS, G. and Hunter, D., ‘The IKBALS project: Muki-

Modal Reasoning in Legal Knowledge Based Systems,’
submitted to Artificial Intelligence and Law Journal.

183

