
Automated Legislative Drafting:

Generating paraphrases of legislation

Radboud Winkels and Nienke den Haan

Department of Computer Science & Law

Faculty of Law, University of Amsterdam

email: {winkels ,nienke}Qlri. jur .uva. nl

Abstract

In this paper, we describe which roles deep structures of

law play in (automatic) drafting legislation. Deep struc-

tures contain a formal description of the intended norma-

tive effects of a new regulation. We discuss mechanisms

that can be used to generate different paraphrases of regu-

lations. Since it is possible to test the paraphrases on legal

knowledge based systems, we have provided two extra de-

sign steps in legislative drafting which can be supported by

automated tools.

Deep structures are straightforward descriptions of the

normative effects of regulations. Each deep structure distin-

guishes desired and undesired behaviour, and has no further

internal structure, such ss paragraphs or exception struc-

tures. This paper describes methods to translate a deep

structure into representations of different types of codes,
i.e. paraphrases. Each representation of a code hsa a dif-

ferent surface structure, according to the choice we make

during the translation regarding: a) the initial assumptions

of the regulation, i.e. modelling from desired or undesired

behaviour, b) the level of abstraction, c) the viewpoint of

the law, i.e. the category of norm subjects, and d) the type

of deontic modalities the regulation largely uses. All para-

phrases have the same ‘effects’ sa the deep structure, but

with different features, and are suitable for different gords.

Keywords: deep structures, legislative drafting, le-

gal knowledge based systems, codMcation

1 Introduction

In [denHaan & Winkels, 1994], we introduced the term deep
structure of a regulation, to indicate the normative essence of

the regulation that may be expressed differently at the sur-

face after codification. Our use of the term ‘deep structure’

is inspired by, though different from, its use in linguistics

by Chomsky, (e.g. [Chomsky, 1969]), to capture the seman-
tics of language. It should also be distinguished from what

some authors call ‘deep models’ or ‘deep knowledge’ in Legal

Knowledge Bssed Systems (LKBS), e.g. [Bench-Capon, 1989;

Breuker & denHaan, 1991], where deep knowledge systems

Permission to copy without fee all or psrt of this material is grated provided
that the copies sre not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication snd its date appem, and
notice is given that copying is by pemrission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
pemrission.

@ 1995 ACM 0-89791-758-8/95/0005/001 12 $1.50

have an underlying model that reflects the structure of the

domain. Deep structures, sa specified here, are a more for-

mal and systematic description of ideaa from legal theory

(e.g. [vonWright, 1981; Rtidig, 1976; Brouwer, 1990]), and

AI & Law (e.g. [Hage, 1993; vanKralingen et aL, 1993]).1

What we mean by a deep structure, is purely a descrip-

tion of the normative effecte of a regulation. The contents

of the deep structure lay below the rules of the regulation,

hence the name ‘deep structure’.

Deep structures of law are useful for:

1.

2.

3.

4.

Legislative drafting:

● Allow different codifications with equal effects

Section 5 shows how the deep structure is trans-

lated to several possible sets of rules.

● Choose optimal codification

The possible dimensions for generating different

representations allow a motivated choice for a spe-

cific codification (see the examples of codifications

in section 5).

Concentrate on normative effects of regulations

As we will see in section 3, deep structures do not

have the same complex structure aa regulations. Deep

structures show directly which behaviour is ‘desirable’

and which is not.

Prevent redundancies

The descriptions of deep structures do not allow re-

dundancies: a type of behaviour is either desirable, or

it is not. When the directions of generation of para-

phrases of section 5 are followed, it is possible – though

not always desirable – to construct regulations without

redundancies.

Law Comparison

This aspect is not highlighted in this paper, but will

be in future research. The bottom line is that compar-

ing deep structures of regulations is more direct than
comparing the regulations themselves (see points 2 and

3).

10ne of the reviewers of [denHaan & Winkels, 1994] proposed the
term ‘virtual model’, because the proposed model allows automated

drafting and testing of legislation before the actual codification takes

place. And indeed, we can see some correspondence to virtual mod-

elling, for example in architectural design, where a design is modelled
using computer graphics, and then inspected and tested. On the

other hand, the term virtual model is much broader than we intend.
Perhaps the term ‘Basic structure’ is an alternative.

112

Sojtware/Knowledge Engineering

goals & req. L conceptualization~ formalization

3 design ~implementation

Legislative Drajting:

goals & req. ~ domain research ~ deep structure
3

+ paraphrases 4 codification

Figure 1: Phases in softwars and knowledge engineering ver-

sus phases in legal dmfting

2 Legislative drafting

There are many requirements on the structure of regulations,

and on the legislative design process (e.g. [Thornton, 1987;

WaaJdijk, 1985]). Each regulation should contain a descrip

tion of its goal, contextual information regarding the rela-

tion to other regulations, and the date of enactment. In

each country, there are severaf manuals on the structural

part of legislative design. These manuals also contain the

correct procedure to be foflowed in legislative design (cf.

[Thornton, 1987]). In the Netherlands, [Waaldijk, 1985] and

[Eijlander, 1993] are such manuals. In literature on legal

drafting, we foremost see requirements on the layout of law

texts, and there is no certified method for legaf drafting

[Eijlander, 1993]. There is a large gap between the descrip-

tion of the goafs of new legislation, and the actuaf codifica-

tion of new regulations. In this paper, we try to bridge this

gap by using deep structures for law. In a deep structure,

the requirements are translated to the desired formations on

the possible behaviour a new regulation is meant to regulate.

Next, the paper proposes transformation methods for trans-

lating deep structures into regulations, which can be tested

automatically on legal knowledge base systems. These two

processes, constructing deep structures and paraphrasing,

should fill the gap in the legislative design process.

Just as formalization forms the bridge between ‘concep-

tualization’ and ‘design’ in both software and knowledge en-

gineering, deep structures form the bridge between ‘norma-

tive goals’ and ‘codification’ (see Fig. 1). In system design,

alternative designs are possible on the basis of the formal-

ization, which in turn can be implemented in a program-

ming language (see for instance [vanVliet, 1984]). Iu leg-

islative drafting, the deep structure can be translated into

several alternative regulations. As the paraphrases of reg-

ulations are still formulated in a formal representation (see

paragraph 5), we must subsequently codify them into nat-

uraf language. The deep structure ensures that alf alter-

native codifications regulate the same world in the same

way, and we could employ each of them. The most ‘com-

puterized’ approach we have found to legislative drafting is

[Overhoff & Molenaar, 1991]. They use decision tables as a

means for formalization, which is a very static way to rep-

resent legaf rules and legal reasoning. We believe that the

formalization of deep structures should be based on a clear

separation of situations in the ‘world to regulate’, and the

normative qualifications of these situations.

3 Defining deep structures

The deep structure of new legislation defines how possible

behaviour in the ‘world to regulate’ is qualified. In this

respect, possible behaviour is only given the qualification

‘desirable’ or ‘undesirable’.2 The deep structure consists

therefore of two parts: (1) a description of what is possible

in a domain, and (2) a part that describes the legal qual-

ifications. A deep structure iz a description of all relevant

possible behaviour, which is labeled either desirable or un-

desirable. Structuring these qualifications is a task which is

performed during the construction of the representation of

the new regulation, i.e. generating paraphrases.

In this paper we will use se an example the problems

with the use of the computers of our department. We only

want students of the Department of Computer Science and

Law to use our computers, and we do not want them to use

the machines for hacking, playing games or commercial use.

1.

2.

Model of the world to regulate

●

●

●

Terminologica.1 knowledge

Objects, agents and actions, with attributes. The

isa hierarchy for our small example is given in

Fig. 2.3

Behaviouraf knowledge

Causal/intentional relations between objects and

actions, e.g. in our domain:

take.course(cs, ~) + 6’ourse(Cs) A ~ersorz(p)

vse(c, P, U) + Cornprder(C)APerson(P) Ause(U)

Structural knowledge

Structural relations between objects or actions

(e.g. consist-of and spatiaf relations). In our do-

main we could specify: keyboard is part of com-

puter.

Normative qualifications of situations

The normative qualifications as expressed in legaf rules,

generally attach norms to ‘generic’ situations. A situ-

ation is a collection of behaviour descriptions in the

world. An example in the world of computer use,

would be the use of the terms: { use(Person, Com-

puter, Use), takexourse(Person, Course) } in a primary

rule. Whereas we see specific descriptions of situ-

ations (instances) in cases, legal rules contain more

generaf descriptions because they have to apply to
classes of objects, e.g. computers, zs opposed to in-

stances. An example of a specific situation in a case

might be: { Use(’Emma’, ‘SPARC..stationJ3LC’, playing),

take-course(’Emma’, ‘Dutch’) },4

The world knowledge describes alf (relevant) possible

behaviour in the world. We define a generic situation

cr in the world as a non-empty set of formula’s about

the world:

o = {F1, F2..., }.} where u # 0

where a formula F has one or more variables, of which

at lerwt one is free (ungrounded). The set of aff possi-

ble generic situations in the world k called Wp.

For our example domain we can specify these as:

2At present it is unclear whether it is necessary or desirable to

represent other categories like ‘rights’ and ‘duties’ in deep structures,
cf. [Hohfeld, 1919]. This is one of the things we need to examine in

the future.

3We are not concerned with attributes in this example.

4 In applying the legislation to specific situations, the specific satu-

ration in a case is compared with the generic descriptions in primary
ruleo. For this paper we are not concerned with actually applying

legislation, but see [Valente & Breuker, 1994] for a formalization of

that process.

113

VCVPVC*V.3!WPV.(u E Wp-
(Computer(c) A person(p) A Course(cs) A Use(u)A

a = {r49e(c, p, u), take.coarse(cs,p)}

which reads as: WP is the (only) set of all generic sit-

uations u, which in turn are sets of alf behaviors use

and take-course which are defined over all computers,

persons, courses, and uses respectively.

The deep structure of legislation is an abstraction of

thelegrd rules, and therefore contains generic descrip

tions and normative requirements. For each normative

system there hss to be a default normative requirement

for a situation in the world. The default can be either

‘legal’ or ‘illegal’ (or ‘desirable’ versus ‘undesirable’).s

This distinction is expressed as: “Everything is permit-

ted but.. .“ versus ‘Everything is forbidden but ...n. In the

first case the regulation describes the world of unde-

sirable situations (WU), in the second case the world

of desirable situations (Wd).

Modelling Wti: prohibitions

In most cases the default will be ‘legal’, i.e. if in a

particular regulation nothing is said about a particular

situation, it is a legal situation. E.g. in our example:

1. It is forbidden to use the computerg of the CSL dept.

for non students

2. Students may not use the C9L computer for playing

games.

Modelling Wd: permissions/obligations

In some cases the default will be ‘illegal’. For instance

in safety related domains the risks at stake may be

so high that in principle all behaviour is undesirable

except for some limited prescribed courses of action.

In such a csae the regulation prescribes those actions

(using obligations) and alf others can be considered

illegal. E.g. [Hammond et aL, 1994] describe the do-

main of safety protocols for clinicaf tests of medicine

like chemotherapy treatment of cancer. The risk of

kiUing a patient by wrong treatment should be mini-

mized as much as possible. In our domain an example

might be:

1. All students may use the (7SL computers
2. All use of the CSL computers should be educational

For the remainder of this paper, we wilf aim at a reg-

ulation that only allows students of our department to use

our computers for educational purposes. We can formalize

this in two different ways, starting with Wd or starting with

Wti. Resaoning from the desirable state, we allow situations
where our own students use our computers for educational

means. We do not pose any restrictions on the use of other
computers than our own. wd only consists of two generic

situations:

Wd={
{CSL-Course(Cs), Student(St),
CSL_Computer(f2), take.course(Cs, St),
educati07mlmse(C, St)}

\NOn-CSL_Computer(C), Person(P) ,
COwrse(Cs), u.9e(C, P) ,
take-course(Cs, P)}

}

If we look at the restrictions on the computer use of stu-

dents, we see that we want to forbid students to use our

5 One can also decide to have the default ‘silent’, i.e. when a regu-

lation does not say anything about a certain situation.

Agent
-c

Nonstudent
— Person

Student

-E
Non-CSL_comput er

{

Computer
CSL.computer

Object

Non-CSL.conrse

coue +CSL-coUe

-+

playing

hacking

Action
-ruse

commerciahse

I L educationtie

L takezouxse

Figure 2: The isa hierarchy

equipment for Noneducational purposes. Reasoning from

the undesirable state, we therefore describe situations in

which our students play, hack, or use our computers for

commercial means. Secondly, we forbid anyone else to use

our computers. WWconsists of four generic situations:

w.={
{CSL-COtm.9e(Cs),Student(St),
CSLX70rnputer(C), tak.-course(Cs, St),
playing(C, St)}

~CSL-Cot6rse(Cs), Student(St),

CSL-Computer(C), take-cOur.9e(Co, St),
hacking(C, St)}

\CSL.Course(Cs), Student(St),
CSL-Cornputer(C), take-cOurse(Cs, St),
corn7nercia2-w9e(C, St)}

~CSL-Cornprder(C), Person(P),
Course(C.), take-course(Cs, P),
use(C, P)}

}

The intersection of wd and W“ is empty, and so it should

be.

4 Mapping a deep structure to a paraphrase

The regulations we are to construct, have to reflect the nor-

mative descriptions as defined in the deep structure. We

have the following building blocks at our disposah

● Permissions and obligations stipulate desired behaviour.

● Prohibitions qualify undesired behaviour.

● The terms from the world description are used in defin-

ing the rules.
● We can form exceptiou structures by using combina-

tions like obligation/prohibition, or prohibition/ per-

mission. Law texts often contain a general rule which

prescribes a norm for a large group of individuals,

actions or objects, followed by a rule that excludes

specific members or subsets of these groups. The ex-

ception can be made direct~~ in the same article, or

114

I \
i\

sd_us@SL_L&@2SL_mmp)

ed_uss@uderrt,Non_CSL_crmp)

hacking(Non_sm&m,Non_CSL_camp)

uXNon_sndem,CSL_cornp) \
P~Y@r(-IIIGLCXSIIP)

Figure 3: k’enn diagram; light grey areas are wd.

indirectly in another paragraph or even another regu-

lation. Furthermore, the exception can be made ex-

plicitly, characterized by words like ‘contrary to’ and

‘except’, or implicitly where the exception has to be

inferred. For example, in our domain the requirement:

“Only students may use our computer equipment, but

not for commercial means” could be codified as: “art

1.a Only students may use the computers of the CSL de-

partment”, and “art 1.b: Use of the CSL computers for

commercial means is prohibited”. As an indirect and im-

plicit exception, we may state in another paragraph

on system management: “art 23: The system manager

may grant permission to an individual to use the CSL com-

puters for a specific goal”. Article 23 acts as an implicit

exception to article 1. a (and even 1b), because any in-

dividual, and not just students may be granted access

to the CSL computers (apparently for any use). This

exception has to be inferred at the domain level from

the agent hierarchies of computer users. Conflicts be-

tween rules because of such exceptions are solved by

‘secondary rules’ [Hart, 196 1]. For instance, in our do-

main we could define a domain specific secondary rule

that states that decisions by the system manager pre-

vail over general rules.

● We may use references between rules if definitions are

repeated.

In Fig. 3, we see a simple Venn–diagram of some situ-

ations in our example world. In our regulation, we want

to allow or oblige the elements in the light grey areaa, and

forbid the elements in the dark grey areas. If we model

Wti, then the first layer of norms are prohibitions (or de-

ontic equivalents). Only these modalities can restrict the

default general permissibility. Permissions in the first layer

are superfluous. Exceptions to prohibitions, are permissions

or obligations (or their deontic equivalents). Exceptions to

obligations or permissions, are prohibitions or their deontic

equivalences (F’z = O-x = TPz).
In representing desired behaviour (Wd), we can use obli-

gations, or permissions. Both denote desirabtity, but obli-

gation is much stronger than permission. To be able to

choose between the two modalities, we have to study the set

of desirable behaviour. If there are positive examples of the
particular behaviour, but also negative, then we can model

the desired behaviour with a permission. When there are

only positive examples, then the behaviour must be obliged.

For instance, when we see an area of wd where students

are using the computer for educational purposes, and also

for non-educational purposes, then educational use is clearly

permitted but not obliged. Exceptions to obligations or per-

missions are again represented as prohibitions (or their de-

ontic equivalents). Given a deep structure of the intended

legislation, we can start to generate different paraphrases

reflecting this deep structure.

5 Generating paraphrases

We can construct different structures in regulations, if we

model along one, or combinations of the following dimen-

sions:

1.

2.

3.

Default undesirable/desirable: restrictions\ prescrip-

tiomr

The first choice that has to be made is whether the de-

/au/t will be ‘illegal’ or ‘legal’, whether we will describe

wd or Wu. The normative part of the deep structure

is already baaed on a choice, but in principle it is pos-

sible to generate a set of rules that starts from the

opposite assumption. For some purposes it may even

be advisable to describe both W“ and Wd, e.g. if the

legislation should be understandable for small children

that need to know both what is permitted and what

is forbidden, even though one could infer one from the

other. In most caaes, at least some rules will refer to

situations that are actually covered by the default for

esse of understanding.

Viewpoint (according to knowledge types in world):

legislatorlnorm subjects/...

We have to choose a uiewpoint for describing normative

positions of situations. The different possible view-

points correspond to the different types of knowledge

in the world model of the deep structure. The view-

point can be based on the agents and objects in the

world, on the possible behaviour, and on structures

in the world. For our example domain, we could de-

scribe the deep structure from the perspective of using

computers (i.e. what use is desirable, what use is not),

from the perspective of users (i.e. which users can use

the computers, which can’t), or from the perspective

of computer use. From the latter perspective we can

either describe the prohibitions on playing, hacking

and commercial use, or forbid to do anything else but

educational use. The results of different choices are

logically equivalent, but can be dramatically different

on the surface. One viewpoint may for instance result

in mostly explicit exceptions, another in mostly im-

plicit exceptions. This again has consequences for the

readabtity and learnability of the legislation. Explicit

exception structures are easier to read and learn for

humans than implicit ones.

Abstraction level

high: few rules generate all normative qualifications

low: a rule for each legal qualification

A third dimension for generating different expressions

of the same deep structure is the level of abstraction

one chooses for the surface structure. When we have

chosen a particular level of detail, we can only make

additions ‘on lower levels which can be abstr~ted to
the chosen level. E.g. if we have two instances a and

b which can be abstracted to c, and the normative

115

effects Fz and Fy which can be abstracted to F z, we

can make the following abstractions:

{a+ Fx, b+ F.}a5”c+Fz

We can also concatenate different normative effects for

the same set of situations:

{a+ Fz, a+ Fy]”2”a4Fx VFy or:

{a+ Fx, a+ Fy}a~”a+Fz

On the one extreme, one can simply enumerate all de-

sirable or undesirable generic situations, on the other

extreme one can try to describe them at the highest

abstraction level possible. For some purposes, concrete

rules that specifically refer to all kinds of situations and

define normative positions for them, are more suitable,

for other purposes abstract rules may be preferred.

4. Deontic transformations: O-hosed/F-hosed/P-based

A fourth mechanism for generating paraphrases is us-

ing deontic transformations, e.g. P(z) = 1O(-UZ) and

F(z) = O(=z). Besides literally using the negation in

some situation (7z), the domain (world) t axonomies

can be used for explicitly stating the negation of (x),

e.g. in our example domain:

O(educationaJ.use(c, st)) can be restated as:

F(hacL-ing(c, st)vcomrrzerciaLase(c, st)vpiaying(c, st))

besides F(~educationaLrwe(c, st)).

This lsst choice yields yet another paraphrase bssed

on the fact that the world is sssumed to be closed and

the number of subtypes of ‘use’ in this case is finite.

Using these, and possibly other mechanisms it is theoret-

ically possible to generate numerous – and if we take differ-

ent natural language formulations into account, an infinite

number of – paraphrases of a deep structure of a normative

system. Below we present two examples of codifications gen-

erated for the deep structure of our example domain, bssed

on the mechanisms described above.

Example 1

1: default: undesirable

2: viewpoint: computers

3: abstraction level: high

4: deontic: permission

1.0 All use of all computers by anyone is forbidden. (DE

FAULT)

1.1 The use of CSL computers for educational purposes by

students that take a CSL course is permitted.

1.2 All use of non-CSL computers by anyone is permitted.

Example 2

1: default: desirable
2: viewpoint: students

3: abstraction level: low

4: deontic: permission

2.o Anyone can use all computers for all purposes. (DE

FAULT)

2.1 Students that take a CSL course may use the CSL

computers.

6Of course, in reality this is not feasible for most domains, since

they are too large and complex.

2.2.1 Students may not use the CSL computers for playing.

2.2.2 Students may not use the CSL computers for hacking.

2.2.3 Students may not use the CSL computers for commer-

cial use.

2.3 Students that do not take a CSL course may not use

CSL computers at all.

2.4 Non-students may not use the CSL computers at all

either.

The two sets of rules concerning the use of the computers

of our department, look very different at first sight. Closer

examination reveals that, given certain restrictions on the

world of computers, their users and possible use, the two

sets may boil down to the same thing.

The formalization we can use for primary rules provides

us with applicability grounds (conditions) and normative de-

scriptions (conclusions). The conditions of the primary rules

correlate to the prescriptions of the sets in wd, whereas the

conclusions of the primary rules must yield only the desired

formations from wd. Since we take the world of desirable

behaviour as our starting point, the behaviour mentioned in

the definition of Wd is permitted behaviour. The formula’s

in the generic situations provide us with the applicability

grounds of the possible rules. The most abstract rule we

can formalize stays close to the deep structure:
V.V.~V,s(CSL-Computer(C) A Student(St) ACSL-Course(Cs) A

take-course(Cs, St) +
Perrnitted(74se(C, St, edu.atiorm~))

vcvPv.~on-CSL_Computer(c) A Person(p) A use(u) +

Permitted(use(c, p, u))

All permissions must be exceptions to a general rule. We

took wd as a starting point, so ~ the other situations are

forbidden (W.). Quantifying over the computers is useful

when the regulation is drafted for the staff of the depart-

ment. For the students, quantification over Student can be

selected. The level of abstraction over facts is determined

by choosing a level in the hierarchical knowledge. We can

say that educational-use is permitted, but equally, we can

enumerate that playing, hacking and commercial-use are for-

bidden:
VPVCV@erson(p) A Computer(c) A use(u)

+ Permitted(use(c, p, u))
VpVcV@erson(p) A 6’SL-Computer(c) A use(u)

+ Forbidden(use(p, c, u))
V.tvcv..v”student(st) A C.$L_Computer(c) A We(u)

Ata/ce-cotirse(cs, st) A CSL_COuT.9e(CS) +

Permitted(use(c, st, u))
v,tv.v..Student(st)ACS~-Computer(c) Atake-course(cs, st)A

CSL-Course(cs) +
Fortkiien(use(c, st, playing))

V,~V.V.,Student (st)ACSL_Computer (c) Atake_course(cs, st)A

CSL-Couvse(cs\ +

Forbki~en(use(c, st, hacking))

V.tV.V..Student (st)ACSL_Computer (c) Atake_course(cs, st)A

CSL_Course(cs) +

Forbidden(use-use(c, st, commercial))

The first rule starts high in the taxonomy of persons and
use. The second rule and thkd rule form the permitted
state (Wd), in which the exceptions are written out in the

last three rules. For the abstraction of the last three rules

to educational use, the terminological knowledge concern-

ing these actions must naturally be present explicitly. Thk

results in the following rule:

V. ~V.V..Student(st) ACSL-Computer(c) A CSL-Course(cs) A

take_course(cs, st) +

~orbidden(=use(c, st, educational))

116

6 Conclusions and future research

We described a ‘deep structure’ that lies below the sur-

face codifications of regulations, that captures the norma-

tive essence of the regulations. In a way, the process we de

scribe of first defining a deep structure, and next generating

paraphrases, is a reversal of the possible worlds semantics

approach to deontic operators. In that approach, possible
and ideal worlds are used to interpret deontic notions like

obligations and permissions. We define the ideal world (di-

rectly as Wd, or indirectly through WU) first, and use it

to generate formulas or rules that use deontic operators to

describe it.

The main benefit of our approach for the legal world, is

that deep structures provide a safe testing ground for new

legislation. Artificial intermediate models are also found in

virtual reality, for instance in industrial design, to test the

strength of architectural constructions, or to simulate pro-

cess control in chemical plants. In this context, we also see

that there are different options that support the same pre-

define qualifications, for instance, there are several ways

of supporting a roof that fit the same architectural taste.

Different codifications are possible for the same legal qualifi-

cations by using combinations of the four dimensions. This

not only increases the usability, but also the explainabil-

ity of regulations. We expect that the fact that we will be

able to generate paraphrases automatically, and that we can

test them automatically, will be a substantive contribution

to drafting legislation. We have some experience in (au-

tomatic) testing of regulations. In the TRACS project, a

fraction of the Dutch Traffic regulation has been tested on

some traffic situations. In [denHaan, 1993], the process of

testing is described as:

1. Generation of test cases

Terms form the world description are combined to form

a description ofasituation. Any combination of agents

and actions is possible. Wecaneither pick elements by

hand, as wss done in the prototype system TRACS,

or design an automated generation of test cases that

enumerates all possible combinations of elements.

2. Automated application

Theregulation has been represented in alegalknowl-

edge bssed system. The regulation is applied to all the

test cases.

3. Validation of the legal qualifications

In the TRACS prototype, vflldation took place by

hand. When a deep structure of the regulation has

been defined that corresponds tothe external require-

ments, then we can compare the test results and the

deep structure automatically.

4. Refinement of rules

In [denHaan, 1993] refinements are proposed to allev-

iate any mismatches between the qualifications and

the desired effects. The paper proposed a system for

abstraction and specification of rules that would trans-

form the applicability or normative effects to fit the

desired effects of the regulation. In the context of

deep structures we may use this mechanism to opti-

mize the deep structures, but not the representations.

Any change in the deep structure can automatically

be translated to a representation.

The deep structures for law have also practical conse-

quences for law comparison. Looking directly at the effects

of regulations is very helpful for comparing two versions of

the same law, or similar laws from different countries. The

regular rule structures of laws may be very dissimilar, which

makes the comparison all the more difficult. The deep struc-

tures provide an interlingua for the comparison. Law com-

parison is more effective when we compare the deep struc-

tures instead of the full regulations, because they directly

describe the normative effects and are independent of the

internal design of regulations. The deep structures help us

to overcome differences in abstraction levels, viewpoints, or

other modelling conventions such as the choice of deontic

modalities or the desirable/undesirable default. One of the

aims of law comparison may be harmonization of legislation.

For instance, the European Community aims at standardiz-

ing its legal systems. We can combine the deep structures of

different national regulations, i.e. form the union of the sets

of desirable/undesirable behaviour. The chance of generat-

ing different codifications with the same legsJ effects may

increase the suitabfity of this new legislation for different

countries.

At this stage, we are working on a description of the pro-

cess of ‘deep structuring’ and on specifying software tools for

generating paraphrases. The Dutch Association for Scien-

tific Research (N WO) has just granted a research fund for

the development of this methodology and tools.

References

T.J.M. Bench-Capon. Deep models, normative reasoning and

legal expert systems. In Proceedings of the 27ut International

Conference on AI and Law, Vancouver, 1989. ACM.

J.A. Brenker and N. den Haan. Separating world and regulation

knowledge: where is the logic? In M. Sergot, editor, Proceed-

ings of the third international conference on AI and Law,
pages 41–51, New York, NJ, 1991. ACM.

P. W. Brouwer. Coherence in Law: An Analytical Study. PhD

thesis, University of Leiden, Groningen, The Netherlands,

June 1990, In clutch.

Noam Chomsky. Deep structure, aurjace structure, and semantic

interpretation. Bloomington, Ind., 1969.

N. den Haan and R.G.F. Winkels. The Deep Structure of Law.

In H. Prakken, A.J. MuntjewerfT, and A. Soeteman, edi-

tors, Legal Knowledge Based Systems: The RelOtion with
Legal Theory - Seventh International Conference on Legal
Knowledge-baaed System.s Legal Knowledge-Based Systems,
JURIX-I 994, pages 43–54. Korrirddijke Vermande, 1994.

N. den Haan. Towards support tools for drafting legislation. In

Intelligent Tools for Drafting and Computer-Supported Com-

parison of Law - Sicth International Conference on Legal
Knowledge-based Systems Legal Knowledge-Based Syatemej
JURIX-I 993. Konirddijke Vermande, 1993.

Ph. Eijlander. De wet etellen. Beachouwingen owm onderwerpen

van wetgeoing. W.E.J. Tjeenk Willink, %hoordijk Instituut

- Centrum voor Wetgevingsvraagstukken, 1993.

J. Hage. An information network for legislative engineering. In

Inte[iigent Too18 for Drafting and Computer-Supported Com-
parison of Law - Sixth International Conference on Legal
Knowledge-ba8ed Systems Legal Knowledge-Ba8ed Systems,
JURIX-I 993, pages 43–52. Konirddijke Vermande, 1993.

P. Hammond, J. Wyatt, and A. Harris. Drafting protocols, cer-

tifying clinical trial designs and monitoring compliance. In

J.A. K3reuker, editor, Proceeding. of the work. hop A.t;j%i.l

Normative Reasoning at the European ConjeTence on A@-
cial Intelligence, pages 124–131, Amsterdam, 1994.

117

H.L.A. Hart. The Concept oj Law. Clarendon Press, Oxford,

1961.

W.N. HoMeld. Fundamental legal conceptions as applied in le-

gai reasoning. Yale University Press, 1919. Fourth printing,

1966.

Mr. R.W. Overhotfand Mr. L.J. Molenaar. In de mgel bealist. Een
be8chouwing over regelgeving met behulp van be.$[i.ssing8ta-
bellen. SDU Uitgeverij, Plantijnstraat, ‘s-Gravenhage, 1981.

Jiirgen R&iig. Logische Untemuclmngen zur Makrostruktur

rechtlicher Koditikate. fn Jiirgen R6dig, editor, Studien zu
einer Theorie der Geaetzgebung, pages 592–611. Springer-

Verlag, Berlin, Heidelberg, New York, 1976.

G .C Thornton. Legislative DTajting. Butterworths, London,

third edition edition, 1987.

A. Valente and J. Breuker. A commonsense theory of normative

systems. In J.A. Breuker, editor, Procccdinga of the workshop
Artificial Normative Reasoning at the European Conference
on Artificial intelligence, pages 5&68, Amsterdmn, 1994.

R. van Kralingen, E. Oskamp, and E. Reurings. Norm frames in

the representation of laws. In IntelligentTools for Drajting

and Compute r- Supported Comparison of Law - Sixth Inter-
national Conjcrence on Legal Knowledge-based Systems Le-
gal Knowledge-Based Syatcms, JURIX-1993, pages 11–22.

KonirMjke Vermande, 1993.

J.C. van Vliet. Sojtware Engineering. Stenfert Kroese B. V., Lei-

den/Antwerpen, 1984.

G.H. von Wright. On the logic of norms and actions. fn Risto

Hilpinen, editor, New strtdie8 in Deontic Logic, pages 3–35.

D. Reidel, Dordrecht, 1981.

Mr. C. Waaldijk. Wetgevingswij,rer. Koninfdijke Vermande B. V.,

Lelystad, 1985.

Acknowledgements The ideas about deep structures

in law have materialized in discussions with Joost Breuker

of the Department of Computer Science and Law. We would

also like to thank Henry Prakken for his valuable comments

on an earlier version of this paper.

118

