
new HELIC-11: A Software Tool for Legal Reasoning

Katsumi Nitta, Masato Shibasaki, Tsuyoshi Sakata,
Takahiro Yamaji, Wang Xianchang, Hiroshi Ohsaki (JIPDEC),

Satoshi Tojo @RI) and Iwao Kokubo (MRI)

Institute for New Generation Computer Technology

4-28, Mita l-chome, Minato-ku, Tokyo 108, Japan

nittaaicot. or. jp

Abstract

The new IL%?ZC-11 is a software tool for legal rea-

soning. It consists of two functions - argumentation

function and debating function. Argumentation func-

tion is retilzed by a typed logic programming language

with generalization of rules and defea.sible reasoning

based on priority of rules. Debating function is real-

ized by meta knowledge which controls the argumenta-

tion function.

This paper introduces overview of the new HELIC-

H system. We show how legal knowledge is repre-

sented in the new HELIC-11 illustrated by presenting

the example of an actual criminzd case.

1 Introduction

In the field of AI and Law, many models of legal rea-

soning have been proposed. However, most of them

are focused on one aspect of legal reasoning such as

making arguments or selecting an argument or debat-

ing.

For example, we have already developed a legal

reasoning system HELIC-11 [h’itta(a)] in the FGCS

project. This system (old HELIC!-11) is a hybrid sys-

tem which consists of two infereuce engines - a rule

base reasoner and a case base reasoner. We showed the

effectiveness of the hybrid architecture by presenting

solutions to several criminal cases.

However, the old HELIC-11 has the following prob-

Perndssion to copy without fee all or part of tb& material is granted provided
that the copies are not made or distributed for direct commercial advantage, tbe
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery, To copy mfwwise, m to republish, requires a fee WWVor specific

permission,

0 1995 ACM 0-89791-758-8/95/0005/0287 $1.50

lems.

(1) Although it can generate

ments. there is no function to

many alternative argu-

select the best one. (2)

It waa implemented in a parallel logic programming

language KL1 and runs only on the parallel inference

machine PIM. Therefore, it lacks portability.

To resolve these problems, we started development

of the new HELIC-H at the FGCS Follow-on project.

The research target of the new HELIC-11 is to pro-

pose a unified model of legal reasoning, and to develop

a portable software tool based on the model.

This system has two functions - argumentation

function and debating function. And the argumenta-

tion function consists of two functions such as making

and select ing argument.

In this paper, we give a brief introduction to the key

concepts of the new HELIC-11 system. In Section Two,

we give overview of the new HELIC-11, and in Sec-

tions Three and Four, we introduce the argumentation

function and the debating function.

2 Overview of the system

In this section, we introduce two functions of the new

HELIC-11.

2.1 Argumentation Function

When the judge solves legal problems in the suit, he

observes the facts, makes a conclusion and generates

an argument to support the conclusion. If he can make

more than one conclusions, he must compare each ar-

gument and select the best one. We call this thinking

process as ar~mentation function and modeled it by

two modules - making arguments and selecting argu-

ments (Fig.1).

287

Argumentation Function

[-J (-j-j)
f

[
Making

Arguments

L /

Goal + Viewpoint the best argument

Figure 1: Argumentation Module

When the user input a desired conclusion (goal) and

his viewpoint, “the making arguments module” gener-

ates all arguments which achieve the goal, all counter

arguments for each argument, all count er counter ar-

guments for each argument, and so on. Then, “the

selecting argument module” selects the best one baaed

on user’s viewpoint. User’s viewpoint is compiled into

priorities of rules, and the strength of arguments is

measured by them.

Much research has been conducted into making ar-

guments by combining a rule base reasoner and a

case base reasoner. For example, GREBE [Branting],

CABARET [Rksland] and HELIC-11 [Nitta(a)] have

hybrid architectures and make arguments for a given

case. Figure 2 is the architecture of the HELIC-11.

II Rule Base Reasoner i

*
Goal, woking memory I~ arguments
Viewpoint IT

I I Case Base Reascmerl \

Figure 2: RBR and CBR

On the otherhand, the research of [Prakken] and

[Sartor] looked at the selection of arguments based on

nonmonotonic reasoning.

We unified parts of results of these researches and

we designed a new language to realize the argumen-

tation function. This language is a typed logic pro-

gramming language with generalization of rules and

defensible reasoning. We will explain the language in

Section Three.

2.2 Debating Function

Though an argumentation function simulates judge’s

thinking process, it is not sufficient to simulate attor-

ney’s thinking process. For example, the argumenta-

tion function assumes that there is only one viewpoinx

(priority of rules) and one knowledge base. However.

in the actual case, the prosecution and the defense

may have different viewpoints and different knowledge.

Therefore, there is a debate in which both parties

insists that their argument is more suitable than oppm

nent ‘s.

To simulate attorney’s thinking process, we need

another function - debating function - which generates

subgoals, enhances viewpoints during debate process

and controls the argumantation function (Fig. 3).

Argumentation Function

@!GGzy
4

~oal+viewpoint / argument
\ r

I

Debating
Function

EzzzJ- -
protocol

Figure 3: Debating Function

We modeled the debate strategy as follows.

1.

2.

Initially, two parties have different rules and dif-

ferent viewpoints. They don’t know what rules

and viewpoints the opposite side may have.

When a user inputs an initial goal, the deba:-:

starts.

Both parties present their claims to each other

(Fig. 4). There are several claims M follows. (1)

To make a new argument for a given goal. (2)

288

To find issue goals in the arguments posed by

the opponent. (3) To decide if an argument is

defeated by a counter argument or not. (4) To

enhance the viewpoint of this side to make the

argument of this side to defeat the opponent’s

argument.

Prosecutor(Plaintiff) Defendant

m ri=5a
I-I I-1

goal

Figure 4: Debate between prosecution and defense

3. The defeat relation between an argument and its

counter argument is defined by priorities of rules

which appear in an argument or a counter ar-

gument. If both parties have the same priority

rulel > rule2, we can decide the defeat relation

between an argument and its counter argument.

However, if the prosecution insists rulel > rulez,

and the defendant insists rulez > Tulel, we can-

not decide the defeat relation.

4. During the debate process, the current viewpoint

of each side may be enhanced by attaching new

priority relations of criteria of value.

Already research into the debate model has been

conducted by ~ssland] [Ashley] [Loui] [Gordon]. Our

model is different from theirs in that we focused on

the difference of viewpoints of both sides and com-

bined this into the argumentation function.

3 Argumentation Function and

KR Language

We developed a

which realizes the

tion, we explain

language.

knowledge representation language

argumentation function. In this sec-

several important concepts of our

3.1 Knowledge Representation

3.1.1 Type

The primary components of knowledge representation

are an ‘object”, an “event” and “property.” We Cail

classes of objects, events and property as “object

type”, “event type” and “property type.”

Between object types, we have parti~ order rela-

tions (>.), between event types, we have partial order

relations (>e), and between property type, we have

partial order relations (> P). They construct lattices,

respectively.

Let To, T. and Tp be a set of object types, event

types and property types. There are special type T

and L, and for any O E To, E E Te and 1’ ~ TPT the

following relations hold.

T> 00, O>. J.., T>e E,

E>. LT>PP, l’>p-L

For any event type and property type, we can define

another type wit h negation (1).

3.1.2 Terms

We introduce two terms - @term and Hterm. A @term

is used to define an object, and an Hterm is used to

define an event or a property.

(a) @term

A @term is defined as an object type, or a structure

constructed by a root symbol and a list of object la-

bels as follows [Ait-Kacil.

P/peTson[age +- 20, last.name +- X/string,

parent * person[lad.name * X]]

Here, a root symbol (person) is an object type sym-

bol, and an object label consists of an object label

symbol (age, last-name, parent) and its value (20~

X/string, peTs@ast-name a X]). We can attach

an object tag symbol (P, X) before an object type.

To the same object tag symbols, the same @terms are

substituted.

Semantics of @term : Let U be a universe of

@terms and let 10 be an interpretation of +term, then

for any O c To, 1010] is a subset of U, and the follow-

ing relations hold.

10 IT] = U, LJJ-] = { }

VOI, 026 To 01<002 + Io[Ql c 10[021

A label is a fllnction from U to U. Interpretation of

+terms (Vl = 0[1 =$- t] and Vz = 0[11 + t~,...,ln +-

tn]) is defined as follows.

l.[%] = {x= L7PI I 3Y = ~o[tl,~o[zl(~) = v}

Lp21 = nMOM + h]]

289

If two @terms (Vl = 01[11 = Al, . ..]. Vz = Oz[l{ =

A!, ...]) satisfy following three conditions, then VI SO

IQz holds.

(1) SI so S2,

(2) if 1 = A’ appears in the label of V2, then 1 = A

appeaxs in the label of ’111, and A <0 A’ holds,

(3) constraints by tags of !?!z are satisfied by !lI.

If !VI SO Wz then 10IQI] ~ 10[V2] holds.

(b) Hterm

An Hterm is defined ss a structure consisting of a root

symbol and a list of event label or property label as

follows.

A/watch(agent = X/peTson,

object = hit(agent = Y/person,

object = Z/peTson[sex + male],

cause = #fight))

Here, a root symbol is an event type or a property

type. A label value may be a @term or an Hterm.

“#jight” is an Hterm tag, and it is replaced by an-

other Hterm. Hterm tags appearing in facts are pre-

ceded by #, and those appearing in rules are preceded

by 0.

Let El and E2 be elements of T.. If two Hterms

(Hl = El[ll = Al, . ..]. H2 = E2[lj = A;, . ..]) satisfy

the following four conditions, then HI <. Hz holds.

(1) El <e E2,

(2) if 1 = A’ appears in the label of Hz, 1 = A appears

in the label of H1 and A and A’ are Hterms, then

A <e A’ holds or A & A’ holds,

(3) if 1 = A’ appears in the label of H2, 1 = A appears

in the label of H1 and A and A’ are +terms, then

A <. A’ holds,

(4) constraints by tags of Hz are satisfied by HI.

Let PI and Pz be elements of Tp. If two Hterms

(Hl = Pl[ll = AI,...], H2 = P2 [z; = A;, . ..]) satisfy

the following four conditions, then H1 5P Hz holds.

(1) R $7 P2>

(2) if 1 = A appears in the label of H,, i = A’ appears

in the label of H2 and A and A’ are Hterms, then

A & A’ or A $ A’ holds,

(3) if 1 = A appears in the label of H1, 1 = A’ appears

in the label of H2 and A and A’ are @terms, then

A SO A’ holds,

(4) constraints by tags of H2 are satisfied by HI.

Semantics of Ht erm : Interpretation of Hterm

consists of interpretation of @,erm 10 and a mapping

~ from Hterm to {tree, ialse}. m satisfies the follow-

ing two conditions.

(1) T(T) = t?we, n(l) = false,

(2) for two Hterms HI and Hz, if H1 <, Hq or H1 <P

H2, then

T(H1) = true -+ 7r(H2) = true

holds.

3.1.3 Rules

A rule consists of a unit name, consequence part and

condition part as follows.

U :: A + B1, Bz,..., B~

Here, A is an Hterm, and B~ is an Hterm or an

Hterms preceded by “not.” “not” means “negation as

failure”.

Some rules may be genera.hzed when applied to a

new case. We distinguish such rules from others, and

call them “ Crules.”

3.1.4 Priority of Rules

We can define a unit name for not only a rule but

a group of rules. For example, let rl, T2, T3 be unit

names of three rules. Then,

To := {TI>T2, ~S }

defines a new unit name “TO” which represents these

three rules.

“Priority of rules” is defined as a priority name and

a set of priority relations of unit names.

p~ := {TI > T2}

Moreover, we can define “priority of priority.” It is

defined as an identification name and a set of priority

relations of priority names.

viewl := {pl >~2,p3 >~4}

3.2 Inference

3.2.1 Unification

(a) Unification of @term

Let Xi and Ya be @terms and let 19 be defined as

follows.

o = {xl/Yl, x2/Y2,..., xYn}n}

If 0 satisfies the following two conditions, then 8 is a

substitution of @term.

290

(1) Tags appearing in ~ are different from tags ap-

pearing in Xj,

(2) X2 >. IL.

The result of substituting @ for 6’ is represented as +8,

and @O >019 holds.

For two @terms +1, 42, if there exists a substitution

6 which satisfies +18 = Tb29 # 1, then *1 and @2 are

called unifiable.

(b) Unification of Hterm

Let Xi and X be event types or property types and

let q be defined as follows.

q = {X1/U jx2/y2, Xn/L}

If ~ satisfies the following two conditions, then q is a

substitution of Hterm.

(1) Tags appearing in U are different from tags ap-

pearing in Xj, _

(2) Xi >, Yi or Xi *P y.

For two Hterms HI, H2, if there exists a substitu-

tion ~ which satisfies HI q = H2q # J-, then H1 and

H2 are called unifiable.

3.2.2 SLD Resolution and an argument

(a) SLD Resolution

Let G1 be the following goals

+ Al, ... Ak, An.

and C~ be

A + B1,Bm. G Rules

and 0 be an mgu (most general unifier) which satisfies

AO <e Akd, then the following Gi+l is derived from Gi

and L’i.

+ (Al, ... Ak_l, Bl, . . . Bm, Ak+l,..., AJ3.

(b) Argument

An argument of a goal “G” is a set of instantiated

rules which draws “G .“

For example, let concepts, rules and facts be as fol-

lows.

tom < person, bill < person, person < object

shot-a.gun < act, act < event

rl :: Punishable(agent = X) +

act(agent = X/peT30n,

object = Y/peTson) I @act,

crime(agent = X, goal = hamicide).

T2 :: crime (agent = X, goal = homicide) +

act(agent = X/persan,

object = Y/person) I Qact,

is-hmnicide(a-object = @act),

neq(.Y, Y).

:: is-homicide(a-object = @act) +

act(agent = X/person,

object = Y/person) I @act,

with.intent (a-object = @act, goal = homicide),

died(agent = Y) [@death,

causality (a-object = @act, goal = @death).

:: -punishabie(agent = X) +

act(agent = X/perscm[age * [0..13]],

object = Y/person) I Qact.

~1 :: shoLa-gun(agent = tarn,

object = bill) I #act.

f2 :: wzth.zntent(a-object = #act,

goal = homicide).

f3 :: died(agent = bill)] #death.

f 4:: causality (a-object = #act, goal = #death).

Following is an argument for a goal

“crime(agent = tom, goal = homia”de).”

Arg(crime(agent = tom, goal = homicide)) =

{crime(agent = tom, goal= hamicide) +

shot-a-gun(agent = tom, object = bill),

isJwmicide(a_object =

shot_a-gun(agent = tom, object = bill)),

neq(tom, bill).

is-homicide(a-object =

shot.a-gun(agent = tom, object = bill)) +

shot-a-gun(agent = tom, object = bill),

with-intent(a-object =

shot-a.gun(agent = tom, object = bill),

goal = homicide),

died(agent = bill),

causality (a-object =

shot.-a-gun(agent = tom, object = bill),

goal = died(agent = bill).

shot-a-gun(agent = tom, object = bill).

with-intent(a-object =

shot-a-gun(agent = tom, object = bill),

goal = homicide).

died(agent = bill).

causality (a_object =

shot~-gun(agent = tam, object = bill),

goal = died(agent = bill). }

3.2.3 Defensible reasoning based on priority of

rules

(a) Defeat Relation

Let A and B be two Hterms.

291

If A and ~B are unifiable, or if -1A and B are unifi-

able, then A and B are said to be a contradiction. For

two arguments Arg(A) and Arg(B), if A and B cause

a contradiction, we say “A~g(A) attacks Arg(B)” and

“.Arg(B) attacks Arg(A)”. For any argument Arg(G),

if Arg(A) c Arg(G) and A~g(A) attacks Arg(B), then

we say Arg(B) is a counter argument of Arg(G). In

this case, we call –B as issue point in Arg(G).

Let Arg(B) be a counter argument of Arg(G), and

let rz and TI be top default rules including Arg(B)

and Arg(–B). If one of the following conditions holds,

then we say Arg(B) defeats Arg(G) (Fig.5).

(I) rj is only one default rule included in Arg(B),

(2) for any sub argument of Arg(B) which doesn’t

include r2, it is a justijied argument.

~&ot#Los#+gr2
rule rule rl

GA A &&&

Figure 5: Defeat relation

An argument can be classified into three categories -

a defeated argument, a justijied argument and a merely

plausible argument [Sartor].

A defeated argument is an argument which is defeated

by some counter argument. A justified argument is

an argument which defeats any counter arguments. A

merely plausible argument is an argument which is

neither a defeated one nor a justified one. Justified ar-

guments and merely plausible ones are called plausible

ones.

(b) Example of defensible reasoning

Let consider rules and facts in the previous page

again.

We can make an argument which supports

“punishable(agent = tom)” by using rules rl, rz and

rs. However, for example, if Tom is 12 years old, then

we can make two arguments which conflict each other

as follows.

Arg(punishable(agent = tom[age a 12]))_

by rl, I-Z and rz

Arg(-pwnishable(agent = torn[age s 12]))

by rd

If rl has priority over r4, then the former argument

is stronger. On the contrary, if r4 has priority over

rl, then the former argument is defeated by the latter.

Therefore, to select the best argument, we must input

not only a goal but priority of rules. The priority of

rules is closely related to the personal viewpoint.

(c) Search Level

To decide an argument is justified or not, we must

consider its counter arguments, its counter-counter ar-

guments, and so on. If we calculate these arguments

completely, the search space is very large. However,

in the debate process between two parties, complete

calculation is useless, because priority of rules may

change during debate. Therefore, we prepared a mech-

anism to limit the search space. For example, if we

set a search level to one, then the system calculate the

defeat relation of counter arguments,

consider counter-counter arguments.

3.2.4 Generalization of Crules

(a) Generalization

While ordinal rules are used as they

but it doesn’t

are, “Crules”

may be generalized before they are used, and their

condition parts are matched based on similarity. For

example, let consider following concepts

hit <e do-violence, kick <e do-violence,

fainted <e suppressed, feared<, suppressed,

mary <0 girl, jane <0 girl,

tom <0 boy, bill <0 boy,

girl <0 person, boy <0 peTson

watch <0 propeTty, purse <0 poperty

and following Crule.

r5 :: –criminal.intent(agent = X,

object = #hit, goal = robbery) +

hit(agent = X/tom, object= Y/mary) I #hit,

criminal_intent(agent = X,

object = #hit, goal = violence),

f aznted(agent = Y),

take-away (agent = X,

object = watch [owner a Y]).

This Crule is extracted from judicial precedents. Its

meaning is “Tom hit Mary to damage her, and she

was fainted. He took away her watch while she waa

fainted. In this case, the judge thought that Tom

didn’t have the criminal intent of robbery.”

292

This Crule may be generalized as follows.

T6 :: -criminal.intent(agent = X,

object = #hit, goal = robberg) +

do.violence(agent = X/boy,

object = Y/gi~l) I #hit,

Criminal-intent(agent = X,

object = #hit, goal= violence),

suppressed(agent = Y),

take.awa~(agent = X,

object = propmty[owner ~ Y]).

The meaning of a generalized rule is “a boy did vio-

lence to a girl to damage her, and she was suppressed.

He took away her property while she was suppressed.

In this case, the judge thought-that the boy didn’t

have the criminal intent of robbery.”

Here, if we have following facts,

kick(agent = bill, object = jane) [#kick.

criminal-intent (agent = bill, object = #kick,

goal = violence).

feared(agent = jane).

take-awa~(agent = bill,

object = pwrse[owner a jane]).

then we can make an argument which supports a goal

–criminal-intent(agent = bill, object = #hit,

goal = robbery)

by applying this generalized rule.

Crules are used to represent judicial precedents, the-

ories of interpretation and some statutory rules. The

generalization of Crules corresponds to application of

precedents to similar new cases and corresponds to

widening interpretation of statutory rules.

However, if a Crule is generfllzed without any con-

straint, the condition part will be meaningless because

it may be generalized to T. Therefore, we prepared

some control mechanism. By describing the upper

limit of generalization in Crules, we can restrict the

level of generalization.

(b) Similarity based matching

If we represent judicial precedents by Crules, their

condition parts become a set of facts. In this case,

all conditions are not always important. Even if some

conditions are not satisfied, if most important condi-

tions are satisfied, then such Crules should be applied.

To reahze similarity based matching of Crules, we

define a similarity level as follows.

simdaTi@ = xi ‘e’9hti*8atiSfi~d-con~~iioni
Weighti *eonditioni

If a new case satisfies the condition part of Crule

completely, the similarity level becomes 1.0, and if a

new case doesn’t satisfy the condition part at all, the

similarity level becomes O. If this value is more than

predefine threshold, we regard the condition part is

satisfied.

Generally, not important condition of a Crule can

be generalized more than important condition. To dis-

criminate not important information from others, we

introduce the notation “!.” This information is used as

weighting value to calculate the similarity value.

3.3 Description of Legal Knowledge

In this section, we show how legal knowiedge is repre-

sented in our language.

3.3.1 Concepts

We must define concepts (objects, events, properties)

as a type hierarchy (a conceptual dictionary). Legal

knowledge such as facts, rules, theories, judicial prece-

dents and criteria for value judgment should be repre-

sented using concepts in the dictionary.

3.3.2 Statutory rules and Legal Theories

As most legal rules take the form of “if - then - unless

rules”, they are easily represented as rules. The fol-

lowing are examples of articles 36 and 199 of Japanese

Penal Code.

p36 :: punishabie(a-object = @act)

+ act(agent = X/person,

object = Y/person) I @act,

erime(a-object = @lact, goal = Z/crime),

not self -de fense(a-object = @act).

p199 :: crime(a-object = @act, goal = homicide)

+ act(agent = X/person,

object = Y/peTson)] Qact,

isJwmicide(a_object = @act),

neq(X, Y).

As predicates which appear in legal rules are vague,

supplementary rules are needed to make the mean-

ing of vague concepts clear. Legal theories concerning

interpretation of legal rules are also supplementary

rules. For example, concerning cnmird intent of theft,

there are three theories (interpretations).

Theory A: If a person takes away something, he has

criminal intent of theft.

Theory B: Even if a person takes away something, if

he doesn’t intend to pretend as he is the owner of

it, he doesn’t have criminal intent of theft.

293

Theory C: Even if a person takes away something,

if he doesn’t intend to use it himself, he doesn’t

have criminal intent of theft.

These theories are also represented as rules of our

language. As different lawyers may adopt different in-

t erpret ations, there may exist rules which conflict each

other.

3.3.3 Judicial precedents

Precedents contain information such as facts, a final

decision, arguments of both sides, and the argument

of the judge. Arguments included in precedents consist

of several levels of rules. While rules appearing near

the conclusion consist of more general conditions, rules

near facts consist of concrete conditions.

Though rules of the former level are applied as they

are, rules of the latter level are applied after they

are generalized. Therefore, the latter level rules are

represented as Crules.

Following is an example of judicial precedents con-

cerning criminal intent of theft. “ Tom hid Bill’s car

in order to interfere Bill’s date. Though Tom didn’t

intend to use it himself, the judge decided that Tom

had criminal intent of theft .“ It is represented as a

Crule.

3.3.4 Criteria for value judgment and view-

point

If there are several interpretations of a statutory rule,

and if their conclusions conflict each other, a lawyer

must select the best one. When a lawyer select the

best interpretation, he compares each interpretation

based on his viewpoint. We describe a personal view-

point as a priority relation between criteria of value.

The followings are examples of criteria of value.

property: Private property must be protected.

balance: Conditions of crimes should be harmonized

and well balanced.

flexibility: Legal rules should be interpreted with

flexibility.

principle: TWdening interpretation should not be al-

lowed in the criminal law.

Among them, “flexibility” and “principle” often con-

flict. Therefore, we can define meta level criteria as

follows.

focus.inflexibility := {f legibility > principle}.

Three theories concerning criminal intent of theft

which we explained before are classified by these crite-

ria.

Woperty := {’TheoryA’}.

balance := {’TheoryB’, ‘TheoryC’}.

f legibility:= {’TheoryCL}.

A viewpoint is a priority relation of criteria of value

as follows.

viewl := {f ocusmmf lexibilit y > balance}

A viewpoint is compiled as priority of rules, and it is

used for defensible reasoning.

Different people have different viewpoints, and dif-

ferent people have different best arguments.

4 Debating Function and Claims

4.1 Six Claims

Debate is conducted between the prosecution and the

defense by exchanging claims each other. The user can

take part of prosecution side or defense side, and the

system takes the other side.

At first, the user inputs a knowledge base which

consists of a dictionary and rules, and facts of a new

case. Then, he sets initiaI viewpoints for both sides.

When he inputs the initial goal to the prosecution

side, the goal is sent’ to the argumentation module and

it makes an argument (an original argument) for the

goal, and shows it with a list of issue points. Then, the

debate starts.

There are six claims which both sides can issue.

Both sides select one of them by turns.

●

☛

●

●

issue: Among a list of issue points, select one

as current goal. Then, this goal is sent to the

argumentation module and an argument for the

goal is generated. This argument is a counter

argument of original argument.

pose: When an argument is generated and the

viewpoint is enhanced, send the argument to the

opponent.

justify: Enhance the viewpoint of this side in or-

der to make the counter argument stronger than

original argument.

notify: Notify the opponent that the argument of

this side is stronger than opponent’s one.

294

●

●

cancel: As the argument of this side is weaker

than opponent’s one, give up the current argu-

ment.

finish: Notify the opponent that there is no effec-

tive counter argument.

The debate process is shown in the figure 6. As both

sides finds an issue point from opposite side’s current

argument, the debate progresses in depth first, and if

there is no effective counter argument, then backtrack

occurs and another issue point which is already listed

up is selected as a current issue point,

check opponent’s notice

@2i%l- finish

Cance’-kE%5%5
check opponent’s clai

pose

Figure 6: Debate strategy

4.2 Example of Debate

We will show an example of the debate process. We

selected this example from the lawyers’ examination.

(1) A new case (Mary’s case)

“Mary had hated Jane for a long time and wanted to

hurt her. Mary waited Jane in the street, and hit her

in the face. Jane h&d a bad fall, and she lost con-

sciousness. Mary thought Jane was dead. Thep Mary

took away Jane’s handbag in order to make other peo-

ple that Jane was killed during robbery. Mary threw

the handbag in the river next day. Which crime should

Mary be punished for?”

(2) Issues in Mary’s case

This case contains several hard issues concerning in-

terpretation of the Japanese Penal Code. One issue

is whether hitting Jane is the crime of inflicting an

injury or the crime of violence.

The second issue is whether taking the handbag is

punishable as the crime of robbery, the crime of theft,

or the crime of embezzlement. How to evaluate Mary’s

intent affects the conclusion.

The third issue is whether abandoning a handbag is

punishable as the crime of damage to property.

Concerning the above issues, there are several theo-

ries and precedents, and different lawyers support dif-

ferent interpretations depending on their viewpoints.

(3) Example of debate process

As new HELIC-11 doesn’t have a mechanism which

represents arguments in natural languages, it just

shows arguments in the form of inference trees. The

following is an explanation of one of the debate pro-

cesses which the new HELIC-11 generates. In this ex-

ample, (P) is the prosecution claim and (D) is the

defense claim.

1. (P) According to “Theory A“, taking away a

handbag is the crime of theft.

2. (D) According to “Theory B“, to prove the exis-

tence of criminal intent of theft, intent to deceive

another into believing that he or she is the owner

of the property must be shown. As Mary didn’t

have this intent, her action is not the crime of

theft.

3. (P) From the viewpoint of protecting property,

4.

5.

6.

7.

8.

5

“Theory A“ is relevant.

(D) From the viewpoint of balancing between

conditions of theft and embezzlement, “Theory

B“ is more relevant.

(P) It was a long time from taking away the

handbag to throwing it in the river. By com-

mon sense rule, Mary intended to use it herself.

Therefore, Mary had criminal intent of theft by

“Theory C.”

(D) “Theory B“ is relevant from the viewpoint of

principle of criminal law.

(P) As regards the flexibility of law, “Theory C“

is more relevant.

(D) Mary threw away the handbag after all. By

a common sense rule, she had no intention to use

it. Therefore, she didn’t have intent oft heft.

Conclusion

We have introduced the new HELIC-11 system. Here is

a summary of our evaluation of the system.

295

(1) As a software tool for legal reasoning

The reasoning model of the new HELIC-11 contains

important components of legal reasoning such as gen-

erating arguments, value judgement and debate strat-

e~. It can also treat various legal knowledge such as

statutes, precedents, legal theories, criteria of value

evaluation, personal viewpoints and debate strategies.

We can thus use the new HELIC-11 to investigate

many aspects of legal reasoning.

As the new HELIC-11 is implemented on a parallel

logic programming language KLIC, it is compiled into

C programs and it runs on the Unix and DOS/V envi-

ronments.

(2) As a language for legal knowledge

We have developed a typed logic programming lan-

guage for legal knowledge. Theoretically, it contains

many inretesting topics.

Among functions of our language, rule generaliza-

tion mechanism is a very powerful generator of the

interpretation of legal rules. However, as the current

generalization mechanism is too simple. We need more

function to control generalization.

(3) As a debate model

One of the important features of the new HELIC-11

is that the personal viewpoint plays an important role

during debate. Though this model is useful to explain

the process of value judgment, current description of

the viewpoint is too simple. We need another mecha-

nism to represent the viewpoint in addition to priority

between criteria of value judgment.

(4) Future works

Though FGCS Follow-on Project finished in March,

the first author will continue this research in Elec-

trotechnicaJ Laboratory (email: nittaQetl.go.jp). Fol-

lowing is a list of future works.

Flexible control mechanism for generalization.

Theoretical research concerning generalization

and analogical reasoning.

User’s language to describe debate strategy.

Extension of defensible reasoning which can calcul-

ate defeat relation effectively.

Developing Legal knowledge base wit h lawyers.

Acknowledgements

In conducting this research, discussions with professor

Hajime Yoshino (Meijigakuin University) and mem-

bers of his legal reasoning project was very useful. In

addition, we would like to express our appreciation for

their suggestions to Dr. Thomas Gordon (GMD), Dr.

Ronald Loui (Washington University), and Dr. Gio-

vanni Sartor (CIRFID).

References

[Ait-Kaci] H. Ait-Kaci and R. Nasr, LOGIN: A

Logic Programming Language with Built-In In-

heritance, In Journal of Logic Programming, pp.

185-215, 1986.

[Ashley] K. Ashley, Modeling Legal Argument: Rea-

soning with Cases and Hypothetical, MIT Press,

1990.

[Branting] K. Branting : Integrating Rules and Prece-

dents for Classification and Explanation: Auto-

matic Legal Analysis, ph D. thesis, Univ. Texas,

1991.

[EDR] User’s manual, EDR, 1984.

[Gordon] T. Gordon : The Pleading Game - An Arti-

ficial Intelligence Model of Procedural Justice, ph

D. Thesis, GMD,1993.

[Loui] R. Loui : Computing Specificity, Research Re-

port, WUCS-92-46, Washington Univ., 1992.

[Nitta(a)] K. Nitta, et al. : HELIC-11: A Legal Rea-

soning System on Parallel Inference Machine,

Proc. Int. Conf. on FGCS92, 1992. pp. 1115 -

1124.

[Nitta(b)] K. Nitta, et al. : A Computational Model

for Trial Reasoning, Proc. Int. Conf. on Artificial

Intelligence and Law, 1993. pp. 20-29.

[Prakken] H. Prakken : Logical Tools for Modeling

Legal Argument, Ph D. thesis, Vrije Universiteit,

1993.

[Rissland] E.L. Rissland et al. : A Case-Based Sys-

tem for Trade Secrets Law, Proc. Int. Conf. on

Artificial Intelligence and Law, 1987. pp. 60-66.

[Sartor] G. Sartor : A Simple Computational Model

for Nonmonotonic and AdversaxiaJ Legal Reason-

ing, Proc. Int. Conf. on AI and Law, 1993. pp.

192-201.

296

