
LITES, an intelligent tutoring system for legal problem solving

in the domain of Dutch Civil law

Georges Span

University of Llmburg

Department of Metajuridica

P.O. Box 616

6200 MD Maastricht

Netherlands

tel. +31 43 883042/ 883020

email: Georges.Span@Metajur. RULimburg.NL

1. INTRODUCTION

In the early 1960s researchers started to develop

educational computer programs. These programs can be
categorized in: experimental environments [Papert, 1980;

Abelson and diSessa, 1981]; games and simulations

[Goldstein, 1982]; and computer-assisted instructions
(CAI). The CAI-programs try, unlike the first two

approaches, to stimulate and control learning process

explicitly ~owe, 1973]. The early CAI-programs were not

more than electronic “page turners”, which printed

predefine text, or drill-and-practice programs, printing

problems and pre-stored responses @3arr and Atkinson,

1977]. Today’s research focuses on the design of intelligent

computer assisted learning programs (ICAL), which adapt
itself to the students needs and weaknesses. Pioneers in

this field are Carbonell and Collins with SCHOLAR, a
geography tutor [Carbonell, 1970]; Brown and Burton
with SOPHIE, an electronic troubleshooting tutor ~rown,
Burton and de Kleer, 1982] as well as BUGGY, a program

that can determine student’s misconceptions (bugs) about

basic arithmetic skills ~rown and Burton, 1978]; and

Clancey with GUIDON, a program for teaching diagnostic

problem solving [Clancey, 1983, 1984] using the rules of

the MYCIN consultation system. However in the field of
legal ICAL systems, there is only evidence of a few

attempts, each with different goals and objectives. We can
mention the work of Haft and Jones on the LEX-tutor, a
program which gives students an open ended exploratory

learning environment using a natural language dialogue

~aft ea., 1987]. What has become of this ambitious

project is unclear [Jones, 1989]. We also got the work of

Sherman. constructing a Prolog-program which is able to

permission to COPY without fee all or part of this material is granted provided
that dte copies a~e not made or dismibtkd for direct comme&l adv&ttage, the
ACM copyright notice and the title of dte publication and its date appear, and
rtotice is given that copying is by permission of the, Association for Computing
Macbtnery. To copy otherwise, or to republish, requmes a fee and/or specific
permission.

@ 1993 ACM 0-89791-606-9/93/0006/0076 $1.50

generate quiz-questions at random on the domain of the

Canadian Income Tax Act. The aim of the system is to

check whether the students understood the subject matter
by giving them a preliminary examination [Sherman,
1989]. Furthermore we can mention the work of Ashley

and Aleven on a tutoring system about reasoning with

cases [Ashley and Aleven, 1991]. With the help of this

system students will be taught how to argue about cases, by
proposing arguments derived from other cases for or

against a specific solution of a case. All these legal ICAL-
programs work differently and have their own designs

according to their objectives. For the same reason we

developed our own ICAL-system, which is used for

learning legal problem solving skills in the domain of
Dutch Civil Law. Our program is, as we call it, an
Intelligent Tutoring System-shell (ITS-shell) and is named

LITES, standing for Legal Intelligent Tutoring/Expert

System. LITES can be used as an ITS-developing tool and
can be used for running an ITS. We developed the shell
and made just one ITS to see whether the concept works

[Span, 1992]. In this article we describe the ideas behind

and the architecture of our ITS.

2. SOLVING LEGAL CASES

Our main objective is making an ITS for teaching students
how to solve cases in a specific domain of law. The

domain we implemented in our system deals with the gain

of property by ‘a third party in good faith’. This doctrine is
based upon section 3:86 and 3:87 of the Dutch CiYil Law

code (BW), This statute became law in 1991 and therefore

it incorporates the case law until then, which makes it

easier to encode.

For making such a system we first had to develop a theory

of how to solve cases in a domain of law. First we have to

know what is a legal case? In our opinion a case is a

description in natural language of a set of events with legal

consequences. These events occur in a certain period of

time and sequence. Furthermore in an event we can

76

distinguish specflc actors, objects and actions, which are

described in legal terms by some legal doctrine

(qualification). So if we want to solve a case we have to

know:

the events, actors, objects and actions of the legal case;
. in what order do events OCCUL
. what is their legal qualification,
- what legal rules are applicable;

what is the consequence of these rules;

Normally it is no problem to distinguish the events and the

sequence of the events. The most diftlcult part in legal

problem solving is making qualifications and deciding

what rules are applicable. As these tasks are domain

dependent, we have to make a model of the domain.

3. THE DOMAIN MODEL

One of the major functions of a tutor for a particular

domain should be to communicate the ideal problem-

solving structure of that domain [Anderson ea., 1990]. To

do so we have analyzed the subject mater and made a
schematic representation or flow-chart of the doctrine

(figure 1). Such a diagram shows how cases are solved

under the doctrine. This model links up with the aim of the
system, i.e. providing insight into the structure of the

doctrine and the comections between its components. The
diagram is the expert interpretation of the doctrine and

represents the mental model the expert has of the subject

matter [de Kleer and Brown, 1979]. We choose the mental

model because we believe that students learn most

effectively when they are actively applying their
knowledge to solving problems [White and Frederiksen,

1990]. To support such a learning-by-problem-solving the

computer has to have a knowledge structure that is

complete enough to actually solve the problems itself.
Because the diagram shows us which actors, objects,

actions and events are relevant and in what order the

events have to take place we belief that we can build a
learning model on top of this mental model.

So we represented this diagram in a formal knowledge
representation language. The knowledge representation

language we used is called PL+ and was developed by us

for representing legal material in the form of production

rules. Because time is essential in legal doctrines the
language has the facilities to make time-calculations. The

inference mechanism works straightforward, it uses

backward chaining, depth first search with a left to right

evaluation of the production n.des.

One of our main objectives in developing PL+ was that law

teachers, who do not have a lot of programming
experience can use this language to formalize a legal
domain. Therefore PL+ uses Dutch language elements and
deals with all user interface problems. The teacher can use
two types of rules: inference rules and question rules. If a
question rule is used the system puts the question on the
screen in the right format and waits for an answer of the

student. When the input is restricted or of a certian format

the system waits until the right type of input is given. An

adventitious circumstance of using such an easy to learn

language is that it is not only easy to make knowledge

representations but also easy to update them.

Our domain model has however a disadvantage, because

the diagram is the interpretation of both statute and case
law, it is impossible to see clearly where the underlying

rules are based upon. So if we want to justify our model of
problem solving we have to connect the law sections with

the problem solving rules. This connection will be made in

our learning model.

%rson 1 (PI) is proprietor of a personal

property, note of hand or to bearer
1-

+

section 3:86 B W

P \
P3 pays a _ P3 has continuous

reasonable

price

1+ +

I

prope~

is money

1+ 1+

+ +

~~

PI revindicates the property

from P3 whithin 3 years

reckoning from day of theft

+

P1 is the

pruprietw

PI appeals to P3 to point out P2 within 3 years

reckoning from the day of obtainment by P3 –

I + I

P3 is the

this duty property within 20 years pmprietw

+

P3 is the

proprietw

Schematic reproduction of section 3:86 jo 3:87 BW

Figure 1

77

4. THE LEARNING MODEL

The learning model consists of a set of assumptions about
how the student’s knowledge state changes after each time

the student solves a case within the domain. We believe

that each different case within the domain represents a

knowledge state. The student has to understand the subject

matter to solve a case, so by correctly solving a case we

take the view that the student understands the subject
matter so far. To make our learning model we must
distinguish learning levels in the domain knowledge. In

other words we must distinguish the cases in degrees of

dfilculty in problem solving. If we look at the diagram in
figure 1 we can see that this is not easy. We can not value

the cases just by looking at the number of inferences made

by the computer while solving a case. For instance, the

case where person 3 does not pay a reasonable price for the

personal property, but still has continuous possession of

the property for three years and therefore becomes the

proprietor, is easier to solve than the case where person 3

does pay a reasonable price for the property and because

the property is money he will be the proprietor of the

money. Both cases can be solved in equal inferences but

differ in cognitive level. Some cases are more difiicult to

understand, because they express an exception within the
legal domain. Therefore we had to value the cases by hand.

With the expertise of teachers, who could point out in the
diagram where students normally have great dit%culty in

understanding, we distinguished 11 learning levels.

Having these learning levels we had to formulate learning

tasks to support the learning of legal problem solving.

Considering our previous description of what the student
has to know for legal problem solving, we formulate the

following learning tasks:
1. learning what events, actors, objects and actions are of

interest for solving a particular case within the

domain;
2. learning how the law qualtiles these events, actors,

objects and actions;
3. learning what legal rules are applicable and why;

4. learning the individual argument steps used for

solving a case within the domain;
5. learning the order of these individual argument steps;

At this point we know what we want to teach the student,

now we must figure out how to do this. As we stated
before, we want to teach how to solve legal cases within a
particular domain of law. This has to be done in a natural
way. In a normal learning environment we will try to

activate the student’s knowledge about the subject matter,

We do so by asking questions about the subject matter in
order to find out what the student knows already. In our
way of exploring the student’s state of mind we try to find
the boundaries of the student’s knowledge about the

domain. If we find these boundaries we want to shift them.
In fact our primary goal is to constitute progression in the

student’s knowledge of the domain. We try to imitate this

process by giving the student a legal case (of some level)

and the means to solve this case. If the student solves the

case correctly he will get a new case of a higher level,

otherwise he will get some explanatory text and will be

confronted with a new case of the same or a lower level.
This process will continue until the student solves the case

of the highest level. So if a student solves a case correctly

we assume the student has at least the same knowledge

state for solving this case as the computer has.

Remains the question ‘how can the student reveal all his

problem solving skills’? In an answer to this question we

developed three didactic strategies:
1. let the student point out his knowledge about what

actors, objects and actions are relevant for the case and
how they interrelate;

2. let the student label the actors, objects, actions and

events in terms of legal qualifications;

3. let the student make all the necessary inference steps

for solving the case.

How these didactic strategies work and what knowledge

they use will be revealed in the following sections.

4.1. RELEVANCYoF C.4SEFAmS

To test whether the student knows what actors, objects,

actions and events are relevant for solving a particular

case, we let the student question the computer about the

case. This approach resembles the way lawyers question

their clients in order to tind out what the case is about. For

asking the right questions the student must have

knowledge about how certain information influences other

information and knowledge about what is to be known to

solve a case. However there is a big difference. Unlike the

lawyer, the student does know that the case to be solved

lays within a specific domain. But there is another

difference, the student can’t define his own questions,

because we can not analyze natural language input. Instead

the student can select a question from a set of predefine

questions, so formulated that only a student with
knowledge about the domain can select the proper

question. Moreover the student has to make inferences on

the answers to the questions, making some other questions

superfluous. For example: when a student knows that
person 2 has stolen the property from person 1, the

question ‘Was person 2 authorized to deliver the property
to person 3?’ is not a wrong question but the answer is

already known by the fact that person 2 stole the property

and the system will disapprove the selection of this

question. On the other hand when the student knows for

instance that person 2 borrowed the property from person
1 then this question is a valid one. So only if you have a
clear insight into the subject matter you can choose your

questions right.

78

4.2. QUALIFICATION OFCASEFACTS

To test whether the student can translate a natural
language description of a legal case within the domain into

legal concepts (qualifications) as used in legal doctrine,

jurisprudence and statutes, we let the student answer
questions about these qualifications. The student gets a

natural language description of the case and the computer

asks the student whether a certain qual~lcation is

appropriate according to the casedescription. To answer

this question the user has to know what is meant by the
quahiication. If he does not know this the system provides

him with additional information in which the terminology

is placed in a broader context and he will learn what is
meant by this qualification according to the doctrine, law

and jurisprudence. After reading this text he should be

able to answer the question. If the student makes a mistake

he will get case-sensitive help which makes references to

the sections of the law. After qualifying all case facts

correctly, we can assume that any error in solving a case

will come from not knowing how to apply the rules.

4.3. SOLVINGA CASESTEPBY STEP

Solving a case step by step gives the student the

opportunity to show whether he can solve the problem

correctly. The student can select its problem solving steps
out of a predefine list of possible steps. The student has
not only the task of selecting a valid step but also, where

this is important, to select the steps in the right order. For
instance imagine a case where person 2 stole money from

person 1 and bought with this money something from

person 3. Now the student has to select the argument that

the property is money instead of the argument that the
property is stolen, because if the property is money the fact

that the property is stolen is not relevant anymore for

solving the case (see figure 1). In this way the student has
to show that he completely understands how the case facts
are related to each other and what problem-solving steps
can be made. If the student makes an error the system will
give him a new opportunity to select the right step or

otherwise he will be shown the right answer and the

reason why it is the right answer (this includes mentioning

and explaining the underlying legal rules).

5. THE STUDENT MODEL

If a student makes a mistake it will be corrected
immediately by means of explanato~ texts. But this is not

enough. The system has to be sure the student understood
the correction and can apply this newly gained knowledge.
Therefor the system has to check whether or not the

student makes the same mistake again. To do this we keep
track of the places where the student made mistakes while
working through the three didactic modules. These places

can be typit5ed in terms of legal concepts. So eventually
we end up with the following data:

1.

2.

3.

The level of the cases the student has tried to solve;

Per case the amount of errors made by the student,

split up to the didactic module they were made in;
Per case the amount of errors made by the student

expressed in terms of legal concepts. -

On basis of these data the system will decide of what level

the new case will be, and on what points it has to vary case
facts according to the previous case. Deciding the new

level of the case is done by a very simple algorithm taking

into account the total amount of errors during the solving

of the previous case. If the student made no mistakes the

case level will increase by 2, if the student made less than
5 mistakes the case level will increase by 1, otherwise if

the student made less than 9 mistakes the level will

decrease by 1 and if the student made more than 8
mistakes in solving a case the case level will be 1. When

the case level is calculated we can vary in the case facts

according to the errors made in the previous case. So for
instance when in the previous case the student made an

error concerning the nature of the personal property, we

will change this nature in the next case (if this is supported

by the new case level).

Not only does the system decide of what level the new case

will be, but it will also decide on basis of these data what

didactic strategies will be used (figure 2). Normally one

session in which the student is presented a case the student
will be confronted with two didactic strategies. The first
strategy depends on the errors the student made during the
previous session and can be either searching for case facts

(less than 4 errors) or quali@ing case facts (4 or more

errors). The second strategy will always be solving the case

step by step. If the student makes more than 4 errors

during the first strategy, it is obvious that he has too little
knowledge of the subject matter, and therefore the system

presents a text in which the subject matter is explained in

detail, after which the student can try again.

10new case

l{ I

previcms errws .4 _ *ategy q.mify case facts

. I

k :
.

strategy search for case facts
I

1~emxs<4 _ Sf53tegy explain domain model

+

Sfrategy sotve h case step by step
)

I

Decision model of what didactic strategy to use

Figure 2

79

guidance module. In the ADvIsE-box the system computes
These data form our student model and give insight into:
1. the student’s level of experience;

2. the student’s knowledge progression;

3. what didactic strategies the student masters;
4. the legal concepts the student has insutllcient

knowledge of.

When the student has reached the highest level of

experience or has solved 10 cases the system will evaluate

the student’s performance. First the system gives an over-
view of the level of the cases the student has mastered. In

this overview the student can see what progress he made.
Then the system gives an overview per case of the amount

of mistakes the student has made (divided into didactic

strategies). Furthermore the system gives an overview of

the concept-related errors per case and gives an overview

of the concepts that need more attention in the future.

6. THE INTEGRATION OF COMPONENTS

We have seen the basic components of our tutoring system.
Now it is time to show how these components interrelate.

In the previous section we saw that the decision on what

didactic strategy is used, is based on a simple algorithm.
This algorithm is incorporated in a knowledge base that

gives guidance to the system. We call this the guidance

module. In fact, the whole system is build out of know-

ledge modules. The primary module is the domain module,

all didactic modules are based upon the knowledge of this
domain module. In the didactic modules we added more

domain and task specitlc knowledge and the knowledge in
these modules is structured according to these tasks.
Furthermore we had to design a case generator and a case
text generator. These generators work straightforward. On

bases of the level of a case the case generator knows what
concepts are of interest and with regard to the errors the

student made in the previous session it generates a

composition of facts which form the case (the case facts).

According to these case facts, the case text generator

dynamically derives the proper descriptions in natural
language of the actors, actions, objects and events. So
every case-description has more or less the same structure

but they difTer on the described facts. All these modules
work separately, they only exchange data. A schematic

overview of the system is given in figure 3. In this figure
the LITES-LWX stands for the point where the student can
choose the domain. The sTART-box gives the student the
opportunity to identw him- or herself, so the system can

use the student history. If the student is unknown to the
system a new student profile is made. In the MAKE YOUR

OWN cASE-box the student can define his own case, he

wants to solve. The GUIDANCE is the center of

the system. At this point the system updates the student
profile, selects the new didactic strategy, calculates the
level of a new case, writes data to files and initiates

knowledge modules who use these data files. Most
knowledge modules activate, when they are finished, the

the advise as described above and this forms at the same
time the end of a learning session. The other modules

speak for itself or are described above.

m EXPLANATION OUALIFYCASE FACTS

$

GUIDANCEMOWLE SEARCHFOR CASEFACTS
1 I

c=d’~+, L.-[===,

The integration of components in LITES

Figure 3

7. CONCLUSIONS

We constructed an ITS for learning legal problem solving
in the domain of Dutch Civil Law. This ITS has a modular

stmcture, which is of an advantage because it can be
extended with other modules. On the other hand because
these modules work more or less autonomous they have to
be updated separately when the law changes, which is just

more work. Our philosophy of building an ITS for legal

problem solving is that we have to construct an image of

how experts solve problems in a specific domain. This so

called domain model forms the basis of our learning model
and its didactic strategies. The actors, objects, actions and

events as described by our domain model form also the

basis of the student model. All the student’s errors will be

typified in terms of legal concepts and are recorded
according to the case and the didactic module they are
made in. Because of this we can adapt not only the level of

teaching, that is the level of the case that has to be solved,

but also the case facts within the new case and the

didactic strategy the system will use. Moreover we can

identi~ the problem areas in the student’s conception of

the domain. Our tutoring system is not extensively tested
yet but as far as students worked with the system they
found it revealing. However there has to be done some fine

tuning. Eventually remains the question whether this
approach is suitable for other domains. We believe as this
domain does not differ in essence of other legal domains

that LITES is suitable for constructing other ITSS,
according to the same structure. Nevertheless this new ITS

has to be designed from scratch, one can however use the

techniques of the previous ITS to a certain extend but most

of the work has to be done again. This is a major

disadvantage of our system. On the other hand the fact that

our system works on personal computers with the MS-

DOS disk operating system and is easy to use (or learn)

brings the making of ITSS within the reach of legal

teachers. Besides the students can use these systems at

home and are less dependent on the facilities of the

universities anymore.

8()

ACKNOWLEDGEMENTS

The research for this paper was partly financed by the
Foundation for Knowledge Based Systems (SKBS), which

seeks to improve the level of expertise in the Netherlands

in the field of knowledge based systems, and to promote

the transfer of knowledge in this field between universities

and business companies.

REFERENCES

Abelson, H., diSessa, A. (1981): Turtle geometry: The
computer as a medium for exploring mathematics. MIT
Press, Cambridge, Mass.

Anderson, J.R., Boyle, C.F., Corbett, A. T., Lewis, M. W.

(1990): Cognitive Modelling and Intelligent Tutoring.

Art~flcial Intelligence 42, p. 7-49.

Ashley, K.D., Aleven, V.: Towards an Intelligent Tutoring

System for teaching law students to argue with cases, in

Proceedings of the Third International Conference on

Arti@cial Intelligence& Law, Oxford, England, p. 42-52.

Barr, A., Atkinson, R.C. (1977): Adaptive instructional
strategies, in: H. Spada and W.F. Kempf (Eds.), Structural
models of thinking and learning. Hans Huber, Bern.

Brown, J.S., Burton, R.R., de Kleer, J.: Pedagogical,
natural language and knowledge engineering techniques in

SOPHIE I, II, III; in D. Sleeman and J.S. Brown (Eds.),
Intelligent Tutoring Systems. Academic Press, London, p.

227-282.

Carbonell, J.R. (1970): AI in CAI: An Artificial
Intelligence approach to computerassisted instruction.
IEEE Transactions on Man-Machine Systems, Vol. 11, p.
190-202.

Clancey, W.J. (1983): GUIDON, Journal of Computer-
BasedInstruction, Vol. 10, p. 8-15.

Clancey, W.J. (1984): Use of Mycin Rules for Tutoring in:
B.G. Buchanan and E.H. Shortliffe (Eds), Rule Based

Expert Systems, Addision Wesley.

Goldstein, I.P. (1982): The genetic graph: a representation
for the evolution of procedural knowledge, in D. Sleeman

and J.S. Brown (Eds.), Intelligent Tutoring Systems.

Academic Press, London, p. 51-77.

Haft, F., Jones, R. P., Wetter, TH. (1987): A natural

Language Based Legal Expert System for Consultation and
Tutoring - The LEX Project, in proceedings of The First
International Conference on Arti~cial Intelligence and
Law, Boston, Massachusetts, p. 75-83.

Howe, J.A.M. (1973): Individualizing computer assisted
instruction, in: A. Elithorn and D. Jones (Eds.), Artificial
and human thinking, Elsevier, Amsterdam. p. 94-101.

Jones, R.P. (1989): Knowledge bases for computer assisted
legal instruction, in Preproceedings of the III international

conference on logica, informatica diritto, Legal Expert

systems, Vol. 1, Florence, p. 359-379.

de Kleer, J., Brown, J.S. (1983): Assumptions and

ambiguities in mechanistic mental models, in: D. Gentner

and A. Stevens (Eds.), Mental Models. Erlbaum, Hillsdale,

NJ.

Papefi, S. (1980): Windstorms: Childeren, computers, and
powerful ideas. Basic Books, New York.

Sherman, D.M. (1987): Expert Systems and ICAI in Tax

Law: Killing Two Birds with One AI Stone, in

Proceedings of the Second International Conference on
Artl~cial Intelligence and Law, Vancouver, BC Canada, p.
74-80.

Span, G.P.J. (1992): LITES: een intelligent tutorsysteem

voor juridisch onderwijs. Ph.D.-thesis, University Press

Maastricht.

White, B.Y., Frederiksen, J.R. (1990): Causal Model

Progressions as a Foundation for Intelligent Learning
Environments. Artificial Intelligence 42, p. 99-157.

81

