
Abstract

Developing Legal Knowledge Based Systems

Using Decision Tables

J. VANTHI13NEN

Katholieke Universiteit Leuven
Department of Applied Economic Sciences
Dekenstraat 2, B-3000 Leuven @elgium)

Phone: (0)16-28.58.09, Fax: (0)16-28.57.99, E-mail: fdban06@b1ekull 1

F. ROBBEN

Katholieke Universiteit Leuven
Interdkciplinair Centrum veer Recht en Informatica

Tiensestraat 41, B-3000 Leuven (Belgium)
Phone: (0)2-741 .84.02, Fax: (0)2-741 .83.00

Knowledge based systems can be of great use to lawyers in
many different areas. Within the framework of the INFOSOC

project implemented at the Katholieke Universiteit Leuven,

legal knowledge based systems were developed to achieve some

of these purposes, using a methodology based on the decision

table technique, and a decision table engineering workbench,

PROLOGA.

This paper describes the adopted methodology, which is still

being refined, the tools used and the experiences in developing a

concrete system: HANDIPAK, a knowledge based system with

regard to financial benefits for the disabled in Belgium.

Developing HANDIPAK showed that the decision table
technique was not only very useful for testing the consistency of

legal knowledge, but also for supporting the acquisition and the

representation process of that knowledge.

Keywords

Legalkrtowledge based systems, decision tables, knowledge

acquisition, verification & validation

Pennissioxt to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

@ 1993 ACM 0-89791-606-9/93/0006/0282 $1.50

1. Introduction

Knowledge based systems can be of great use to lawyers in
many different areas (see OSKAMP [16] and SCHAUSS [22, p.
25-36]).

First and foremost, they can offer substantial support when
issuing legal regulations. Knowledge based systems can help
simulate the effects of changes introduced to the regtdatioris or
help examine the regulations for their internal and external
coherence thereby ascertaining the need for new regulations.

Once the regulations have been issued, legal knowledge based

systems can be used to sustain legal counseling or legal
practice. Most operational legal knowledge based systems are
to be situated in this area. Generally, they offer specific advice
on the application of law with regard to a real case. They can
also help the user to consistently fill in the allotted discretionary

decision margin, by presenting the results of a multi criterion

analysis of the parameters deduced from jurisdiction. When the

legal knowledge based systems are used by the legal or
executive bodies that are really entrusted with the application of

the law, they usually not only contain the basic regulation but

also rules regarding evidence and the procedures to be adopted,

they are also often integrated in an administrative processing
environment in charge of file management and required

document creation,

Legal knowledge based systems can also be us@ to support
legal education. Handed on information is broader and much
more accurate and a clearer insight into the legal argumentation

patterns is promoted.

Finally, legal knowledge based systems offer support to

functional comparative law (see DEBROCK et al. [6] for the
description of such a system). Here, the systems concerned are
used to compare miscellaneous legal systems with each other in

order to detect differences and their causes, and to ascertain

whether it is advisable or necessary to propose amendments or

harmonizing initiatives.

When using an appropriate user interface and inference
mechanism, it is even possible to use one knowledge base for
several of the above mentioned purposes.

Whhin the framework of the INFOSOC project implemented at

the Katholieke Universiteit Leuven, legal knowledge based

systems were developed to achieve some of the above

mentioned purposes on the basis of a decision table technique
based methodology.

This text describes the adopted methodology, which is still

behtg refried, the tools used and the experiences in developing a

concrete knowledge based system in this way.

2. The Proposed Approach: From Decision
Tables to Consultation Systems

Decision tables and knowledge based systems show some

striking similarities, although both approaches put strongly
different emphases. WMle decision tables traditionally stress

the representation facilities (with the resulting additional

checkhtg capabilities for completeness, consistency and

comectness), knowledge based systems are mainly dealing with

knowledge formulation (modularity, flexibility) and inference

(performance, user friendliness).

Moreover, a lot of knowledge based systems built nowadays are

propositional expert systems, which are equivalent to decision
tables (COLOMB [4]). It is, therefore, worthwhile to examine

in more detail how both approaches can be combined in real
problem situations. This does not mean that all areas of law can
be reduced to propositional logic, but in a lot of cases (and in
most of the current legal knowledge based applications) the

representation is appropriate.

Some previous efforts, however, to link knowledge based

systems to decision tables, focus only on the transformation

from expert systems to decision tables, for reasons of validation

& verification (e.g. CRAGUN & STEUDEL [5]) or execution
efficiency (e.g. COLOMB [4]). In our point of view, these are
important issues, but there is no need to restrict the use of
decision tables to this transformation, and it is clearly superior
to model the knowledge by means of decision tables from the
start, to validate and to optimize the tables and then to

implement the system, e.g. using an expert system shell. In

other words, the path from decision tables to knowledge based
systems is at least as relevant as the reverse direction.

Decision tables provide formal procedures for checking

completeness, consistency and redundancy, but table

construction may be a difficult task when performed manually.

It is therefore our conviction that decision tables, when
computer supported construction is available, largely

outperform other conditional logic techniques (see also
SANTOS-GOMEZ & DARNELL [21]).

The usefulness of the decision table concept in law, e.g. to check

or apply legal procedures, has been indicated before (e.g.

BERGMANN [1, 2], REISINGER [1 g]). Also when issuing

legal regulations, the decision table technique can be beneficial

(see e.g. OVERHOFF & MOLENAAR [17], which is based on

the PROLOGA (Procedural LOGic Analyzer) system for

computer-supported construction and manipulation of decision

tables, as described further),

This paper, however, reports on the first full scale application of

decision tables (using a decision table engineering workbench)

in knowledge acquisition and verification & validation for

designing and implementing a legal knowledge based system.

2.1. DECISION TABLES: CONCEPTS AND NOTATION
SCHEME

A decision table is a tabular representation used to describe and

analyze procedural decision situations, where the state of a

number of condhions determines the execution of a set of

actions. Not just any representation, however, but one in which

all distinct situations are shown as columns in a table, such that

evety possible case is included in one and only one column
(completeness and exclusivity).

“A decision table is a table, representing the exhaustive set
of mutual exclusive conditional expressiort~ within a
r.medeflned Droblem area.” (VERHELST DS1)

The decision table uniquely relates each possible combination of
condition states to a combination of action values (CODASYL
[3]).

The tabular representation of the decision situation is

characterized by the separation between conditions and actions,
on one hand, and between subjects and conditional expressions

(states), on the other hand. Every table column (decision

column) indicates which actions should (or should not) be
executed for a specific combination of condition states. The
decision table is represented as a table which is split by a double
line, both horizontally and vertically, resulting in four

quodrants. The horizontal line divides the table in a condition

part (above) and an action part (below). The vertical lime

divides subjects and entries in the stub (left) and the entry part

(right) respectively. The resulting quadrsn@ are: condition sfub,

action stub, condition entries and action entries.

The entries part consists of columns (with condition states and

action values) separated by a vertical line from the fiist dlffercnt

condition state. A column then contains a state for each

condition or a contraction of states which yield the same result

(possibly “irrelevant” (“-”) if thk is the case for all states),

followed by the resulting vahte for each action.

Because all possible combinations of condition states are present

in the decision table (and only once), the table provides a good

overview of the combined influence of all conditions. In this
definition, the decision table concept is deliberately restricted to

the so called single-hit table, where columns are mutually
exclusive. Only this type of table allows easy checking for
consistency and completeness.

Figure 1 shows an example of a decision table. Condition
subjects are found in the upper left part of the table, action
subjects in the lower left part. Condhion states and action
values are found at the right hand side. Note that the example

2($3

table is not in its most compact form, as repeating patterns could

be factored into subtables, but this is beyond the scope of this

example.

Every column in the decision table contains a state for each
condition subject or a contraction of states that yield the same

result (possibly irrelevant (-) if this is the case for all states of

the condition), followed by the resulting value for each action

subject.

A table column represents a decision rule of the form:

IF CS1 is Slk AND CS2 is S2m AND ...

THEN action ASj AND ...

If each column ordy contains simple states (no contractions or
irrelevant conditions), the table is called an expanded decision
table (canonical form), in the other case the table is called a

contracted decision table (consolidated form). The translation

from one form to the other is defined as expansion (rule

expansion) and contraction (consolidation} respectively

(CODASYL [3]).

The condition subjects and action subjects can refer to other
tables (sub~ables). The replacement of these references by the

tables themselves, the junction of tables, is called (table)
expansion. The reverse precess, the division into subtables, is
defmcd asf~toring, Two types of subtables are possible: the

action subtable, i.e. a further specification of a certain action,

and the condition subtable, determining the vahte of a condition.

All subtables are of the closed type, this means that after ending

a subtable, the calling table regains control.

Some combinations of conditions may be impossible, in other
words, they cannot occur. Such combinations may be deleted
from the table (see further). Keep in mind that ordy real
impossibilities are to be deleted, combinations that should not
occur must stay in the table, since theY will occur at some point

in time (according to Murphy’s Law). “

1. Married II Yes I No I

5. Living alone
!~

1. Category I

2. Category II

3. Category III

No I I
Yes No

Yes No

— — Yes No

x x x “ -

x -
x

Figure 1: decision table representation

2.2. DECISION TABLES AND KNOWLEDGE BASED
SYSTEMS

When building legal knowledge based systems, several
objectives are really pursued:

● formalization of the knowledge (the acquisition process)
● checking completeness and consistency
● consultation of the knowledge based system.

The advantage of traditional rule based systems is that when the
knowledge is formalized in terms of rules, the consultation is
possible through the inference engine. The difficult issue of
validation and verification, however, already indicates a major

problem with this approach. The real problem is that each of
these objectives has its specific way of looking at the problem

domain:

- In knowledge acquisition we want to stay close to the text.
Most texts, procedures, laws, etc. are described in action

oriented, partial or modular decision specifications: condition

combinations for one action are enumerated and the text is

organized in an action by action fashion, not suited for fast and

correct decision making. This is basicrdly because the objective

is different: a legal text often indicates for a specific action (e.g,
allowance, tax, subsidy, ...) what the required conditions are.

- As a decision maker (in a consultation environment) we
want to know for a specific configuration of conditions what the

resulting actions are. TMs is an oppesite point of view. The
decision making procedure is essentially condition oriented:

given a specific combination of condition values (one case),

what are the applicable actions. Here we are looking for a
relevant and efficient (optimized) answer, but this orientation is
not present in the text.

- In validation and verifwatwn, the approach is also
condition oriented, except now we are not interested in just one

answer, but in an overview picture of possible combinations and
conclusions, which enables us to verify completeness,

284

correctness and consistency. Traditional rule based systems do

not offer these representational advantages.

‘he decision table approach, however, unifies these three

complementary aspects of a decision situation (figure 2):

specification, representation and execution,

/ -
Representation

(Verification)

Specification Execution

(Construction) (Consultation)

\ /

Figure 2: three aspects of a decision situation

The decision table is condition oriented and therefore effective

in representing and dkplaying procedural knowledge, with such
advantages as: overview, readability, consistency, completeness

and correcmess. This structured enumeration of decision
columns, however, is not the way in which procedural

knowledge is acquired, specified or described. To this end, the
decision table construction process allows to transform the

action oriented specification into a condition oriented
representation. The decision table being a representation
mechanism, (execution) optimization is not the main concern.
But it may be, once the table has to be converted to an
operational system or a manual decision making procedure, e.g.
in order to minimize the total test time or the number of

questions. The advantage of the decision table approach,

however, is that implementation aspects cart be separated from
the representation, through transfonnation.

2.3. PROLOGA: DECISION TABLE CONSTRUCTION
ANDVALIDATION

The PROLOGA (Procedural LOGic Analyzer) system is an
interactive rule-based design tool for computer-sup~rted
construction and manipulation of decision tables
(VANTHIENEN [24, 26]). This decision table engineering

workbench incorporates powerful rule based knowledge

acquisition and representation, table based verification, and

adequate consultation interfaces to common shells and

languages. The system not only supports the manual design
techniques, but also offers additional features to enhance
construction, manipulation, validation and optimization of

decision tables.

A major drawback of the use of decision tables (and many other
condition oriented representations) is the complexity of the
manuaf building process. A lot of redrawing work results from
small changes like adding a condition, a condition state or art
action, Some manipulations like the reordering of conditions

are quite impossible to perform manually. It is a major aim of

PROLOOA to free the decision table developer from this
cumbersome drawing job (VANTHIENEN [24]).

In addition, however, PROLOOA was designed to offer some
fundamental modelling issues :

- A powerfbl specification language allows the designer to
formulate the decision specification in a straightforward way.

- A number of routine jobs like filling action entries from
decision rules, generating all Condition combinations (without
any missing combinations) can be done in a faster and more
correct way by the computer.

- The modelling process cart be simplified considerably by the
use of interactive possibilities such as automatic chedirtg for

consistency, correcmess and completeness.

- The system can be used for optimization purposes, such as
optimal contraction, layout, decomposition into subtables or
conversion into efficient program code.

Basic hetures of the eutonwed constfuctlon prooess

Depending on the characteristics of the problem domain,
different manual methods for constructing decision tables can be

distinguished (see VERHELST [28]). frt PROLOGA the

construction process largely follows the same steps as in the

manual construction methods.

When building a decision table, the designer essentially
provides the system with the following information : a list of

conditions with their states, a list of actions and a list of
relations between condition states and actions (in the form of
logical expressions or rules). This will enable the system to

construct, display and optimize the corresponding decision
table.

Throughout the modelling effort, the following features are

available in order to enable a flexible construction and
manipulation of the decision table(s) :

inserting, deleting, changing, reordering the elements of the

decision table. The updates are immediately reflected in the

decision table(s).

reference to condkiort or aetiott subtables (indicated with ‘A’)

and display of the hierarchy of decision tables.
changing the table layout : expanded versus contracted,

minimal column width, state repetition, column numbers,
etc.
dkplay and consultation of the equivalent decision tree.

transformation of the table to other formalisms: code
generation, optimal decision tree, consultation monitor,
expert system shells.

Validation snd verification

Gathering the knowledge is one of the main problems in
buildlng knowledge based systems, and usually, after the

knowledge acquisition process is finished, a lot of eotttradctiorts

and insuffkiencies remain to be dc.tcxted and solved. Also,

maintaining the knowledge base is not a trivial task which often
introduces unnoticed inconsistencies or contradictions. A lotof
current knowledge based systems, however, offer little or no

guarantees to support validation, change and complexity control.

Verification and validation of knowledge based systems are
receiving increased attention (HAMILTON [7], OLEARY [15],

LARSEN [9]).

The emerging problems of validation and verification have led
to the occasiomd use of schemes, tables or similar techniques in

knowledge representation and validation. It has been reported
earlier (e.g. VANTHIENEN [24], CRAGUN & STEUDEL [5])

that, in a vast majority of cases, the decision table technique is

able to provide for extensive validation and verification
assistance. It easily enables the designer to check for

contradictions, inconsistencies, incompleteness, redundancy,

etc. in the problem specification. Most of the common
validation problems (NGUYEN [14]) can easily be solved using

decision tables (see e.g. VANTHIENEN [26]):

●

e

●

Consistency and Correctness of Knowledge: Dividing

knowledge over a large number of rules, designed
independently, may lead to problems of inconsistency, such
as: Conflict, Cyclical rules, Invalid attribute values,
Unreachable conditiom.

Non-redundancy of Knowledge: Redundancy usually does

not lead to errors during consultation of the system, but it
may considerably hwsn efficiency. The main problem with

redundancy, however, is not inefficiency, but maintenance

and the risk of creating inconsistencies when changing the

knowledge base. Common problems are: Subsumption,
Redundant premises, Redundant rules.

Completeness of Knowledge: No current system is able to
incor@rate all possible kn~wledge, but wit_hin the specific
problem area, the following omissions often occtm Missing

bwwledge, Unused attribute values or combinations,

Unreachable conclusions.

One of the major advantages of the decision table approach is

that checking for completeness and consistency can already be

performed during the design of the knowledge based system.

2.4. FROM DECISION TABLES TO THE
CONSULTATION ENVIRONMENT

‘Iltis transformation framework consists of two parts, First the
transformation of (optimized) decision tables to available
knowledge representation formalisms (rules, statements, ...) is
performed. Finally the consultation environment is added.

Conversion of the decision tables

When designing or generating an application for an existing
knowledge based tool, an object structure has to be developed:
conditions, condition states, conclusions and table references
have to be transformed to the available modelling facilities.
When transforming the decision tables, the following
information is available:

● Names of conditions, condition states and actions.

References to subtables are indicated in the condition or
action names,

● The (contracted) decision tables on a column by column
basis.

● Every table can also be provided with art explanation file
containing prompts, help texts or other information specific

to the consultation. The explanation file is basically

independent from the decision logic, such that the decision
table can be altered without having to update the help

information.

Then the decision logic knowledge which uses this object

structure has to be implemented. The knowledge has been
modelled in the form of decision tables (with proper verification
and validation) and the table logic will be converted to the
knowledge base. The implementation of the decision logic can
be realized in two diffenmt ways.

● When the reasoning process is constsn~ the table might be
transformed to a nested if-then-else structure, where the
outcome of the decision is obtained by choosing the
appropriate branch in the selection.

● In a lot of cases, conversion to one decision statement is
not flexible enough to detd with the knowledge in the
knowledge base. One might prefer to transform the
decision table into a set of tules. Several alternatives are
available, e.g. trying to minimize the number of rules.

Each decision table is converted to a class and condition and
action variables are converted to slots, which may be linked to
other conditions or actions. The decision table is converted to
if-then-else code as a function in a class. All subtables in a
hierarchy are generated and linked automatically.

The consultation environment

The consultation environment offers the necessary user and

system interfaces to produce a working application. Its

implementation will depend on the tool used, but is not

problem-specific.

The hierarchy of decision tables is translated into a question and

answer interface. The user, however, need not be aware of the
existence of the decision tables or any relations between them.
In translating the hierarchy, attention must be paid that no
circular inferencing arises, that recursive table calls remain

possible and that condition subtable results are properly

assigned to the calling conditions.

The following demands will have to be met by the consultation
environment:

●

●

●

●

●

The consultation environment has to be as independent as

possible from the decision tables. Therefore the
environment can be built in a generic way and Sccordmg to
specific user interface standards.
The user interface must allow easy communication with the
user, e.g. using multiple windows, mouse support, etc.
Prompt and help texts should be available for conditions,
condition states and actions, to explain the meaning of
questions and conclusions.
At any momenta list of questions and supplied answers can
be shown with the ability to change previous answers

(WHAT IF simulations).

At any moment it must be possible to leave the application

(saving the current contents of the consultation) and restart

286

f (

Prologa

~

: ~ &

Be AionDS
Ie

:ision

E!z!d ~ ~~~~ ‘“e
r

Decision
xwltation

Centre
lager

I t
I

lE!!!r!
Figure 3: AionDS and KBMS generation facility

it later. This also enables to store a list of prototype cases HANDIPAKs main goal however is to support fiit line social

which can be adapted using the selective chhge fa~llity.
● Maintaining the knowledge base must be easy. It should

for instance be possible to plug in an updated decision table
without having to generate the complete application again.

The above transformation process has been implemented in the

decision table engineering workbench PttOLOGA (Pitocedural

LoGic Analyzer, VANTHIENEN [26]). An interface was built

between PROLOGA and AionDS (Aion Development System,
TRINZIC) (JANS [8]). Thk enables the knowledge engineer to
model and validate the knowledge in the form of decision tables
and generate a complete consultation application in AionDS
(figure 3). It is important to notice that after thk transformation
process, there will always remain a mapping between the
decision tables and the expert system. In this way maintaining
the knowledge base becomes easier. The generation process has

also been implemented for another tool, KBMS.

3. An Example System: Handipak

3.1. CONTENTS AND PURPOSE OF THE SYSTEM

workers when helping the disabled with th~ ‘titroduction of their

applications for benefits. In 1991 a new and more

comprehensive version was elaborated.

HANDIPAK helps to accurately complete the applications by
guid:ng the user through the relevant regulations; it also gives
an idea of what probably will be the outcome of the demand.
Concretely, HANDIPAK is a kind of question-answer game that
gives a personalized and motivated conclusion based on the
answers given. HANDIPAK comprises an extensive on-line
textbook and context-sensitive help screens. Answers can be
altered at any time, which permits “what-if’’-simtdations.

3.2. THE CONSTRUCTION PROCESS

The knowledge base of the HANDIPAK advisory system was
developed by using the PROLOOA package. The relevant law was

couched in 45 mutually related decision tables.

First the regulation to be represented was split up into a number

of regulatory subunits dealing with the same subject. The
regulation with regard to financial benefits for the disabled was

●

HANDIPAK is a knowledge based system with regard to
financial benefits for the disabled in Belgium (for more details,
seeROBBEN [19]).

The first version of thk system was developed in 1987 by order ●

of the former State Secretary for the Disabled, at a time when
Belgium was drawing up a new regulation with regard to the
financial benefits for the disabled. The analysis of the proposed
regulation by means of the decision table technique enabled the
authors to eliminate a considerable number of ambiguities in the ●

bill before it was published. The development of the system ●

thus increased the internal coherence of the proposed regulation. ●

dl~ided into subu~ts that respectively concern
b the validity of the appli~ation for benefits

the applicability of the regulation, in which a further
distinction is made between rules with regard to

the nationality condkions
the age conditions
the residence conditions

the granting conditions, in which a further dktinction is
made between rules with regard to

the determination of the category to which the
disabled belongs
the check on the exhaustion of other social benefits

the calculation of the maximal height of the benefit
the calculation of the revenues to be deduced
the modalities of the payment.

287

For each of the regulatory subunits, one or more mutually

related decision tables were developed by using PROLOGA. The

relations between the different tables were specified in a number
of control tables.

The decision to create condition or action subtables was,
depcndmg on the case, based on one or more of the following
criteria
● preserving the overview; 6 to 7 conditions per table seemed

to be the maximum in this respec~
● avoiding redundancy; combinations of condition values

repeated in one or more tables were placed in a separate
table, to be called by the thus discharged tables;

● showing well-defiied actions as intermediate conclusions.

Each of these decision tables was constructed by using PROLOGA

according to the steps described below. Some of these steps are

illustrated with examples concerning the table in figure 1.

Step 1: Defime the conditions, condition states and actions,

When conditions are defined, a list of condition states is

expected for each condition (not restricted to the

traditional limited entry type).

Actions have a standard set of action values, only the
action subjects must be defined. The possible action
values are :

x : this action should be executed.

: this action must not be executed

undefined
? : contradiction (in the resulting decision table)

First a list is made of all action statements that are

mentioned in the text. What is to be retained as an
action, depends on the purpose of the table. The purpose

of the example table is to determine the category to
which the disabled belongs. Therefore, the actions are

categories.

Once the actions are defined, a list of condition
statements is drawn up from the text. All conditional

expressions influencing the execution of an action are

taken into account.

Next, the restatements and the complements of other

condition statements are deleted from the list, and from

the remaining statements, the actual conditions are

formulated. In the example table, these are

the fact to be married;

the fact to be separated
the fact to live in concubinage;
the fact to have a child at charge;
the fact to live alone.

Finally, for each condition the exhaustive set of mutual

disjoint states relevant to the problem domain is

determined. In the example table this happens to be the

mere affirmation and negation of the fact.

Step 2: Define the decision rules.

During this phase, the problem is described as a series of
logical IF ... THEN ... relations where the connection is
made between a combination of condition states and

some actions that must be executed. Therefore, the
decision rules are derived from the regulatory text to be

represented and are described in terms of a relation

between a combination of condition states on the one
hand and one or more actions on the other hand. The

nature of the relation is indicated by the applied

elements of PROLOGA’S specification htnguage.

To resemble closely the decision situation that has to be

modelled, the specification language offera more and

also more powerful facilities than simple IF-THEN rules
wi~ m/OR operators. Designing the procedural

decision situation requires a specification language
which closely matches natural language and ita nuances.

A decision situation usually does not consist of a

collection of independent descriptions, but contains

several levels of structure, e.g. general rules, exceptions,
... Logical expressiona can therefore be assigned
different levels of significance, in the sense that certain

expressiona (general rules) can be overruled by later

specifications (exceptions), or that a (defiite)

expression can not be neutralized. Basically two levels

are distinguished: definite and preliminary
consequence. A definite rule can not be overwritten
(overwriting it creates a contradiction). A preliminary

rule on the other hand can be overwritten by subsequent
rules, thereby creating a general rule - exception

mechanism. In combination with the ONLY operator, a
possible consequence is also provided stating that some
action is only possible in certain cases means that it is

impossible in all other cases.

A decision rule then consists of three parts : an action

part, an IF part and a condition part. Some example

skeletons of decision rules :

Actions [generally] if condition combinations

Not action definitely if condition combinations

Action only possible if condition combinations

Action definitely if and only t~condition combination

Condition combinations are expressed using several

logical operators : not, and, ntmd, minus, or, xor, nor, ...

For a more detailed discussion of the decision rules, see
VANTHIENEN [24].

Because every decision rule is immediately and
automatically reflected in the decision table, verification

and validation can be performed in an interactive,
incremental way. Inconsistent rtdes are detected

automatically. Moreover, knowledge elicitation is

ameliorated through the expressive power of the
decision rules.

Step 3: The decision table is filled out
Every decision rule, once defined, is automatically
added to the decision table. The decision table is
available for display at any time, in expanded or

contracted form (and also in the form of a horizontal or
vertical decision tree).

Step 4: Check for Completeness, correctness and consistency
PROLOOA automatically generates a warning message
when conditions or actions occur which are not referred

to by at least one decision rule. This either indicates
that the condition or action is truely irrelevant or that the

288

decision process has not been represented correctly or

completely.

The package also supports checking the table for
● emp~ columns: when one or more cdtttma show

art empty action part, those cases will be evaluated
without resul~

● contractions: a column pointing to several actions
which are mutually exclusive contains a

Contrdlctim,
● incornxtness: one only has to check column by

cohtrttn whether the correct actions are marked.

A more detailed description of the knowledge validation
possibilities PROLOGA offers, was given in section 2.3.

‘he interactivity of PROLWA allows to correct any

incompleteness, inconsistency or incorrectness with

immediate view of the result.

Step 5: Simplify the decision table
From the expanded decision table, adjacent columns or

groups of columns leading to identical action
configurations are contracted into combined columns,
thereby minimizing the number of columns for the given

condition order. When all the states of a condition can
be combined, tltk will lead to a condition state which is

irrelevant, but partial contraction is also provided

(VANTHIENEN [24]).

Step 6: Optimize the decision table
When the decision table has been constructed and
verified, it can be subject to different optimizations,

e.g. :

- Row order optimization : This determines the
condition order which results in the minimum

number of (contracted) columns. The condition

order is the same for all columns of the decision
table. For a table with n conditions, this implies a

choice between n! alternative condition orders, some

of which might be infeasible because of precedence
constraints. It would for instance be senseless in the

example table to ask whether someone is separated

before having determined that the person in question

is married, even though it would reduce the number

of columns in the table. For only married people
could be considered as separated.

- Execution time optimization: Depending on the

purpose of the decision table, it might be
transformed into optimal test sequences, ttilng into
account condition test times and column frequencies

(if available). In the resulting execution tree,

conditions are not always tested in the same order
anymore. For a table with n limited entry

conditions, this implies a choice between f(n)
decision trees, where :

f(n)= n.[f(n-1)]2, with f(1)= 1

j=l -

In decision table research, a lot of effort has been
spent on generating this optimal tree (see e.g.

MARTELLI [11], LEW [10]).

The set of optimally contracted decision tables was firtallly
converted into IF-THEN-ELSE structures in the fiit version of

HANDIFAK, and into a set of AionDS statements in the latest
version.

3.3. EXPERIENCES FROM DEVELOPING THE SYSTEM

Developing HANDIPAK showed that the decision table

technique was not only very useful for testing the consistency of

legrd knowledge, but also for supporting the acquisition and the

representation process of that knowledge. The techniques used
in this respect have to be easily manageable by domain experta

and must preferably fit in with their “natural” knowledge
representation method. The contacts with domain experta,

established when developing knowledge based systems, as well

as practical seminars given to final-year law students showed
that decision tables suit lawyers.

The PROLOOA package offers effective logistic support when
drawing up the tables, optimizing them and converting the result

towards different techricrd environments, ranging from IF-
THEN-ELSE structures used witiln tradhiortal computer
languages to different available shells such as AkmDS or

KBMS. Thus the facilities offered by these consultation
environments can be used when developing the end prodttc~

Nevertheless, in some areas the methodology can still be

refined:

First and foremost, modelling the time dependence of decisions
within decision tables is rather difficult. Decision tables are very

appropriate to represent argumentations which lead to punctual
decisions, but are less suited to represent decision making

processes regarding evolutive data. However, t.hk kmd of

processes frequently occur in law. Legal decisions often take
into account the values of certain decision variables at a given

moment or during a given period in the past. Moreover, law has
a dynamic nature. More than any other knowledge area,

legislation continuously undergoes changes likely to strongly

influence both its structure and its coherence. The law which
was applicable in the past frequently has a more or less

substantial influence on future legislation.

Moreover, decision tables are most suited for the representation
of decision making processes using selections, It is more

difficult (and not appropriate) to represent iterative and, in some

way, sequential structures in thk manner. This implies that
decision tables are particularly useful for legal domains where

most of the knowledge takes the form of condhional
expressions.

It would also be useful to support the decision of spreading the

knowledge to be represented over different decision tables.
Presently, the decision to create subtables is based upon certain

rules of thumb or on the experience of the knowledge engineer.
It is obvious that this practical and implicit knowledge can form

the basis for a more systematical approach.

With regard to the optimization of the decision making process,
the existing methodology can also be improved. An
optimization of tbe table on tbe representation level by means of

a maximal contraction does not necesstily imply the

optimization of the execution of the underlying decision

2($9

process, because the optimal evaluation order of the decision
variables depends on the specific case. The relative level of

difficulty of the evaluation of certain parameters and case

frequencies have to be taken into account then.

And finally it would be useful to see the PROLOOA development
tool within the framework of a dictionary of conditions and

actions e.g. to determine the equality when used in different
tables.

4. Conclusion

This paper describes the development of HANDIPAK, a legal

knowledge based system with regard to financial benefits for the

disabled in Belgium.

The adopted methodology is based on the decision table
technique, and a decision table engineering workbench,
I%OLOOA.

Experiences in developing the concrete system showed that the
decision table technique was not only very useful for testing the

consistency of legal knowledge, but also for supporting the

acquisition and the representation process of that knowledge.

Acknowledgement

The authors greatly acknowledge the invaluable contribution of
M. Verhelst.

References

[1]

[2]

[3]

[4]

[5]

Bergmarm W., Entscheidtmgstabellen - ein fachliches
Werkzeug in der Praxis des Steuerberaters (I), DSWR,

March 1984,59-66.

Bergmann W., Entscheidungstabellen - ein fachliches
Werkzeug in der Praxis des Steuerberaters (II), DSWR,

May 1984, 111-117.

Codasyl, A Mo&rn Appraisal of Decision Tables, Report
of the Decision Table Task Group, ACM, New York, 1982,

230-232.

Colomb R. and Chung C., Very Fast Decision Table
Execution of propositional Expert Systems (Pmt. AAA190

1990) 671-676.

Cragun B. and Steudel H., A Decision-Table Based
processor for Checking Completeness and Consistency in

Rule-Based Expert Systems, Int. Journal of Man-Machine

Studies 5 (1987) 633-648.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Debrock K., Lemmens V., Robben F. and Van Buggenhout

B., The development of a knowledge based system for the

comparison of national social security systems of member

states of the European Communities in a dynamic perspec-
tive, in THE FOUNDATION FOR LEGAL KNOWLEDGE

SYSTEMS, Legal knowledge based systems. Aims for

research and development, Lelystad, Koninklijke
Vermande, 1991,36-47.

Hamilton D., Kelley K. and Culbert C., State-of-the-
Practice in Knowledge-Based System Verification and
Validation, Expert Systems with Applications 4 (1991)

403-410.

Jans S., Een inte@ce twwen Prologa en AionDS,

Toepassing van de beslissingstabellenbertadering bij het

ontwerp en & implementatie van een kem”ssysteem,

K. U. Leuven TEW dissertation, 1992.

Larsen H. and Nonfjall H., Modeling in the Design of a
KBS Validation System, Int. Journal of Intelligent Systems
6 (1991) 759-775.

Lew A., Optimal Conversion of Extenakd-entry Decision
Tables with General Cost Criteria, Comm. of the ACM 4
(1978) 269-279.

Martelli A. and Montanan U., Optimizing Decision Trees

through Heuristically Guided Search, Comm. of the ACM

12 (1978) 1025-1039.

Merlevede P. and Vanthienen J., A Structured Approach to

Formalization and Valiatxtion of Knowledge, in Roc
IEEE/ACM International Conference on Developing and
Managing Expert System Programs, Washington, DC,

1991, 149-158.

Moulin B. and Rousseau D., Automated Knowledge
Acquisition from Regulatory Texts, IEEE Expert, October
1992,27-35.

Nguyen T., Perkins W., Laffey T. and Pecora D.,
Knowledge Base Verification, AI Magazine 2 (1987) 69-

75.

OLeary T. and Goul M. et al., Validating Expert Systems,
IEEE Expert 3 (1990) 51-58.

Oskamp A., Het ontwikkelen van juridische

expertsystemen, Reeks Inforrnatica en Recht m. 11,

Antwetpen/Deventer, Kluwer, 1990,

Overhoff R., and Molenaar L., In de Regel Beslist, Een
beschouwing over regelgeving met Widp VCWI

beslissingstabellen, Doctoraal Proefschrift,

Rijksuniversiteit Leiden, SDU Uitgeverij Plantijnstraat,
‘s-Gravenhage, 1991, 382 pp.

Reisinger L., Rech[sinformatik, Walter De Gruyter,
Berlin/New York, 1977,240-245.

Robhen F., HANDIPAK: eomputemdviessysteem m.b.t. de
fhanciele tegemoetkomingen aan gehandicapten, in VAN

BUGGENHOUT, B., ROBBEN, F., LEUS, I.,
CASTELEYN, H., HERTECANT, G. en DEMEE.STER,
W., Het nieuw gehandicaptenrecht. Commentaar bij de

nieuwe wetgeving en rccente evoluties in het beleid, Rccht

en Sociale Hulpverlening, Brugge, Die Keute., 1988, 21-26.

[20] Robben F., Herbosch E., Van Buggenhout B. and Van

Buick K., The computer supported development of

iuridical advice svstems based on the decision table

[21]

[22]

[23]

techm”que, in THE FOUNDATION FOR LEGAL

KNOWLEDGE SYSTEMS, Legal knowledge based

systems. An overview of criteria for validation and
practical use, Lelystad, Koninklijke Vermande, 1990, 50-

56.

Santos-Gomez L. and Darnell M., Empirical evaluation of

decision tables for constructing and comprehending expert

system rules, Knowledge Acquisition 4 (1992), 427-444.

Schauss M., (cd.), Syst&ws experts et droit, Bruxelles,
Story-Scientia, 1989.

SUsskmd R., Expert systems in law, O#ord, Clarendon

Press, 1987.

[24]

[25]

[26]

[27]

[28]

Vantlienen J., Automatiseringsaspecten van &

specijicatie, constructive en manipukztie

beslissingstabellen, K.U.Leuven Dept. Applied ~?

Doctoral Dissertation, 1986.

Vanthienen J., Een moakrne kijk op beslissingstabellen,

Informative, December 1988,912-937.

Vantilenen J., Knowledge Acquisition and Validation

Using a Decision Table Engineering Workbench, The
World Congress on Expert Systems, Pergamon Press,

Orlando, 16-19/12/91, 1861-1868.

Vanthienen J. and Wets G., Mapping Decision Tables to
Expert System Shells: An Implementation in AwnDS,
Research Paper 9228, K. U. Leuven, Dept. Applied Econ.,

1992.

Verhelst M., De Praktijk van Beslissingstabellen, Kluwer,

Deventer/Antwerpen, 1980.

291

