An Application of the Expert System Shell > kilagi
to the Study Benefits Regulation of Bologna University

Giovanni Dallara
Cirfid, Bologna University ,Via Galliera 3/5, 40100, Bologna.
E-mail: g3wbov21@icineca.cineca.it
Carlo Gattei
Cirfid, Bologna University
Giovanni Sartor
Cirfid, Bologna University

ABSTRACT

Cirfid (Centre of Computer Science and Law of Bologna
University) has developed a system that applies the study
benefits law of Bologna University. The system is able to
establish the benefits a student is entitled to on the basis of
his family status and university curriculum, and is intended
to be used by both university students and public
employees charged with applying this law. To achieve this
application we used a prototype version of Skilagi, a logic
programming-based expert system shell developed by
Marek Sergot and Yannis Cosmadopoulos at Imperial
College, London. Some characteristics of Xkilagi, and
particularly the possibility of giving conditional answers,
are very useful for this application and for legal problems
in general.

We have developed an additional facility of Xkilagi,
allowing the utilization of questionnaires in order to
simplify user-system interaction.

THE EXPERT SYSTEM SHELL XZKILAGI

>kilagi (Cosmadopoulos and Sergot 1991) is a logic
programming-based expert system shell developed by
Marek Sergot and Yannis Cosmadopoulos at Imperial
College, London. It has been implemented in Lpa Prolog
and, for this application, the version for Macintosh
computers was used.

Ykilagi develops the experience of Apes (Sergot 1983;
Hammond and Sergot 1984), a shell already used in some
legal applications of logic programming (Sergot et al.
1986, and, in Italy, Andretta et al. 1988).

The principal components of Apes are an interpreter,
using the standard Prolog proof procedure, and an
interactive component, based on the query the user model
(the user is considered an extension of the knowledge-base,
cf. Sergot 1983). When a goal G cannot be solved on the
basis of the program, the interactive component asks the

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date socpesz, and notice is
given that copying is by permission of the Association for C-=ipvung Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

© ACM 0-89791-399-X/91/0600/0086 $1.50

user for information: if G is ground, it asks if it is true
(Yes/No questions); if G is not ground, it asks for a
variable substitution making G true (Wh questions).

2kilagi keeps many characteristics of Apes, but it
utilizes transiation, instead of metainterpretation, extends
the Prolog model with constructive negation, and develops
the query the user facility with conditional answers so as to
manage hypotheses.

TRANSLATION

Ykilagi is based on the method of translation (cf.
Cosmadopoulos and Southwick 1989), instead ‘of
metainterpretation,

Metainterpretation has often been used to develop
Prolog based shells, providing an inference engine and a
representation language. The inference engine operates on a
domain program written in the representation language.
The distinction between inference engine and domain
knowledge provides modifiability and clarity, but at the
cost of a loss of efficiency.

The method of translation, based on blending all
metalevel functionalities into the object level, can help to
solve the efficiency problem. The domain program is
translated into a code that can be directly executed by a
Prolog interpreter, taking advantage of its optimization
techniques. This blending transformation happens
automatically during the ‘compile-time’.

CONSTRUCTIVE NEGATION

In Ykilagi, constructive negation (Chan 1988) has been
implemented. Constructive negation is based on the
consideration that, in the completon of the program, the
following is a theorem

Q=A,v..VA,

where Ay, ..., A, are the answers {0 the positive goal Q,
epresented as equations. The rule for constructive negation
s, in fact, the following:

~Q=~(Ajv..vAy,

86

If we apply to ~ (Ay v .. Vv A,) the transformation
defined by Chan (1988, 119), we obtain a disjunction
NA; v ... v NAp,, where every NA,; is a normal answer to
the negative goal ~ A. A normal answer is constituted by a
conjunction of equalities and inequalities.

These inequalities qualify Y kilagi’s answers. For
example, given the program

p@@).

pX) :- ¢(X).

q().

when not(p(X)) is asked, Ykilagi gives the answer
yes

with the qualifications

not(X = a) & not (X =b).

Constructive negation allows non ground negative goals
to be correctly executed. So the floundering problem can be
solved.

EXPLICITLY QUANTIFIED NEGATION

Constructive negation, by treating correctly negative
non ground goals as

« not p(X),

distinguishes them from explicitly quantified negative
goals (cf. Chan 1988, 121) like

« VY (not p(Y)).

So, Zkilagi’s language allows explicitly quantified
negative goals (or subgoals) to be expressed.

THE SYSTEM-USER INTERACTION

In Xkilagi, as in Apes, the ways to elicit information
from the user can be specified through metadeclarations.
So, writing an application with Y kilagi includes:

- a logical representation of the domain knowledge (the
language offered by Ykilagi to this purpose is pure
Prolog);

- a definition of the ways of interaction with the user.

For every predicate we can determine how questions
asked by the system will be formulated, by using the
metapredicate template/3. This predicate has the structure:

template(<predicate>,<list of variables>,<comment>),

where <predicate> is the name of a predicate of the object
program, <list of variables> is the list of the variables of
the predicate that have to be instantiated, <comment> is
the structure of the question.

In the following example a Yes/No question is defined:

template(placed _in(UniversitySchool City),[],
{UniversitySchool,' is situated in ',City,'?]).

where the empty list indicates that there is no variable
to instantiate.

87

Figure 1. Yes/No Question

Is the University Faculty situated in
Bologna ?

. »)

i

Here a Wh question is defined:

template(
family_income_earned_abroad_of(Name,
. Surname, ValueIncomeAbroad),
[ValueIncomeAbroad],
{'Income of the members of
the family of ' Name,Surname,'who work abroad').

Figure 2. Wh Question

income of the members of your family who work abroad

Vsiusincomenbroad = | | -

fnswers gluen te this
query (Abreadincomel

Aaswers given te
previous queries

&
=
]
0]

(Cancel] finswers Compiate] Stop For Now) (Assume True) (Abort)

=l

The metapredicate menu_item can be used to confine the
user’s choices to a predefined set of possible values. For
example:

menu_item(attends(Name,Surname,UniversitySchool),
[UniversitySchool],
{‘University’,’ Special purposes school’,
*Art school’,’ Training college’,
‘Specialization school',’Others’],
["Which kind of school does',
Name,Surname,’ want to enter 7°]).

Figure 3. Menu question

Which kind of school does giovenni sartor want to enter 7

‘University’
‘Spacisf purposes school’
‘Art schoof

Treining college’
‘Specisiization school’
‘Others’

7

The user can answer the system questions as follows:

- Yes/No Questions. The user can answer Yes, No, or
Assume true if he does not know whether the fact in
question is true or false. In this last situation he may get a
conditional answer, which is qualified both by the
inequalities resulting from constructive negation and by
those facts assumed true.

- Wh Questions. If the user knows some true instances
of the predicate, he can indicate corresponding values for
the predicate variables. Otherwise, he can answer Don't
know. In which case, he can obtain a conditional answer,
qualified by the conditions that the predicate variables must
satisfy in order to solve the goal.

THE QUESTIONNAIRES

Developing our application, we realized that, by using
the query the user facility, the system asked numerous
questions, and that correct interpretation of each question
presupposed an understanding of its relation with others.
So we decided to implement a facility allowing an
interaction through questionnaires, each containing a set of
related questions. Questionnaires can be defined using the
metapredicate menu_form/4, with the following structure:

menu_form(<name>,<predicates>,
<variables> <comments>)

where <name> is the name of the questionnaire,
<predicates> is the list of the predicates of the
questionnaire, <variables> is the list of the variables’ lists
that have to be instantiated through the questionnaire (one
list for each predicate), <comments> is the list of the
questions included in the questionnaire.

Here is an exampie of a questionnaire declaration:

menu_form('Economic Requirements',
[special_indemnity(Name,Surname,Indemnity),
number_of_family_members_of(Name,
Surmname,NumFam),
unemployed_children_in_the_family_of(Name,
Surname,SonsDaughters),
already_registered_in_assistance_file(Name,Surname),
has_family_residence(Name,Surname,’Italy"),
has_family_member_working_abroad(Name,Surname)],
[[Indemnity],[NumFam],[SonsDaughters],[],[1,01],
[['Special family indemnity of ', Name,Surname},
[Number of family members of ', Name,Sumame,’ 2'],
[Unemployed children in the family of ',
Name,Sumame,’ 77,
[1s ', Name,Surmame, already registered in the
University Assistance Files 77,
[s the family residence of ',Name,Sumname,'in Iialy 7],
['Are there members of the family of ,Name,Surname,
'working abroad 7).

The questionnaires are activated with the predefined
predicate
form(<name> <input>)

where <name> is the name of the questionnaire and
<input> is a list of input values for the predicates in the
questionnaire. The questionnaire will not include questions
concerning variables for which input values have been
passed. Those values may be used inside comments. For
example, if the questionnaire defined above is activated
with the call

form(Economic Requirements',[Name,Sumamel]),

the variables Name and Surname being instantiated to
the values 'giovanni' and 'sartor’, the following is
displayed.
Figure 4. Questionnaire "Economic Requirements’

Specisl family ind it
P amily Y | [ORssume True

of giovonni sartor

Number of family members l:j

of giouanni sertor 7 Ofssume True

Unemployed children in the ::]

family of giovanni sartor 7 CAssume True

Is giovanni sartor siready

registered in the Assistance @Yes ONo O Don't Know

Files ?

Is the family residence of |

giovanai sartor in italy 7 O Bon't Know
Q Don't Know

A 'Help button' is associated with every question on the

Rre thers members of the
family of giovenni sarter @Yes ONe

questionnaire. By pushing the button, the user can obtain

more detailed information about the question.

®vVes ONso

working abroad ?

THE APPLICATION TO THE STUDY BENEFITS
LAW

The study benefits law applied by Bologna University
was established by State act number 80 dated 14/2/1963
and subsequent modifications, combined with resolution
number 68 of the University Assistance Board (Azienda
Comunale per il Diritto allo Studio) of Bologna, passed on
17/5/1990.

The existing procedures are based on a set of programs,
developed with traditional programming techniques, each
treating a specific partial aspect of the study benefit law.
These procedures can manage only standard cases correctly:
particular cases are dealt with manually or by means of ad
hoc programs. ’

With this prototype, our basic purpose was to build a
system able to treat all cases expressly contemplated by
existing regulations.

The often desirable isomorphism between legal text and
logic program (cf. Routen 1988) could be achieved only to
a limited degree, partly because the legal texts we used

were not clearly formulated. We think that, for some
aspects of the law on study benefits, our logic program
gives a clearer representation, which may suggest some
improvements to the natural language text.

STRUCTURE OF THE PROGRAM

The legal effects established by the study benefits law
are the right to enrolment on the Assistance file of the
University Assistance Board and to some economic
benefits.

Enrolment on the Assistance File is dependent on some
general requirements and certain economic, family and
study conditions.

Economic and family conditions determine the student’s
economic category, while the student’s scholastic
curriculum determines the merit level. The combination of
economic category and merit level establish the “layer” of
beneficiaries the student is to be included in. Each layer
entails a fixed set of benefits.

METHODOLOGY

The study benefits law allows an easy top-down
structuring. In fact, the main rule of the program is the
following:

has_right(Name,Sumame,
enrolment_in_Assistance_File(Layer)):-
satisfies_general_requirements(Name,Surname),
has_economic_category(Name,Surname, Category),
has_merit_level(Name,Surname,Level),
has_layer(Name,Surname Level,Category,Layer).

The program is divided into four parts, each developing
the definition of one of the predicates appearing in the body
of the rule above. For example, these are the clauses
defining the predicates 'satisfies_general_requirements’ and
"has_economic_category'.

satisfies_general_requirements(Name,Sumame):-
attends_university_school(Name,Surname,
UniversitySchool),
satisfies_enrolment_requirements(Name,Surname),
has_nationality(Name,Surname,Nationality),
satisfies_nationality_requirements(Name,Surname,
Nationality).

has_economic_category(Name,Surname,Category):-
form('Economic Requirements’,[Name,Surname}),
family_income_of(Name,Surname,ValidIncome),
kind_of_family_job_of(Name,Surname KindJob),
number_of_family_members_of(Name,Surname,
NumFam),
unemployed_children_in_the_family_of(Name,
Surmname,UnemployedChildren),
category(Name,Surname,KindJob, ValidIncome,
Category).

The predicates appearing in the body of these
clauses are defined by other clauses of the
program (as satisfies_enrolment_requirements and
satisfies_nationality_requirements) or are not defined, and
are to be satisfied through querying the user (for example
has_nationality and number_of_family_members_of).

Belonging to each layer entails a defined set of rights, as
represented in the following clauses:

has_right(Name,Surname,Benefit):-
has_right(Name,Surname,
enrolment_in_Assistance_File(Layer)),
guarantees(Layer,Benefit).

guarantees('A', Fixed grant for the studies’).
guarantees('A’,'Accomodation and rent contribution').
guarantees('B’,’ Accomodation and rent contribution’).

We have deemed that the user would normally be
interested in knowing all the benefits he has a right to.

So, the following rule has been defined, whose
activation offers a complete consultation of the system:

benefits_evaluation_of(Name,Surname):-
has_right_to(Name,Surmname,
enrolment_in_Assistance_File(Layer),
print_benefits(Name,Surname,Category,Level Layer).

The predicate print_benefits displays on the screen or
writes to a file the set of the benefits the applicant is
entitled to.

In our application the main theoretical problems
concerning the legal applications of artificial intelligence
are only marginally involved. Let us recall the following:

- Analogical reasoning. The study benefits law
application does not involve many problems that have to
be solved by analogical reasoning. There are some
interpretation problems concerning concepts used but not
defined in the legal text: for example the concepts of “valid
degree”, or of “member of the Italian nation”. At present,
the corresponding predicates are not defined in the program,
and have to be solved querying the user. In the future, in
relation to user requirements, we will consider whether
those predicates can be defined or whether they must be
treated differently.

- Deontic logic. Study benefits law assigns rights to the
university students, rights that have been formalized in the
structure:

has_right(Person,Content).

Nevertheless, no specific deontic inference procedure
seems necessary.

89

- Non monotonic reasoning. Some default inferences
involved in the application could be treated by means of
negation by failure. Other problems were not considered in
our prototype.

THE USE OF QUESTIONNAIRES

Questionnaires simplify the system-user interaction:
instead of answering about twenty questions with twenty
corresponding templates, the user has to fill in only five or
six questionnaires. The system consultation becomes more
friendly, and above all, the user can give most of the
information concerning a certain problem on only one
template, and so he can better understand the meaning of
each question. Moreover, using questionnaires corresponds
to the habits of most users, both the employees who are
already using computer systems, and the students who, like
all of us, are used to filling in forms when dealing with
bureaucracy.

CONDITIONAL ANSWERS

In our system, the possibility of obtaining conditional
answers is very important, especially for direct use by
students. If a student does not know some datum about his
curriculum or his economic level, he can answer Assume
true or Don’t know. In this case, he can obtain not only a
positive or negative answer, but also the indication of the
conditions concerning the assumed predicates that have to
be solved in order to obtain a positive answer.

The possibility of leaving some predicates undefined so
as to obtain a conditional answer has a general interest in
the legal domain. In fact, one of the principal criticisms of
the application of law through computer-based systems is
that these systems normally obtain the description of the
facts of the case as an input from the user, and then
establish the legal consequences. In this way a separation
is created between the description (or qualification) of the
facts and the application of the legal rules (cf. Bing 1989).
These moments are, instead, strictly connected in the
activity of the lawyer. In fact, the lawyer qualifies the facts
of the case in consideration of the legal rules that can be
applied to them, that is looking at the normative
consequences deriving from that qualification. For
example, let us consider the problem of qualifying the
working activity of a student’s family as independent (seif
employed) or as subordinate (employee). In a dubious case,
the lawyer would bear in mind that stricter conditions are
provided for independent work, so that possibly, for the
same revenue level, less benefits would be granted if the
family work were so qualified.

This separation between case description and legal
consequence can be overcome by conditional answers. In
fact, the user of our system is not obliged to answer all the
questions he is asked. Problematic qualifications can be left
undefined, so as to obtain a conditional answer indicating
the conditions that have to be satisfied to obtain the legal
consequence the query is about. The user can then decide
how to complete the case description.

Figures 5 and 6 show an example of user-system
interaction with conditional answers.

Figure 5: ‘Don’t know’ answer by the user

Have you received a degree
Trom the University since Qves ONeo @ Uen't Know

1987 7

Have you alrendy been

student ot Unlversity 7 ®ves ONo

QO don't Know
ONo O on't Know

1)
Form Complete)

Haue you airesdy got the
assistance fined incone 7 Oves

Figure 6: Conditional answer by the system

Huahtications

has_right(giovanni,sartor, flued grant for studies’)

iF
[valid_degree_taken._after_1987(giovanni, sartor)}

Conditional answers can be generated by the rule of
constructive negations. Let us assume that the applicant
has declared not to be an Italian citizen and has answered
Don't know to the menu of fig. 3 (choice of the school).
If the remaining conditions for obtaining a grant are
satisfied, the system will give a positive but conditioned
(qualified) answer: the student has a right to the grant if he
attends a school other than a special purposes or a
specialization school.

Figure 7: Conditional answer with constructive negation

has_right(glovanal,sertor,'fied grant for studies)

IF
[attends(giovanni,sartor,i), not(k = 'Special purposes school’),
not(M = 'Specialization schaol')]

90

The qualification of the answer has been produced on the
basis of the following clauses

satisfies_nationality_requirements(Name,Surname,
Nationality,UniversitySchool):-
not(nazionality(Name,Surname, Ttalian")),
not(post_university_school(UniversitySchool)),
satisfies_foreign_nationality_requirements(Name,
Surname,Nationality).

post_university_school('Special purposes school').
post_university_school('Specialization school).

The first states that non Italian students, in addition to
the specific conditions concerning their own nationality,
have to be enrolled in a school other than a post university
school (only Iwalians are assisted to attend this kind of
schools). The following assert that special purposes and
specialization schools are post university schools.

FUTURE APPLICATIONS OF THE SYSTEM

We have in mind two types of users:

- students who have to decide whether to submit an
application for study benefits, or have to prepare it, or
want to check that their case has been correctly handled;

- public employees who have to apply the study benefits
law.

We think that this prototype must be extended in
different ways, to satisfy the requirements of these two
types of users, although the core of the program, the
logical representation of the study benefits law can be a
single one.

- To meet the students’ needs, the system should include
additional facilities. In particular, if the conditions for
registration in the University Assistance File are satisfied,
the paper form for the application to the University
Assistance Board should be automatically drafted, on the
basis of the information given by the student during the
consultation session. If the information given by the
student is incomplete, only some slots of that form will be
filled by the system. The conditional answer, printed
separately, will give information to fill the remaining
slots.

-To meet the requirements of the Assistance Board a
connection with external data banks is necessary (for
example, with the register of births, marriages, and deaths,
and with the tax register), in order to check the correctriess
of the data contained in the application forms presented by
the students. Furthermore, if a student’s application is
rejected, or when a student asks for explanations, a
justification of the conclusion reached by the system,
written in nawral language, should be produced.

91

BIBLIOGRAPHY

Andretta, M., M. Lugaresi, F. Zambon, M. Losano, and
N. Nannini. 1988. Uso di linguaggi formali per la
rappresentazione di testi normativi: il progetto
PROLEG (PROlog applicato alle LEGgi). In Gulp 88.
Atti del terzo convegno nazionale sulla programmazione
logica, 373-383.

Bing, J. 1990. Three Generations of Computerized System
for Public Administration and Some Implications for
Legal Decision Making. In Ratio Juris 3 (2): 219-236.

Chan, D. 1989. Constructive Negation Based on the
Completed Database. In Proceedings of the Fifth
International Conference and Symposium on Logic
Programming, edited by R.A. Kowalski, and K.A.
Bowen, 111-125.

Cosmadopoulos, Y.A., and R.W. Southwick 1989. Using
Meta-Level Information for Expert System Control: A
‘Blending’ Transformer Approach. Technical Report.
London: Imperial College.

Routen, T. 1989. Hierarchically Organised Formalisations.
In The Second International Conference on Artificial
Intelligence and Law. Proceedings of the Conference,
242-250. New York: ACM.

Sergot, M.J. 1983. A Query-the-User Facility for Logic
Programming, in Integrated Interactive Computer
Systems, edited by P. Degano and E Sandewall, 27-41.
Amsterdam: North Holland.

Sergot, M.]., and Y.A. Cosmadopoulos, 1991. The Logic
Programming System Skilaki: Design and
Implementation, Technical Report. London: Imperial
College.

Sergot, M.J,, and P. Hammond 1983. A PROLOG Shell
for Logic Based Expert Systems. In Expert System 83:
Proceedings of the 3rd Technical Conference of the
British Computer Society Specialist Group on Expert
Systems (Cambridge, December 1983), 94-104. British
Computer Society.

Sergot, M.J., F, Sadri, R.A. Kowalski, F. Kriwaczek, P.
Hammond, and H.T. Cory. 1986. The British
Nationality Act as a Logic Program. Communications
of the ACM. 29: 370-386.

Wolstenhome, D.E. 1987, Saying "I don't know" and
conditional answers. In D. S. Moralee, editor, Research
and Development in Expert Systems [V, pages 115-
125, Cambridge University Press.

