
A Constraint-Driven System for Contract Assembly

Aspassia Daskalopulu Marek Sergot

Department of Computing

Imperial College of Science, Technology and Medicine
180 Qtreen’s Gate, LondonSW72BZ

e-mail: {ad4,mjs } @dot.ic.ac.uk

ABSTRACT

We present an approach for modelling the structure and coarse content of legal documents with a view to providing automated

support for the drafting of contracts and contract database retrieval. The approach is designed to be applicable where contract
drafting is based on model-form contracts or on existing examples of a similar type. The main features of the approach are: (1) the
representation addresses the structure and the interrelationships between the constituent parts of contracts, bu i not the [ext of the
document itselfi (2) the representation of documents is separated from the mechanisms that manipulate it; and (3) the drafting
process is subject to a collection of explicitly stated constraints that govern the structure of the documents. We describe the
representation of document instances and of ‘generic Llocuments’, which are data structures used to drive the creation of new
document instances, and we show extracts from a sample session to illustrate the features of a prototype system implemented in
MacProlog,

1. INTRODUCTION

The system described in this paper forms part of a broader
project to develop automated support tools for the drafting,
management and administration of large, complex contracts.
The term ‘contract’ is intended to be understood here in its
common usage, referring sometimes to a (legally binding)
agreement and sometimes to the document in which this
agreement is recorded. Where it is important to distinguish
between these meanings we shall use the terms ‘agreement’
and ‘document’ accordingly.

The contracts that we have been using as experimental material
concern the purchase, supply and transportation of natural gas.
In common with contracts in many engineering fields, these
contracts are large: they cover details of pricing and payment,
supply schedules, quality assurance, monitoring, maintenance
of equipment, force majeure provisions, and so on; a typical
document will run to 200 or 300 pages, not including detailed
drawings and technical appendices. (Some previous projects
on the automation of legal document drafting have looked
towards areas such as Sale of Goods (see e.g. [ALDUS 1992])
for their applications, and have found limited opportunities for
automation. We believe that domains concerned with the
provision of engineering services of various kinds are likely to
be more fruitful. Contracts of the size we have been dealing
with are routinely encountered; we have anecdotal evidence
that there are engineering projects where the associated
contracts are an order of magnitude larger than the ones we
have been examining, and where the drafting and
administration of the contract accounts for a significant portion
of the total cost of the project.)

‘Pernksion to copy without fee all or part of tfds material is granted provided
that the copies we not made or dMributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appea, and
notice k given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee andlor specific
permission.

0 1995 ACM 0-89791-758-8/95/0005/0062 $1.50

Apart from their size, the contracts are also complex, in two
senses: they consist of a number of separate but closely inter-
related sub-agreements, and they are complex at the micro
level, in the sense that some of the provisions contain a mass
of complicated detail which is both difficult to follow and
difficult to apply in specific cases.

By ‘management of contracts’ we refer to the general problem
of storing, maintaining and retrieving large bodies of contracts
and associated documents. A system for searching a document
database for relevant contracts and parts of contracts would
fall in this category. Under ‘administration’ we have in mind
systems that perform more specific tasks: systems that advise
on the effects of detailed provisions, or on the procedures to be
followed in certain circumstances, and systems which monitor
compliance of the contracting parties with detailed
requirements of the agreement. We are aiming to provide
drafting tools to support the design and drafting of contracts at
the micro level—that is, the formulation of detailed
provisions—and at the macro level where the problem can be
thought of as deciding what components need to be included
in a contract and in what form.

In this paper we focus on the drafting of contracts at the macro
level, where the emphasis is on structure and overall
coherence. Contracts are represented at a coarse level of
detail. We make no attempt—in this paper—to provide a
representation of what a contract actually says or prescribes
(what it ‘means’). The text of the documents, in appropriate
fragments, are taken as atomic units of the representation and
are not subjected to any further form of analysis.

In general terms, contract drafting is viewed here as a form of
Computer-Aided Design, where the drafter uses basic blocks
of text to construct a document in much the same way that a
graphics designer uses basic geometric shapes to construct a
picture or diagram. It may be more appropriate to call such a
process contract ‘assembly’ rather than contract ‘drafting’ to
emphasise the use of pre-constructed building blocks. A
similar view has been expressed by [Fiedler 1985] and

62

[Gordon 1989]. Lauritsen [1992]drawsthe analogy bet\veen
legal document assembly and the configuration of a computer
system. Lauritsen’s article [1992] also provides a very useful
survey of previous approaches to computerised legal document
drafting generally.

The best known early system for legal document drafting is
Sprowl’s ABF processor (see e.g. [Sprowl 1980]) designed for
the automated assembly of wills, tax returns, trusts and other
standardised documents. However, Sprowl’s approach is
procedural and comparatively low-level, since in effect he
provides a special-purpose imperative programming language
for writing programs which can generate certain types of
documents (cf. [Gordon 1989]). Fragments of legal documents
which are subject to change, depending on specific data, are
identified and the text is encoded with suitable procedures for
filling in the values of these parameters.

Another well-known document assembly system is Scrivener,
described by Lauritsen [1992] as “an expert system shell with
query-the-user facilities [...] specifically adapted for text
generation”. Scrivener offers users more flexibility than the
ABF processor and the representation of documents is not
entirely procedural. However, as in the ABF processor,
mechanisms to insert values for specific parameters and
conditions for the inclusion of specific document components
are incorporated in the text itself.

Our approach in contrast relies on an explicit representaticm of
document structure. We separate the representation from the
mechanisms used to create new instances, and we formulate
explicit constraints which govern the structure of a given
document type. Creation of a new document instance is the
process of assembling suitably instantiated blocks of text,
subject to compliance with these constraints.

We want to represent what each unit of the contract contribute
and why it has b included in its chosen form. As a seconclary,
though still important, objective we want to support the
storage and retrieval of large bodies of contracts.

2. DOCUMENT INSTANCES

We begin by describing the output of the drafting system,
which’ is a database of document instances.

Each document instance records:

. the type of document and an identifier for the specific
document instance;

. a term containing information about the contracting
parties and the date on which the contract came into
effect;

● optionally, other data values (depending on the document
type); and

. a list of terms corresponding to the sub-units of the
document.

Each of the sub-units is also represented as a term with sinnihtr

structure: type, identifier, data values (if any), and further sub-
divisions. A more detailed example of the representation is
provided later in the paper.

The resulting representation is a tree-like, skeletal structure
similar to those often used for hierarchically structured
documents (cf. [Furuta 1989]). The tips of this structure
correspond to actual fragments of text (or rather pointers into
text files stored separately on disk), as illustrated below:

r
Contract

t I I
Part 1 Part 2 Part n

I

I I
Section 1 Section 2 Section m

I (
Sub-section 1

~b-’ectionp
p!tragraph 1 para~raphr

\ $

CID
(standardblocks of text stored on disk)

)

The actual document can be reconstructed in its entirety from
this skeletal representation by a simple program that retrieves
the appropriate fragments of text, instantiates any parameters
with the specific data values, and collates the fragments into
the final document. Currently the output document is plain
text. We are exploring the possibility of producing documents
in some mark-up language (specifically SGML [Bryan 1988],
[Smith & Stutely 1988]) as our collaborators are interested in
this.

A natural question for such representations is what document
unit to take as the basic building block. For the sample
contracts we have been dealing with, the section seems to be
the most appropriate unit generally—but a feature of our
system is that we do not need to commit to any particular
choice of unit. In fact, different parts of the same document
can be, and often are, represented at different levels of detail.
In some cases it is unnecessary to subdivide the representation
even to the level of individual sections; elsewhere, sections
may be structured into sub-sections, sub-sections to
paragraphs and sub-paragraphs, and sub-paragraphs to
individual sentences. In principle, individual sentences could
also be divided into phrases and other fragments but we have
not bothered with this refinement since it would introduce
text-processing requirements that would dominate the further
development of the system.

Note also that the data values stored with document instances

may be more than is specifically required to generate the
actual document—for example it is often convenient to store

the contracting parties’ co-operation record, or other personal

63

details even though they do not actually appear in the
document itself. Similarly, document instances can be
incorporated into a larger database recording details of the
various parties and the projects and transactions in which Lhey
participate. We stress again that in this system we make no
attempt to represent the content of any document unit in
detail—other components not described here will cater for
that.

Besides this skeletal representation each document instance
records other information. Keywords, which provide a simple
mechanism by which users can search and retrieve documents,
may be associated with any of the document’s sub-units. (Here
is an example of a simple technique which is practical for the
retrieval of (certain types of) contracts but which is not usually
adequate for indexing legislative texts in general.)
Annotations by the drafter and general commentaries may also
be associated with any sub-unit, and indeed the system is
designed to encourage the drafter to record the reasons for any
choices and modifications that are made.

Each document instance also contains a representation of
textual cross-references between the units of text, and various
other dependencies between them. Our industrial collaborators
currently make use of hypertext systems for managing
contractual documents and the cross-referencing information
is intended to be used by the hypertext software when our
system is eventually integrated. As explained later
information about these dependencies is also used by the
drafting system to check coherence of the document as it is
created.

Annotations and some of the keywords need to be entered
explicitly for each document instance, but much of this other
information—commentaries and cross-references—is
automatically inherited by all instances from what we call a
generic document, a data structure representing what is
common to all documents of some given type and recording
all variations of previous document instances of the same type.
In order to motivate the structure of a generic document, we
need to say something about the nature of the drafting process
we seek to support.

3. THE DRAFTING PROCESS

We want to support drafting of a contract based on existing
examples of the same type. In engineering, it is standard
practice for contracts to be drafted on the basis of model-form
contracts, often issued by the relevant professional bodies. For
example, many of the contracts that we have been examining

are based on model-form contracts published by the Institution

of Electrical Eng;neers (e.g. [IEE 1988, 1991]). Such model
contracts have been developed over a considerable period—
the first edition of [IEE 1988] was published in 1903. An
important feature of these model-form contracts is that they
are often accompanied by a detailed commentary, which
explains the role of each individual provision in the document,
its history and its overall effect. Where model-form contracts
are available, they provide a natural starting point for a
drafting system. However model-form contracts are not

essential: where they are not available any previous document
instance will do, although it is obviously most useful if some
kind of commentary can be supplied for it.
To create a new document instance the user is provided with a

model contract—a standard model-form contract or a previous

contract of a similar type. Apart from changes in specitlc data

values—or ‘parameters’ —many of the provisions will be

acceptable in the original form. But there will also be sub-

units or passages ot’ the document which do not suit the

circumstances at hand and which require some modification.

In one example we have examined, Section 4-1 (‘Precedence
of Documents’) of the model-form contract [IEE 1988] reads:

Unless otherwise provided in the Contract the
Conditions as amended by the Letter of Acceptance
shall prevail over any other document forming part of
the Contract and in the case of conflict between the
General Conditions the Special Conditions shall
prevail. Subject thereto the Specification shall prevail
over any other document forming part of the Contract.

But in the actual contract, a different text had been inchtded in
this section:

The documents forming the Contract are to be taken
as mutually explanatory of one another and in the case
of ambiguities or discrepancies the same shall be
explained and adjusted by the Engineer who shall
thereupon issue to the Contractor appropriate
instructions in writing.

In another example, Section 14-6 (’Rate of Progress’) of the
model-form contract [IEE 1988], which originally reads:

The Engineer ~ notify the Contractor if the

Engineer decide$ that the rate of progress of the

Works or of any Section is too slow to meet the Time
for Completion and that this is not due to a
circumstance for which the Contractor is entitled to an

extension of time under Sub-Clause 33-1. [emphasis

added]

had been modified to replace the occurrences of ‘shall’ and
‘decides’ by ‘may’ and ‘considers’ respectively. The point is
that in neither case is there any indication as to why the
modified version had been preferred over the original wording.

We want to provide a system in which the reasons for such
modifications are recorded so that subsequent users can make
informed choices about which version to select, We also want
to allow users to create their own versions of sub-units where
none of the existing ones is appropriate, and we want to
encourage them to provide a commentary explaining the
nature of the modiilcation and the reasons for which it was
made. Subsequent users will then be provided with several
alternative versions—the original and the ones preferred in
previously drafted documents—together with the
accompanying commentary.

This collection of alternative versions is the core of the
generic document for contracts of the given type. The model-
form contract should not be confused with the generic

64

document. A model-form contract may be used to construct

the initial generic document, but thereafter the generic
document grows as new document instances, containing new
versions of sub-units, are created.

4. REPRESENTATION OF THE GENERIC

DOCUMENT

We are now in a position to describe the representaticln of a
generic document. Even if a contract does not contain explicit
divisions into sub-agreements, we find it convenient to divide
a contract into separate sub-agreements (or ‘parts’ for short),
each of which collects together a number of related sections
dealing with some aspect of the whole. Some of these ‘parts’
are compulsory in the sense that every document instamce of

this type must contain provisions dealing with this aspect of

the agreement; other parts at-e optional in that the user can
choose to include or omit them. The following list shows the
‘parts’ of the model-form contract [IEE 1988]. (There are also
various appendices which we omit here for simplicity.) The
optional parts are shown in square brackets :

Definitions and Interpretations
Engineer and Engineer’s Representative
[Assignment and Sub-Contracting]
[Precedenceof Documents]
Basis of Tender and Contract Price
[Changesin Costs]
Purchaser’sGeneral Obligations
Contractor’s Obligations
Suspensionof Work, Delivery or Erection
[Variations]
[Defects Liability]
Tests on Completion
[Taking Over]
[Performance Tests]
Certificates and Payment
[Accidents and Damage]
Force Majeure
[Insurance]
[Disputes and Arbitration]
Rme for Completion

One might ask what determines whether a ‘part’ is compulsory
or optional. Is it a legal requirement, or a professional
standard, or perhaps common practice for ‘one of the
contracting parties? Is it simply an idiosyncrasy of an
individual drafter? Our system does not make a distinction.
All of these could be reasons for regarding a ‘part’ as
compulsory. The treatment given to such ‘parts’ by the
drafting system is the same independently of the reason,
although the associated commentary may give some indication
to the user of what this reason is.

Each ‘part’ is subdivided further, usually—but not
necessarily—to a Ievel corresponding to a ‘section’ of the
document. And while sections have turned out to be the
appropriate buiIding blocks for the contracts we have been
examining, sections can also be further subdivided, to the
required level of detail.

Any unit of the document (part, section, sub-section. etc.) can

have several versions. At one time we allowed different

versions of the same sub-unit to have different structures
but we have since discovered that in practice it seems to be
sufficient to use a much simpler scheme, where only the
atomic units of text cm have alternative versions. The

following is an example of the representation of the generic
document based on the model-form contract outlined ezrlier
[IEE 1988]:

generic (‘ IEE MF/2 ‘) .

document_parameters (‘ IEE MF/2 ‘ , [$Engineer])

part(‘IEE MF/2’ , ‘Definitions and
Interpretations’ , c)

part (‘IEE MF12’ , ‘Assignment and Sub-Contracting’ , o)

part(‘IEE MF/2’ , ‘Time for Completion’ , c)

section(‘IEE MF12’ , ‘Time for Completion’ ,
‘Extension of Time for Completion’,

1, [1).
section (’IEE MF/2’ , ‘Time for Completion’ ,

‘Delays by Sub-Contractors’,
2, [1).

text_file(’IEE MF/2’,
sect(’Time for Completion’ ,

‘Extension of Time for Completion’),
1,[], tfl).

text_file(’IEE MF/2’,
sect(’Time for Completion’ ,

‘Extension of Time for Completion’),
2,[], tf2).

(This is standard Prolog syntax. The layout is simply to aid
readability).

The predicate gener icrecords that the type’IEEMF/2’ isa
genencdoctimenttype. llepredkate document~araraeters

associates document types with parameters that are specific to
them. In the example avaluefor $tzngineer willberequired
when aspecific document instance ofthistype is drafted. The
actual IEE MF/2 requires a number of other parameters
besides Engineer which we have omitted for simplicity.
Values for parties and a date for the agreement are common
parameters for all documents and so they do not have to
appear in the list of parameters specific to some document
tvDe. The part assertions record the ‘parts’ making up a
~i;en document type and whether they are compulsory (’c’) or

optional (’o’). The predicate section records foreach’part’

of the given document type the sections contained within it.

Identifiers for sections can bechosen arbitrarily but we tend

touse the keywords, section titles or margin notes if they are

present in the document. The fourth argument corresponds to
thenumber of thesection inthe given part. This is not strictly
necessary but it is convenient to have this when we generate
the actual document text. The fifth argument is the list of
parameters (here none) of the given section. Such parameters
can be associated with any sub-unit of the document, at any
level, but we have found that they are most useful when
associated with the whole document and with the tips of the
structure (which are usually sections in our example

65

contracts). The predicate text_file associates atomic

document units (here sections) with their respective text files.

Here sect isahtnction symbol used toconstruct a document

unit identifier-. The third arg-ument corresponds to the version

of the given section, the fourth is its list of parameters and the

last is a pointer to the file that contains the actual text.

This representation of the generic document is used by the
drafting program to guide the creation of a document instance.
An example of a document instance is as follows:

doc(‘IEE llF/2’ ,

‘Q6’,

parties (. .) ,

date (...),

[$ Engineer = ‘Frank’],

[(sect (’Definitions and Interpretations, ,

‘Singular and Plural’), 1),

<other section.s>])

The first argument shows the document type; the second isthe
identifier by which the document instance is referred to by the
system (this is unique and automatically constructed); the third
argument carries details about theparties andthe fourth about
thedate of the contract: the fifth is the Iist of parameters and
their values for the given document type. The sixth is a list of
provisions, where each is a pair of a section identifier and the
corresponding version used in the particular document
instance. Hence the document instance carries information
about which version of adocument sub-unit was chosen at the
timeofdrafting.

The representation scheme provides some flexibility.
Consider the following example [IEE 1988] of Section 38-1
(’Contractor’s Equipment’):

The Contractor shall within [30] days after the Letter
of Acceptance provide to the Engineer a list of the
Contractor’s Equipment that the Contractor intends to
use on the Site.

This can be represented in a number of different ways. Let

$38-l stand forthesection identifier forreadability. One view

is that different values for “[30]” give rise to different versions

of the section, in which case the representation would be:

text_ file(‘IEE MF/2’ , 338-1, 1, [], tfl).

text_file(’IEE MF/2’, $38-1, 2, [], tf2).

Another possibility is to treat “[30]” as a parameter value, and
in this case our representation would take the form:

text_file(,IEE MF/2,,S38-1,1. [$days=301, tfl)

If instead of the original section the wording had been as

follows:

The Contractor shall provide to the Engineer a list of
the Contractor’s Equipment that the Contractor
intends to use on the Site. Such list will be provided

within [30] days after the Letter of Acceptance.

then we could represent this section in a third way, as two sub-

sections. one foreach sentence. The first sentenccwouldhz :

one version while the second would have (a) alternative
textual versions or [b) a parameter value, as in the example
above. Note however that this last option is difficult if tb..~
original wording is maintained. In this case we would need
more complicated text-processing mechanisms for interleaving
sentence fragments.
As noted already, thedrafter cancreate his own wording for
(atomic) sub-units of the document, and our system provides a
simple text editor for this purpose. But it is the drafter’s
responsibility to ensure that the new text is meaningful and has
the same properties as that which it replaces. The drafter is
also allowed to extend the commentary and adjust the
keywords corresponding tothe section remodifies. However.
if more dramatic modifications are required, which concern
the structure of the document, then knowledge of the internal
representation is demanded. Such modifications canbe made
but they are not supported by the drafting system at present.

The commentary which is associated with the various sub-
units is recorded with the generic document and inheritedby
all instances. (Consequently, as a user creates new versions
with additional commentary this becomes available
automatically toallprevious document instances wwell. This
seems a useful feature but we are considering a more
complicated scheme in which the commentary provided fora
document instance will be that which was available at the time
of drafting.)

Keywords associated with each document instance can be
adjusted by the user, and so, unlike commentary, they are
recorded with the document instance. Keywords which are
stored with the generic document are made available to the
user during the drafting session as an initial suggestion. The
system also provides a facility to record personal notes for
each document instance.

5. CONSTRAINTS

We have said that document instances are stored with
information about the cross-references (and other
dependencies) between sub-units of the document. These are
recorded as part of the generic document by means of
assertions of the form:

refers (DocTyPe, sectioni, sectirmj) .

The second and third arguments are identifiers for the units of
text. These cross-references are inherited by all document
instances.

Cross-reference information is compiled as part of the initial
generic document representation and in the current system this
must be done by the programmer manually. Wherever there is
a textual (brother) reference from one sub-unit to another this
fact must be recorded by the programmer using a refers
assertion. Compiling this information is not as difficult as it
might sound but it obviously requires going through the
document in detail. Weintend todevelop utilities by which

66

we can elicit such information (semi-) automatically. Cross
references are checked by the drafting module, as illustrated in
the example drafting session in section 6.
The cross-references mentioned above are a kind of constraint

that governs the structure of a document: If section m refers to
section n and section m is included in the document instance,

then section n should be included also. A feature clf our
system—to our eyes the most novel one—is that a wider range
of explicit constraints on document structure is supportecl. We
identify three kinds of constraints:

1. Constraints that link sub-units of the same document.
2. Constraints between data items/parameters.
3. Constraints relating data items/parameters and sub-units

of the document.

Constraints that link sub-units of the same document

In the generic document we distinguish between optionid and

compulsory parts. It may be the case that two parts A ~andB
are both optional, yet there may be a constraint that, if A is
included in the document instance, then part B becomes
compulsory. A specific example [IEE 1991] is where thlere is
a part on Sub-Contracting and Assignment and a part on Sub-
Contractors’ Liability. Both are optional, but if the first is
included then the second becomes compulsory.

Constraints of this general category, which relate document
units to document units, are expressed using a simple special-
purpose language. Assertions of the form:

forces (DocType, A, B) .

are used to represent constraints of the form ‘if document unit
A is included then document unit B must also be included’;

incompatible (DocType, A, B)

expresses that both A and B cannot appear in the document
instance (alternatively ‘if A is included then B must not be
included’);

exclus ive_or (DocType, A, B)

indicates that exactly one of A and B must be included.

These three forms of constraints do not exhaust all the logical
possibilities but we have not encountered examples where a
more complex language would be necessary. (Notice that this
simple language is quite expressive already since the
specification of constraints may be subject to further
conditions, expressed by Prolog clauses of the form:

f orces(DocType, A, B) :- <further conditions>

and likewise for incompatible and exclusive_or.)

Constraints between various data items;

We also support constraints between data items. A simple
example is a provision of the form ‘if work is suspended for
more than three months then payment is suspended for more

than ~i.r months’. These constraints, which are specific to

particular kinds of documents, are comparatively rare.

Although we have made allowance for them in our system, we

have not had to use them in practice.

More common are constraints between data items applying to
contracts in general. The most obvious of these constraints is

the requirement that contracting parties must not be identical.

Constraints re!ating datofparameters and sub-{mirs of the
document

The third type of constraint is used to deal with the case where
values of various data items can affect the contents of what
appears in the document. An example from [IEE 1991] is a
requirement that if the party who supplies the service
operates from outside the UK. then the document must include
provisions stating arrangements for payment in foreign
currency. Constraints of this type are expressed using the
same language employed for constraints linking sub-units of a
document. Thus the given example would be represented
according to the scheme:

forces (DocType, Data, Document_ Unit) .

For the example:

forces(‘IEE MF/2 ‘ , [$Party-Address \= UK,

part (‘ Foreign CurrenCY Payments’)) .

It should be noted that constraints of all three types are

recorded with the generic document in such a way that they
are automatically inherited by all the instances. Constraints of
all kinds, including cross-references, are checked during the
drafting process, either after every inclusion of a document
unit or data item, or more usually, whenever the user explicitly
requests it.

6. AN EXAMPLE OF A DRAFTING SESSION

This section provides a sample session of the drafting program
and illustrates how the representations are used. The program
is implemented in MacProlog: Prolog allows for efficient
prototyping and is ideal for implementing the constraint
checking component. The MacProlog environment supplies a
number of very useful primitives for the construction of a
usable interface [LPA 1992].

Normally the drafting of a document is spread over several

sessions but for this presentation we will imagine that it is

done in one session. During the drafting session the user
provides specific data values and makes choices about the
contents of the document which he drafts. The drafting
module uses the input provided by the user and the generic
information that we have stored in order to construct a
document instance, while checking it against the constraints
that are imposed on the whole process.

A danger in drafting large documents is that the user can
become disoriented in the detail and Iarge number of steps that
need to be taken. In order to impose some structure on the
process we have adopted a specific order in which drafting is

67

I ‘fou ttaue Tlnlsttod mHRtlrttt Ihs dnunnmt. I

I

I

If violations occur, appropriate warning messages are

displayed and remedial action is recommended.
The user supplies additional information about parties and
contents by ~ejecting the appropriate buttons:

W3rnltI~ If SeCtlOn (I -6): P6~mertts Is Included then

SeCLIOn (4-1} .4mendmenkl must be included hut Ii? mlesil

worn tne drIcumwIt.

Wermrg If section (I -6> Pe~ments Is Inc[uiled then

section (4-2} ‘4wlnilons mu9t be Included hut 19 missing
from the document I

A+ Insert missing sectiun sectiuni+ll m

nDw?
&

The prototype system also supports querying of the database

of document instances.

The less information the user provides, the more general the
query. Users can make specific queries, for example, stating
the category of documents they are interested in, a date on,
before or after which the documents were drafted, or they can
provide particular information about the parties or the contents
of the documents they are searching, An example of such a

query is, “Find all contracts for research, which were drafted
before December 1994, where the company has contracted

with a party based in France, which contain version 3 of

payment terms”.

Documents that satisfy the requirements set out in the query

are presented to the user as shown in the following picture and
he can then select the ones he wishes to examine. Text files
that correspond to the selected document(s) are accessed and
manipulated by a separate module, allowing the actual text of
the document to be viewed in its entirety.

Ewwnd which RI: Pans Plant 1992
dacament? 112: Swthampton Plant1993

.,
- ‘ I

7. CONCLUSIONS AND FUTURE WORK

We presented a framework within which the structure and
coarse content of contracts can be represented for the purposes
of drafting and contract database retrieval. The main features
of our approach are:

1.

2.

3.

The system addresses the structure and the

interrelationships between the constituent parts of

contracts, but not the text of the documents itself.
The representation of documents is separated from the

mechanisms that manipulate it.

The drafting process is subject to a collection of explicitly

stated constraints that govern the structure of the

documents.

The prototype system is usable in its current form but it
obviously needs further development and additional features—

68

performed. The user is permitted to go back and modify or
adjust previous choices. Constraint checking can be activated
or de-activated during the session from a menu. Thus the ueer
can choose whether checking takes place in a step-by-step
fashion andlor at the end of the drafting session before the
instance is actually stored.

A user begins the drafting session by making a selection from
the database of available generic documents. A unique
identifier for the new document instance is automatically
constructed; the user can SUDDIYhis own choi~e of a name by
which the new document wiil’b; referred.

Draft a new Contract

Dacumenl Type: Rewarch w

tlocument namfx
l!w@U

Oucument Ilk
lY----J

At some stage during the drafting (often but not necessarily at
the beginning) the user is required to input information a~bout
the contracting parties (names, addresses) and the date the
agreement is drafted.

comrsmtg nddrew

m

‘“”gu’’gn’”’me:~ ski
‘“”s”’’’”’’’’””= “

The associated help files simply explain what kind of
information is required and where it typically appears in
documents of this type. (Some of the IEE model contracts
aLso provide some relevant commentary which is nnade
available to the user in the same way.)

Compulsory parts for the selected document type are presented

in a menu. A user who is familiar with the contents of a part
may choose to have it included automatically in the document,
without going into it in detail.

Cnnsullants General Obligations
commencement ana DuraUon
Payment

Ualue fldded Tax
Tfwminutirrn

Suspension

I Force Majeure

If the user prefers to view the contents of the se!ected part-or
if a part chosen to be included tiutomatically contains
alternative versions or requires data values—the sections that
it contains are presented one at a time, in a manner described
below. -

- secoon(I -11.uer[l I ~El! :
Tts COnlr9ClWstall O*4W!I@dto INW rnit#tiU MMlf #$+3
ter man msrrnblu IWdonem to all tircumhma
J(klinq ikCn.+r6i {irddi.g Bny sslciy rqulakin.s
9PP11W01*10ttm Plant In ttw country wmrb It 1: !Dm
are21*0) 4MW hw* *kamlrdd lrncordlllbm ord
Sc@ifimtian,vtth smh dfmwifor, $tt’sdulda, plefeand
in fnrmatfm. zs mugb a!mn=d ihwclnnr m(crrml ts
tnkr*mJ

raciion(1-1)mrntnrls

GEal

If there are alternative versions of the section then these can be
displayed and compared. The Help button accesses the
associated commentary and notes. If the user accepts an
existing version of the section, a note is made in dynamic
memory and the session continues with the next section or the
next part. If no existing version is satisfactory, the user can
create his own, possibly by modifying an existing one. A
simple text editor is provided for this purpose. (As indicated in
the previous sections this version of the system does not
support more drastic modifications affecting the structure of
the document, since this requires knowledge of the internal
representation of documents. The user can however change
the order in which sections or parts appear in the document.)
The keywords associated with the section may also be
modified.

Once compulsory parts have been dealt with, the user
normally proceeds with optional parts in similar fashion,
except that at this stage he has the opportunity to indicate that
the contents of the document are now complete.

The user can check the document against the constraints at any
point of the session or he can choose to have them checked

automatically after every new entry.

69

more sophisticated text editors, improved file management,
interface with the hypertext systems, and so on—before it
provides the facilities expected of a finished product. At this
stage our primary concern is to identify the main features to be
supported. So far we have tried the system on four contract
types. (They are all from similar areas but we are confident
that the approach is applicable to a wide class of contracts.)

We presume that one of the most common kinds of queries in
which users might be interested ii to determine what specific
obligations and rights are imposed by the agreement on the
contracting parties or what procedures apply under given
circumstances. We have experimented with an extended
representation which indexes sub-units of a document not just
by keywords but also by recording explicitly ‘duties’ and
‘rights’ for each of the contracting parties. (This
representation is just a form of indexing and is not an attempt
to represent the meaning of terms such as ‘duty’ or ‘right’.)
This seems natural but it is still not clear whether users will
find such a facility useful in practice.

As Lauritsen [1992] notes document assembly programs so far
have been concerned mainly with automating the selection of
document components, the insertion of specific values in
selected textual templates and formatting work such as
paragraph numbering and pagination. He stresses that
“[choosing what components to include in the first place,
shaping them to extra-documentary objectives, and attending
to semantic, strategic, and stylistic entailments among those
choices, are where the real expertise-and the AI challenge—
lies.”

Of course Lauritsen is right. Contract drafting involves much
more than merely deciding which blocks of text to include in a
new agreement. The system described in this paper is
intended to provide the basic framework to which other tools
dealing with other aspects of the drafting process will be
attached.

However the importance of contract assembly should not be
underestimated either. It is not that we have chosen this
approach as a temporary measure until we can develop
something more sophisticated. In some circumstances
contract drafting can best be viewed as an assembly process.
What is important then is to make the dependencies and the
effects of the various units as explicit as possible. We see the
constraints described in this paper as a step in that direction.

ACKNOWLEDGEMENTS

REFERENCES

ALDUS [1992]: The ALDUS Project: Artificial Legal
Draftsman for Use in Sales. Final report of ESPRIT
Exploratory Action, ESPRIT Commission, 1992

Bryan M [1988]: SGML: An Author’s Guide to the Standard
Generalized Markup Language, Addison-Wesley Pub.
Ltd., 1988.

Fiedler H [1985]: ‘Expert Systems as a Tool for Drafting
Legal Decisions’ in A Martino (cd.) F’-r -vceedings of
the 2nd International Conference on Log’ic, Informatics
and Law, Florence, pp 265-274., 1985.

Furuta R [1989]: ‘Concepts and models for structured
documents’ in Andr6, Furuta & Quint (eds) Structured
Documents, Cambridge University Press, 1989.

Gordon T F [1992]: ‘A Theory Construction Approach to
Legal Document Assembly’ in A Martino (cd.) Expert
Systems in Law, Elsevier Publishers B. V., 1992.

IEE [1988]: Model Form of General Conditions of Contract—
Home or Overseas Contracts with Erection (MF/1), I
Institution of Electrical Engineers, 1988.

IEE [1991]: Model Form of General Conditions of Contract—
Home or Overseas Contracts for the Supply of Electrical
or Mechanical Plant (MF/2), Institution of Electrical
Engineers, 1991.

Lauritsen M [1992]: ‘Technology Report: Building Legal
Practice Systems with Today’s Commercial Authoring
Tools’ in Art#icial Intelligence and Luwa 1:1:87-102,

1992.

LPA [1992]: MacProlog 4.1 Reference Manual, and
MacProlog 4.5 Update Notes, Logic Programming
Associates Ltd., 1992,

Smith J M & Stutely R [1988]: SGML: the user’s guide to
ISO 8879, Ellis Horwood Ltd., 1988.

Sprowl J [1980]: ‘Automated Assembly of Legal Documents’
in B Niblett (cd.) Computer Science and Law,
Cambridge University Press, 1980

Aspassia Daskalopulu is sponsored by a British Gas
scholarship. We are grateful to Paul Cartledge, Philip Colby,
Tony Fincham, Mark Green, Patrick Leonard and John Piggott
of British Gas for providing us with the opportunity to work
on this project and for their helpful advice, comments and
assistance throughout its course.

70

