
INDIAN CENTRAL CIVIL SERVICE PENSION RULES:
A CASE STUDY IN LOGIC PROGRAMMING APPLIED TO REGULATIONS

M.J. Sergotl A.S. Kamble, K.K. Baja]

KBCS Nodal Centre

Department of Electronics
Government of India

New Delhi

1Department of Computing

Imperiat College of Science, Technology and Medicine
LnndonSW72BZ

1. INTRODUCTION

Logic programming has been applied to a variety of examples in

law and rules and regulations of different kinds. The best known

examples are the representations of the British Nationality Act
1981 [Sergot et al. 1986] and United Kingdom social security
legislation [Bench-Capon et al. 1987] constructed at Imperial

College, London. The paper [Sergot 1988] and the survey [Sergot
1990] contain references to other applications. Essentially, these
applications construct a legal analysis program by representing
some fragment of legislation in logic and then executing the
representatio~ either as a stand-alone program or as a compment

of some bigger system.

This paper describes an application of the same basic techniques

to the Pension Rules of the Indian Central Civil Service (CCS).

Employees are entitled to a pension and several other kinds of

payments on retirement (or death), depending on various factors

of which the length of (qualifying) service and rates of pay are the

most important. The program calculates an employee’s qualifying
service and pension entitlements according to the rules in the

standard reference book. An earlier paper [Bajaj et al. 1989a]
presents a very preliminary version of this application.

The work was conducted at the KBCS Nodal Centre at the

Department of Electronics (DOE), Government of Indi& as part of
a much larger project on Knowledge Based Computer Systems
(KBCS) sponsored by the Government of India and the United

Nations Development Programme. Within this project the DOE
centre is developing systems to assist with the administration and

preparation of legislation.

At this stage the main objective of the DOE certtre is to produce
demonstration systems for distribution to potential users within

the Government and etsewhere. The application described here is
one of two that have been developed so faq the other concerns
Indian import-export policy and regulations [Bajaj et al. 1989b].
The DCSE centre has also embarked on a third application, dealing
with case law in Indian Environmental Law, and water pollution
cases more spec~lcally.

Both demonstrator systems were developed on Apple Macintosh
II computers using the MacProlog system [see references] and
were then ported to IBMpc-style computers for wider distribution.

Permission to copy wilhwt fee all or put of this mmerial is gmnkd pmvidcd that
the rmpi- u?. not made or distributed fur direct wmmsrcial advtmmgq ihe.ACM

c~yright notim ~d the tiu of the @liwion mcd its CMte W.W, md notice ia
givm that copying is by permission of the Amociaticm for Computing Machinery.
To copy othca-wise,or to republish, requira a fee andlor specific pmnission.

@ ACM O-89791-399-X/9 1/0600/0118 $1.50

The CCS Pension Rules

The CCS Pension Rules determine the type and amount of pension
and other retirement benefits for almost all Government

employees in India. They also regulate how the pension scheme is
administered. They are published in a standard reference book
containing 89 rules, 252 sub-rules, and supplementary material in
the form of Government of India Decisions (GIDs). GIDs are
Office Memoranda and Circulars dealing with detailed
procedures, or introducing expansions and clarifications to rectify
problems that have come to light The edition of the reference
book we used contains 338 GIDs. There is also a shorter

explanatory book Know Your Retirement Benejits which we wilf

refer to from time to time. Most employees would consult this
because it omits complicating detail and adminiskative procedures

and gives a clearer overview of the scheme.

Pension entitlement depends essentially on qualifying service,

which is roughly the period of time for which an employee has
worked without interruption in Government service. Once
qualifying service is determined calculation of pension entitlement

is straightfonvard, requiring only some additional data on pay
(’emoluments’) and the types of post held. Chapter 111of the CCS
Pension Rules deals with qualifying service. It is the largest of the
chapters, containing 20 rules, 45 sub-rules and 95 GIDs. It is also

the most complex. This paper describes only the component for
determining qualifying service. The parts dealing with calculation
of pensions are very straightforward in comparison.

Aims and structure of the paper

The main aim of this paper is to describe the program and the
techniques used in its construction, but there are some features we
wish to emphasize more than others.

The bulk of the paper comprises a description of the CCS Pension
Rules for ‘qualifying service’ (section 2), the general design of the
system (sections 3 and 4), and extracts from the representation

itself (section 5). Because of the nature of the Rules and what the

program computes, much of this discussion concerns the
representation of periods of time. This is not the feature we wish
to emphasize here. There is nothing specifically ‘legal’ about this

aspect of the representation, so we present only what appeared to
be the simplest treatment of time with a few remarks about
possible alternatives. The extracts in section 5 are fairly detailed,

but this is only to give an impression of what the Rules are like.

The features we wish to emphasize are the nature of the program
and the nature of the Pension Rules.

Stamper took as the point of departure for his LEGOL project
[Stamper 1980] the observation that many typicaf data processing
systems are introduced into an organisation to administer rules
and regulations, and he advocated that this should be made

118

explicit in the analysis and implementation of such computer

systcms. Following Stamper, Scrgot [1988] argues that there is no

essential difference between something Mcc a payroll system and
a legal analysis program that attempts to determine whether the
legal concept of ‘taxpayer’ applies to the facts of some given case,

except that the programming techniques employed in the two

cases are usually different. The CCS Pension Rules program

provides a simple illustration in support of this argument. Though
it can be regarded as a legal analysis program in that it gives

precise definitions of quasi-legal concepts like ‘qualifying service’

expressed in logic, it can also be regarded as a program to

automate the calculation of employees’ pension entitlements,
which is a fairly typicitl kind of data processing application.

Second, legislative provisions and regulations vary widely in their
character. Moreover, the same regulation can be read and

represented in different ways depending on what the
representation is for. The CCS Pension Rules provide some good
examples. Some of the rules, which at fit sight contribute to the

definition of ‘qualifying service’, are better regarded as

constraints on how the pension scheme operates and is
administered. We give some specific examples in section 5 and
indicate in section 6 how the representation would differ if we

wished to construct a program supporting the administrative
aspects of the Pension Rules.

We should have fiked to document here the process by which we
arrived at the representation. We could not for lack of space. We

present only the end result with occasional comments in the text
and some remarks about alternative formulations in the
concluding section.

2. THE CCS PENSION RULES AND QUALIFYING
SERVICE

The basic idea of qualifying service is simple enough. A person
works in the Central Civil Service without interruption in a variety

of posts The total period of time spent in these posts is essentially

the period of qualifying service, but there maybe isolated periods
of time that have to be subtracted, such as periods of suspension

or training, time spent on extraordinary leave, and so on. It is slso

possible that some or all of this service must be discounted
altogether, because cextain circumstances, such as resignation or
dismissal, entail forfeiture of past service.

Ultimately, we are not as interested in the period of qualifying

service (such as 25 January 1955 to 13 May 1986) as in the
umourst of qualifying service, which is expressed as the number of
completed six-monthly units (here 62 of them). The period of

qualifying service, with its start and end dates, is just a step in
calculating the amount of qualifying service - but it is the main

step and the period itself cannot be discarded because the actual
dates are required later, for example to calculate the amount of

pension paid.

Imprecision

We do not wish to dwell on how many representational problems

are caused by imprecision or other flaws in the drafting, except to
make this remark.

In common with many other examples of legislation and
regulations, especially those that refer to periods of time, the
Pension Rules arc imprecise and very casual about many of the

key concepts. They are certainly not precise enough to be
formulated directly as an executable program, and they are
arguably not precise enough to be applied by a human agent
either.

The main problem, apart from the way the Pension Rules are
structured, is that there are clearly some under~ ing concepts that

arc key to understanding and applying the rules but which are not
defined or even mentioned directly. For example, the period of

qualifying service seems to be a key idea, but this concept is not

referred to explicitly. Indeed, the very phrase ‘qualifying service’

as used in the Pension Rules often does not refer to the qualifying
service that is being defined, but to the different concept ‘service

that qualifies for pension’ or even ‘service that would qualify for

pension but for certain other conditions’.

Before a representation of the regulations can begin, in any

representational language (including English), it is necessary to
establish a more precise vocabulary of underlying concepts.

Of course it has been remarked before that legislators and drafters

of regulations often use the same term to refer to quite different

things, and that this can cause severe difficulties in interpreting
what has been written. We have made the remark again because in

this application the wording and structure of the Rules impeded

representation to such an extent that it was impossible to make

much progress without devising our own terminology.

Qualifying posts and disqualified periods

We need some way of referring to ‘service that qualifies for

pension’ and distinguishing this from ‘qualifying service’ as
defined by the Rules.

Time spent in posts outside the Central Civil Service can
sometimes count towards qualifying service. Examples are service

in one of the state Governments followed by transfer to central
Govemmen~ and certain types of military service. Conversely,
some posta within the Central Civil Service, such as some

probationary appointments and most apprenticeships, do not &mnt
towards pension.

In describing and representing the Pension Rules, we speak
therefore of qualifying ‘posts’. The term ‘post’ refers to an
appointment with a specific title and a specific grade at a specific

organisation within Government (such as ‘Senior Engineer, grade
A, Department of Electronics’). An appointment in a different

organisation, or with a different title or a different grade, is a

different ‘post’. A ‘qualifying post’ is one which the Pension
Rules say contributes to qualifying service; we thus avoid ‘service

that qualifies for pension’ and speak instead of ‘time spent in
qualifying posts’.

Some periods of time in qualifying posta do not contribute to
qualifying service. Periods of suspension (rule 23) fall into this
category, and so do some condoned intenuptions in service (rule

28). These are examples of periods of time that have to be
discounted when calculating the amount of qualifying service. We
call them ‘disqualified periods’.

Note that Civil Service appointments which do not contribute to
qualifying service, such as the probationary appointments and

apprenticeships mentioned above, can be viewed in two ways:

either as posts which do not qualify, or as posta which do quafi~
but whose periods of time are ‘disqualified periods’ that are
discounted when calculating the amount of qualifying service. The

second view seems somewhat contrived but comesponds roughly
to what is said in the explanatory bookleL It also has some other
benefits to do with explanations which we point out in section 5.

Ignoring ‘forfeiture’ for the momentj ‘qualified posts’ and
‘disqualified periods’ give a simple conceptual framework in
which to express the definition of ‘qualifying service’. There are
some additional complications, such as periods of time that count

only fractionally towards qualifying service, but these are minor
complications because they just require elaborating the formula
for calculating the amount of qualifying service to take a

119

weighting factor into accounL Similarly, there are circumstances

in w-hich an employee may be awarded an additional discretionary

amount of qualifying service (rules 29 and 30). Again this is a
minor complication because it does not affect the period of
qualifying service but only the formula for calculating the omoun!

once the period is determined. We omit this level of detail when
describing our representation in this paper.

Example

A person holds two qualifying posts in his or her Civil Service
career, including one period of suspension (say) which does not
count towards qualifying service.

tl tz

l~o~l —~fJst2-
~suspended-1

4 ts
We view this as follows

● the total period of time spent in qualifying posts (’total service
of the Government servant’ in the explanatory booklet) is

tl -t.3

● from this we must discount the disqualified period t4-t5;

● so the period of qualifying service consists of two time
intervals

tl-q and t.#~

c the amoti of quali~ing service (qs) is given by
qs = .six-monfh-units-in(t*-t~ “ + “ t.3-tJ)

There may also be a discretionary amount to be added to qs but

this does not affect the main calculation. Note tha~ because of
rounding, this formula may or may not yield the same answer

as
qs = siwnOnfh-units-in(tl-t,J + six-rnonlhmits-in(t~ts)

or
qs = six-month-units-in(tI-t3 “’-” td-~).

The Pension Rules and the explanatory brochure do not address
the details of rounding, but since our program calculates the
relevant periods, adjustments to the qs formula can be
accommodated very easily.

Qualifying Service: forfeiture

A complication in formulating the definition of qualifying service

is that dismissal or removal or resignation from Government

service (and ce~in other circumstances) entails forfeiture of past
service. Indeed, Rules 27 and 28 say tha~ with some exceptions,

any interruption in the service of a Government service forfeits

past service.

There are two main reasons why forfeiture of past service is a
complication.
. First, without the possibility of forfeiture, determining
whether a given post contributes to qualifying service simply

requires looking to see what kind of post it is. With the possibility
of forfeiture this is not enough. Service which would otherwise
qualify may have been forfeit later, so it becomes necessary to
examine also the rest of the service record.
. Second, there are now two different kinds of interruptions in

service. There are interruptions which are just disqualified periods
that have to be subtracted from the total period of time in
qualifying posts. And there are interruptions which are more

serious than this, because they forfeit all past service too. The
rules for distinguishing between these interruptions are dispersed
throughout the text and are sometimes implicit. ‘Condoned

interruptions’ do not forfeit past service - but some do and some
do not have to be subtracted when calculating the amount of
qualifying service.

The Pension Rules often refer to ‘qualifying service’ where a

phrase like ‘service that qualifies if it is not forfeit later’ would be

more accurate. Again, ‘qualifying post’ eliminates the need for
circumlocutions like this: a post is a ‘qualifying post’ or it is not;

time spent in a qualifying post may count towards qualifying
service, or it may not.

Example

Suppose a person holds two qualifying posts, followed by a

forfeiting interruption, followed by three more qualifying posts
after re-employmen~ Suppose also that the second series of posts

contains a disqualified period of suspension. (It does not matter

whether this example is realistic. It is used for illustration only.)

In our terminology

● the total period of time spent in qualifying posts consists of two
separate time intervals tl-t3 and ~-t7

● the interruption t3-t4 forfeits all past service, leaving t@7;

● from this we must discount the disqualified period tr~;

● so the period of qualifying service consists of ~-t8 and ~–t7;

● the amount of qualifying service (qs) is
qs - six-month-units-in(t@g “+ “ t@,)

or qs = s&nonth-units-in(&tJ + s&nonth-units-in(~t7)

or qs - six-monfh-unirs- in&-t7 “-” trtJ.
depending on the details of rounding.

We stress that this is our own terminology. These concepts are not

referred to explicitly in the Pension Rules, although they do seem

to correspond quite closely to the account given in the explanatmy
booklet. Within this conceptual framework, there are many
possible formalisations of the individual Rules and the
manipulation of time periods. The formrdisation we used in the
demonstrator system is sketched in section 5.

3. DESIGN CONSIDERAllONS

We want a system that calculates an employee’s pension

entitlements (qualifying service) according to what is written in
the Pension Rules.

It is immediately obvious that a certain amount of data - details of
the posts held during the employee’s Civil Semite career and
other relevant periods of time - will have to be input at some
stage. It is possible to arrange that all data will be requested
automatically by the program as it calculates, but to leave all data

entry until then is unrealistic in this application. We are going to
have to input at least the basic data regarding the service history,
and it would be natural if this takes place ahead of time, before

calculation of the pension entitlements begins. In any case, in an
operational setting, it is very likely that many of these data would
already be available on the personnel databases that Government
departments maintain, and the application should reflect this if it
is to be a convincing demonstrator.

Evexy employee in the Indian Civil Service has a ‘service book’,
which is a (paper) record of the complete career history, including
details of appointments, transfers, promotions, periods of sickness,

leave, deputation to other organisations, and so on. It is the
information in the service book from which pension entitlements
are calculated. Several of the GIDs in the CCS Pension Rules
stress the importance of making proper entries in iL

120

The demonstrator system we have implemented has two separate

components:

G the pension calculator, which is a set of rules defining
qualifying service and pension entitlements in terms of

assertions about employees’ service histories;

● a data entry program (in Prolog) for transcribing the

information in the ‘service book’ into a set of assertions stored

as a (Prolog) database.
The two programs serve separate functions, though in the
demonstrator system they are normally resident in the machine at

the same time.

Q%dataemy
program WiiEl

M#taIu

In addition to the raw data about an employee’s Civil Service
posts and the other recorded periods of time, there are many

further details which need to be inpuL such as whether a period of
suspension was ‘subsequently regularised as duty or leave’, or
whether a transfer to another post was ‘by deputation only’ or
whether a temporary employee held a ‘lien or a suspended lien on

a permanent pensionable post’. In the demonstrator system these

additional detaiIs are not collected by the data entry program but
are referted to the user of the pension calculator itself (’user2’ in

the diagram). The rules defining pension entitlements are exeeuted

by a Prolog system which provides a ‘Query-the-User’ (QtU)
mechanism [Sergot 1983]. The QtU mechanism automatically

generates requests for additional data as the pension calculation

requires them.

(Most of the applications of logic programming g referred to in the
introduction used the APES system [Hammond & Sergot 1983]
which provides a generaf QtU mechanism as well as several other

features. In this application, a very simple version of QtU is

adequate and can be implemented in just a few lines of Prolog
code.)

A note on methodology

The use of a QtU mechanism in this application might seem to be
redundant. But eliminating it from the outset places too great a
burden on the data entry program Not only must the data entry
program provide a convenient user interface, it must identify what
data are relevant and whether some items are worth collecting at

all, and it is always necessary to check that data are meaningful as
well. In the worst case, the whole of the Pension Rule

representation would migrate into the data entry program and be
absorbed in the procedures that implement it.

Experience in previous applications has demonstrated the value of
decomposing the development of an application into two separate
phases. The objective of the first phase is to produce a
representation of the required fragment of law. This representation
should be executable, but the emphasis is on producing an

accurate representation and not on operational and behaviouraf
questions. These arc adjusted later in a separate second phase. The

main advantage of this decomposition is that by and large. all
legally sensitive issues concerning representation are addressed in
the first phase, while only computational details are examined in

the second. Since the first phase is critical, it is important not to
confuse and complicate this by trying to address at the same time

how the program should behave, what sort of questions it should

ask, and in what order.

It might be desirable eventually to move some or all of the QtU

interaction into the data entry program. But this can be done in a

later development. (Pat of it has been done already.) Note that no
adjustment is required to the pension calculator and the rules

defining pension entitlements. The QtU mechanism only generates

requests for missing data; if an item of data has already been
entered the QtU mechanism is not invoked.

A possibie third component

Calculation of pension entitlements takes place when an employee
is about to retire (or has recently deceased). In our systen the

function of the data entry program (and the QtU mechanism) is to
transcribe the information that is present in the service book at this
stage.

It would be possible of course to add a third program to the
systenL which would allow an electronic version of the service

book to be built up and maintained as the employee’s Civil

Service career progresses. This third component has not been
built. Section 6 sketches what construction of such a program
would involve by reference to some specific examples. It argues

that the representation of the Pension Rules would have to be
different and would require attention to some interesting technical
questions. For the time being, we have concentrated on the much

simpler problem of calculating pension entitlements from the
information that is present in the service book at the time of

retirement.

Treatments of temporai data

The representation of the rules defining pension entitlements, and

to some extent the data entry program too, depend on how we
choose to deal with temporaf data in this application. Since we am
not emphasizing the treatment of temporal data in this paper we

make only some general remarks here.

Apart from special-purpose temporal Iogics, which are not

particularly useful in this application there are two basic schemes

for dealing with temporal information: one is based on intervals or
periods of time; the other is baaed on events, or the time points at

which changes take place. In this application, both schemes can be

used, or any combination of them.

For the demonstrator system we have chosen to formulate both

data about service histories and the rules defining pension
entitlements in terms of periods only. This seems to yield the

simplest trcatmeng though not perhaps the most elegant. The
simplicity of the treatment is important because we want to be
able to explain to users how the calculations were obtained.
Suggestions for other treatments of temporal data are mentioned

in the concluding section of the paper.

4. THE DATA ENTRY PROGRAM

This section gives a brief description of the data entry program, It

is included for the sake of completeness only, even though the
time spent on construction of this program far outweighs the time
spent on representation of the Pension Rules themselves.

There are hvo parts to the data entry program input of dat& and
the checking of constraints tn ensure that the data are meaningful.

Data about an employee’s service historY are input through a
series of forms. This is also the interface for examining and
editing the database of service histories. It was the implementation
of this part which took most of the programming effor4 because of
the amount of low-level programming required. (MacPmlog

121

provides a set of routines for generating ‘dialogs’ and menus at a
comparatively high-level, but much time-consuming programming

is still necessasy to set up the required forms. Moving the whole
demonstrator system to IBM-style personal computers is almost
exclusively a matter of re-implementing the forms interface.) All
of this programming effort could have been eliminated by
arranging for the data to be input using any standard database or
spreadsheet package, except that so many items of data have to be
entered and so many constraints have to be checked that

implementing a special-purpose data entry program in Prolog
became more attractive.

l%e consmint checking techniques employed have some technical
interest but cannot be presented here for lack of space. It is

enough to say that the data entry program ensures that descriptions
of posts and other recorded periods of time together make up a
coherent service history. In particular, gaps in the service history,
which can affect pension entitlements, could be due to mistakes in
data entry or to genuine interruptions in service. The difference
can be detected because genuine interruptions only occur in
certain well-defined circumstances.

5. DEFINITION AND CALCULATION OF QUALIFYING
SERVICE

As already mentioned, the essential problem in calculating
pension entitlements is to determine the amount (or the period) of
qualifying service. Calculation of the various pension amounts
follows immediately from this and we omit the details. The

demonstrator system also provides an ‘explanation’ component
which justifies how the calculation was obtained. Again, its

implementation is straightforward and we do not present the
details.

Chapter 111 of the CCS Pension Rules deals with qualifying

service. Every one of the 20 main rules, with its supplementary
GIDs, raises interesting representational questions. We cannot
examine all of the options in detail. We describe only how our

formulation deals with th.. temporal data (periods of time) and
sketch how the individual Rules are represented within this

framework. The Rules for qualifying service can be grouped
naturally into several categories, roughly in the order in which
they appear in the texL We give representative samples of each

group, and make further comments about some of them in section
6. In order to give an impression of what the representation
involves (and why the program performs a useful computation)
these extracts are fairly detailed and this section of the paper is

comparatively long.

Form of the input data

Assume that the basic service history of each employee is
described as a set of assertions of the following form

employee (Emp_ki, Date of birth)
post_held (Emp_id, Pos7) -
racordad~eriod (Entp_id, Period)

(This is not the exact form of the data constructed by the data
entry program but there is an interface which converts what is
constructed into this form.)

Here Emp_id is some identfiler for the employee. Post in the
po st_held assertions is a data structure (a Prolog term) giving
details of a single Government post held by the employee,
including start and end dates, the organisation, position held,

details of the type of pos~ and so on. We explain in a moment
how the formulation of the qualifying service Rules can be made
independent of the details of this data structure. Period in the

reco rded_pe ri. od assertions is a data structure for other

relevant periods of time, such as periods of suspension, leave,
sickness etc., again with start and end dates and other details as

provided through the data entry program.

In our terminology, each of the Rules roughly speaking gives

conditions that determine whether time spent in a given post
counts towards qualifying service, which other periods of time are
disqualified and hence to be subtracted, and what kind of

interruptions in service entail forfeiture of past service.

A simple example of a Rule

Rule 13 is the fmt in the section on qualifying service and the one

that applies to almost every post held by every Civil Service
employee. With some exceptions, it says simply that qualifying
service commences from the first substantive appointment. No
Rules specify when qualifying service ends, this being left to the
common-sense of the reader. In our conceptualisation, we need to

determine whether time spent in a ‘post’ is to be regarded as
service that qualifies, and Rule 13 is formulated thus:

qualify ing_period(’13’, Emp id, Period) :-

post_held(Emp_id, Post) , –

category (Post, substantive) ,

type (Post, central) ,

% ‘central’ means rules 14(1) & 14(2) apply

time_period_of (Post, Period) .

(We use Prolog syntax throughout. Strings beginning with an
upper case character, and the underscore _, are variables.)

The choice of the predicate qualify ing>eriod could perhaps
be improved. Its intended reading is ‘time spent in service that

qualities’ and not the ‘period of qualifying service’ (which is what
we want to compute). The fmt argument ‘13’ refers to the Rule
and is not significant - it is only used by the explanation module.

Note that the representation of Rule 13 does not refer directly to
the internal structure of Post but uses predicates like category,

type, and t ime>eriod of to select items from it. The use of
these ‘selector’ predicates is–a standard programming technique to
make the formulation of rules independent of changes in data
structure&

Suppose that the Post data structure is a Prolog term of the form

PO st (Organisatwo Type, Posidoq Grade, Categoq, Start, End)

‘Selector’ predicates can be deflmed straightforwardly:

type (post (_, Type, _,_,_,_,_) , ‘WPe) .

category (post (_, _,_,_, Category, _,_) , Category) .

time_period_of (post (, , , , St, End) , St-End) .—-—— -~

Additional ‘selector’ predicates can be defined as they are

required. If the post data structure has to be modified later, for
example to include other items of data that turn out to be
necessary, then no modification is required to the rules, but only
to the definition of the ‘selector’ predicates. (The post data

structure used in the application is more complicated than the one
illustrated but there is no need for us to explain all the details, for
the re4Ma.s juet given).

Note also the comment in the rule shown above. Rules 14(1) and

14(2) of the Pension Rules give conditions for what counts as
‘central Government’. For the pension calculator we assume that
these conditions are brought to the user’s attention during
transcription of the service book and that only posts satisfying
them have been entered as type ‘central’.

Exceptions

One of the exceptions to Rule 13 is that ‘service rendered before
attaining the age of eighteen years’ does not count. Since
disqualified periods of time will be subtracted when calculating

122

the period of qualifying service, they effectively give us a way of

expressing negation, and thus a way of expressing exceptions too.

Hence:

disqualified period(’13’, Emp id, Discounted) :-

post held~Emp_id, Post), -

atta;ns_age (Emp_id, 18, Date),
time_period_of (Post, Period) ,
period_before_date (Period,Date, Discounted).

(This is only an approximation of the actual rule because the

minimum age is dependent on the type of post and other details,
but the simplified version is sufficient for present purposes.)

attains_age andperiod_before_date arejustauxiliary

proceduresformanipulating dates.

Most of the conditions in this rule are redundant. It does not
matter whether the employee did or did not hold a Government

post atthe timeof the eighteenth birthday because no period of
time before the eighteenth birthday qualifies for pension, for
Government employees or for anybody else, Viewed
computationally, itisrtotdurufions ofdisquslified periodsthatarc

‘subtracted’, but the periods themselves. The period up ta the
eighteenth birthday will be subtracted, but the subtraction will

have no net effect if there is no qualifying period to subtract it

from. We include the redundant conditions in the rule for the sake
of explanations. Without the redundant conditions, an employee
who did not begin Government service until he was twenty-five

years old would be told that the period up to his eighteenth
birthday does not qualify for pension. Though true, this is a
vacuous and potentially confusing statement.

A more representative example

Rule 13 also allows officiating or temporary appointments to

count towards qualifying service, but only if they arc followed
without interruption by substantive appointment of the right kind.

qualify ing_period(’13’, Emp_id, Period) :-
post_held (Emp_id, Temp) ,
(category (Temp, officiating)

; % ‘or’ in Prolog

category (Temp, temporary)) ,
type (Temp, central),

next_post (Emp_id, Temp, Next) ,
category (Next, substantive) ,

type(Next, central),
without interruption (Temp,Next) ,

time_pe;iod_of (Temp, Period) .

Many of the rules refer to the next post in the service history.

next_post just summarises the conditions so that they do not
havetobewntten outeverytime.

Again, the rule as presented here is a simplified version. It deals
with a single temporary ‘post’ instead of temporary ‘service’ -

whichwerepmsent as aequence oftemporary posts.

Temporary service qualifies onfy~it is followed bysubstantive
appointment. Since disqualified periods give us a way of
expressing negation, the ‘only if’ part of the Rule can be

expressed

disqualified_period(’13’ , Emp_id, Period) :-
post_held(Emp_id, Temp),

(category(Temp, officiating)
; % ‘or’ in Prolog

category(Temp, temporary)),
type(Temp, central),
not (

next_post (Emp_id, Temp,Next) ,
category(Next, substantive),
type(Next, central),
without_interruption (Temp,Next)) ,

time_period_of (Temp, Period).

Compu@tionally, this rule has no effect in the calculation of

qualifying service, since a temporary post which does not satisfy

the conditions of Rule 13 is not a qualifying post and its period of
time will not contribute to qualifying service anyway. The

negative ‘only if’ tUle is useful for explanations. An employee

will want to know why his period of temporary service has not
been takenintoaccounC explainingwhythis period isdisqualificd
is easier than explaining why itfails to qualify.

The ’without interruption ‘condition inthis tulealso needs some

comrrtent since it appearsin many rules and also affects the way

thatperiodofqualifying service isdefmedartd computed.

‘Without interruption’

Ourcurrentrepresentation of ’withoutinterruption’ isvery simple

and possibly inadequate.

We take it thatpostz follows postl without interruption ifpost2

starts onthedayposff ends, or (more usually) on the day after.
But it is conceivable that postl ends on a Friday and post2 starts on
the following Monday, or that some public holiday intervenes, and
that the two posts follow each other ‘without interruption’

nevertheless. This sort of detail could be accommodated easily
enough if we implemented and referted to a calendar. We have not

done so, leaving it to the data entry program to ensure that start
dates andend dates ofpostsareerttered by conventionin sucha
way that this kind of trivial but irritating complication is

eliminated.

A possibly more serious omission is that our ‘without
interruption’ test does not take into account what the Pension
Rules call ‘condoned interruptions’ in service. Arguably, but not
certainly, two posts separated by a condoned interruption follow

one another ‘without interruption’.

We have not included a ‘condoned interruption’ condition in our

‘without interruption’ test because it seems to be superfluous. We
assume that the data entry program detects unexplained gaps in

the service history and asks its user to correct those that arc

genuine mistakes. It is possible that interruptions in service still
remain. The significance of condoned intenuptions lies in that

uncondoned interruptions apparently forfeit past service. Yet
when examined more closely, there seems to be no imaginable
circumstance covered by the forfeiture rules which would not

already be covered by some other recorded period intheaervice
history. (The forfeiture rules are described later.) Our current
repnxentationof ‘without intemuption’ relies on this analysis; in
case it is mistaken, the ‘without intemsption’ condition is defined

separately so that it can be adjusted later if the need arises.

A rule requiring additional date

Sub-rule (3) of Rule 14saysthat service inastate Government
counts towards pension if it is followed by transfer to central
Government by &putation only.

qualify ing_period (’14(3)’, Emp_id, Period) :-
post_held(Emp_id, State_post),
type(State_pOst, state),
next post (Emp_id, State_post, Next),

type7Next, central),

transfer by_deputation (Emp_id, State_post, Next) ,
time_per~od_of (State_post, Period).

Againwepresent asimplified veraion oftheactualrule, dealing
onlywithasirtgle statepostrsther thanserviceina seriesofsuch

posts, and wehave not shown the ’only if’ disqualified
period halfof this rule. It is also unclear from the wordin~
whether Rule 14(3) requires the central post to be a substantive

appointment but that is not the point of this example. The point is
thetransfer_by_deputation condition. In the current

123

implementation all such conditions are handled by the QtU
mechanism which refers them to the user of the pension
calculator. It might be preferable eventually to move some of
these questions into thedata entry progrant. (The formttlationof
the rule itself will not change because transfer_ by_

deputation will just become another ‘selector’ predicate.) But
at this stage we prefer not to complicate the data entry program by

making it deal with this sort of detail.

Note incidentally that there is no ‘without interruption’ condition

in Rule 14(3). This might be art oversigh~ or it might be implicit

in transfer by deputation. (Just in case, we included the ‘without
interruption’ condition in our version of the rule.)

Other Pension Rules specify which other service or posts qualify.
They are more or less complicated but are represented in similar

style.

Other recorded periods

Several Pension Rules deal exclusively with what we are calling
‘other recorded periods’, specifying conditions under which they

are ‘disqualified periods’. Rule 23 deals with suspension from
service for disciplinary reasons and is a typical though

comparatively simple example.

Rule 23 says (in our terminology) that a period of suspension is

not a disqualified period if the Government servant is ‘fully
exonerated’ or the suspension is ‘held to be wholly unjust.illed’.
There is no vagueness in these conditions because a CID specifies

the procedure for deciding and recording such questions.
Otherwise, the period is disqualified unless the competent
authority expressly declares that it counts.

disqualified period(’23’, Emp, Time_period) :-

recorded p–eriod(Emp, Period) ,
type (Per~od, suspension) ,

not exonerated_ or_unjusti fied(Emp, Period) ,

mention at the end, it seems on closer examination that there are
only two circumstances which entail forfeiture: dismissal or

removal from service (Rule 24) and resignation (Rule 26). The
other three Rules contain exceptions, expansions and (apparent)

repetitions.

Both ~es of forfeiture have the same basic form: there is (what
we call) a ‘forfeiting event’ (dismissal or resignation); there are

exceptions (re-instatement after dismissal or withdrawn

resignations); and there are conditions which determine wherher a

condoned interruption (dismissal-re-instatementorresignation-

withdrawal) counts towards qualifying service or is another case
of a ‘disqualified period’.

There are many different ways of representing these forfeiture
rules depending on how we imagine the circumstances are most

naturally described.

For example, we could describe a dismissal-re-instatement
episode as two separate posts:

l-post,-{ +pos[~+

dismissal re-instatement

This sort of description seemed unnatural to us, especially as
postl and posz2 will normally be identical in afrnost every respect.

An alternative is to say that there was only one posL but it
included a recorded period of time of type ‘disrnissal-re-
irtstatement’:

~os$ I
l-dim”ssal-re-imrmtement~

We chose the second of these. Both views (and others) support the

representation of forfeiture rules straightforwardly enough, but the

second seemed to correspond more naturally to the description

that would appear in a (complete) service bcok. There would be a

record of the dismissal, followed by a statement that the employee
not expressly declared as qualify ing(Emp, period) , was subseauentlv re-instated and resumed dutv. and it seems~-
excluded by_e;try in s=rvlce_book (Emp, Period) ,
time_per~od_of (Pe~io=, Time_period) .

Again, the conditions in this rule are dealt with by the QtU
mechanism or as ‘selector’ predicates on the data structures stored
using the data entry program.

The condition excluded_by_entry_ i.n_service_book
comes from GID(1) under Rule 23, which stnxses the importance
of making proper entries about suspensions in the service book.
GID(l) finishes with: “Specific entries in this regard in the service

book wilf be taken note of at the time of reckoning qualifying

service. In the absence of any specific entry, period of suspension
(sic) shall be taken as counting towards the qualifying service.”

This simple treatment of CID(1) is made possible because of the
assumption that the program is used to calculate pension

entitlements at the time of retirement when the service book is
complete. GID(1) (and GID(2) dealing with detailed
administrative procedures) would have to be represented
differently if we were to construct the missing third component
referred to earlier, the program that allows an electronic version of
the service book to be maintained. We sketch what would be

involved in constructing this third component in section 6.

Other recorded periods are dealt with in the same way as periods

of suspension. In the simplest representation there are also
recorded periods corresponding to ‘condoned interruptions’ that
would forfeit past service if they were not ‘condoned’. These are
described next.

Forfeiture of past service

Five of the Pension Rules (24 to 28 inclusive) are devoted to
forfeiture of past service. But for one minor exception which we

reasonable’ to tr~nscribe this information as ~nother kind of
‘recorded period’. (Of course it could be argued that neither of
these alternative ways of transcribing the service book is adequate,
and that a narrative account would be most natural. We make
some comments along these lines in the concluding section of the
paper.)

We illustra~ the representation of forfeiture rules by showing how

resignation is treated. Dismissaf is almost identical but contains a
few more conditions.

forf_event (’26 (1) ‘ ,Emp, forf (resignation, Date)) :-
post_held(Emp, Post) ,
exit reason (Post, resignation) ,
end(~ost, Date) .

Here exit_rea son and end are ‘selector’ predicates for the
Post data structure. In the term f orf (resignation, Date)
only Date is significant for calculating qualifying service. The
type of forfeiting event (here ‘resignation’) is recorded for the use
of the explanation module. Note that there is no exception in this

rule because a withdrawn resignation does not end a post in our
chosen formulation.

The period between a withdrawn resignation and resumption of
duty never counts towards qualifying service. So we have also

disqualified_peri od(’26 (6) ‘ , Emp, Time_period) :-
recorded period (Emp, Period) ,
type (Per~od, withdrawn_ resignation-resumption) ,
time_period_of (Period, Time_period) .

(We referred earlier to the existence of one. other type of

interruption that can entail forfeiture of past service. Although

Rule 27 states that any intenuption in service forfeits past service,

every circumstance we can imagine, bar one, is covered by an

124

exception, or resignation or dismissal. The remaining

circumstance is participation in a strike. We have omitted strikes

from our representation since some of what is said in the GIDs
suggests that participation in a strike would only forfeit past

service if followed by disciplinary action, suspension from duty,

and dismissal, which we already cover. If we are wrong then a
strike could be represented as another kind of ‘recorded period’
with a forfeiting event of type ‘strike’ occurring at its start.)

The period of qualifying service

We now have all the elements to define the period of qualifying

service. For clarity we present first a simplified version that

ignores forfeiture and then show how it can be adjusted to take
forfeiture into account as well.

Ignoring forfeiture:

period_of_qual ifying_service (Emp, Qual_service) :-
findall (QP,

qualifying_period (_,Emp, QP), QP_list),
amalgamate periods(QP_list, Qual) ,

findall(DP~
disqualified_period (_, Emp,DP), DP_list),

amalgamate periods(DP list, Disqual),
subtract_p~riods (Qual~ Disqual, Qual_service) .

Herefindallis the Prologprirnitive thatflmds allsolurions toa

goal: acallto findal l(Term,Goai,Solutio@ retumsSolutwns
as the list of all bindings of Term corresponding to successful
executions of God. (Some Rolog implementations do not provide

f indall directly but have setof or bagof which do roughly
thesarnething.)

Read procedurally, the first two conditions of the clause defining
the period of qualifying service collect the list of all periods of

timespentin qualifying poSts(QP_list) and ’amalgamate’ them
into periods of continuous service (Qual). The next two

conditions find the list of all disqualified periods of time

(DP_l is t) and amalgamate them into continuous periods
(Disqual). The last condition subracts the disqualified periods
from the periods spent in qualifying posts. The implementation of

programs to amalgamate andthen subtract periods of time isa
straightforward exercise and we omit the details. (The
amalgamation step could be eliminated, but it makes

subtract_periods much easier to write. It also isolates
occurrences of the problematic ‘without interruption’ condition.)

The purist might object to the claim that this representation
provides an adequate definition of period_of_qualif ying

_s e rvi ce because the f inda 11 operator rs extra-logical and
certainly not first-order. The criticism is valid, but nothing in the
formulation depends on the use of f inclall. It can be eliminated

easily, at the expense of making the formulation more tedious to
write and more diftlcult to read.

The adjustment to take forfeiture into account is very simple. We

could find all forfeit periods and subtract these as weiL but it is
easier just to ignore all forfeit qualifying periods from the outseb

period_of_quali fying_service (Emp, Qual_service) :-
findall (QP,

(qualify ing_period (_, Rule, QP) ,
not forfeit (_, Emp, Qp)) ,Qp_list) ,

amalgamate periods (QP_list, Qual) ,

findall (DP~
disqualified_peri od(_, Emp, DP), DP_list),

amalgamate_peri ods(DP_list, Disqual),
subtract periods (Qual, Disqual, Qual_service) .—

A period is forfeit if it is in the past of some ‘forfeiting event’:

forfeit (Rule, Emp_id, Period, forf(Type, Date)) :-
forf_event (Rule, Emp_id, forf (Type, Date)) ,
end (Period, End) , End -5 Date.

6. THE(MISSING) THIRD COMPONENT

Every Government employee’s pension entitlement is calculated

from the information that is present in the service book at

retirement (or death). The pension calculator described in the
previous section performs the calculation; the data entry program

is just a means of transcribing what is in the service book so the
calculation can be performed.

There are other programs that could be built to complement this

pair of programs. An obvious additional component would be a

program that maintains a version of the service book as some kind

of database, allowing entries to be made as the employee’s

Government career progresses. We are thinking here not of a
program that just keeps an electronic copy of what currently

apwmsonpapm, butadiffertmt adrnirdstrative system where the
paper service book is dispensed with altogether and repfaced by a
database. And we suppose that Pension Rules which currently
refer to the service book would apply now to the electronic
version.

This third program would also need to incorporate a

representation of the Pension Rules, since they lay down

administrative procedures and they impose constraints on what

can be entered in the service book and when these entries can be

made. But the representation of the Rules for this program would
have to be different. What is done with the representation would

have to be different too.

The requirements are most clearly illustrated by reference to a

specific example. We use Rule 21 dealing with extraordinary
leave. This is similar to Rule 23 for periods of suspension which
we sketched in the previous section, but it applies more often and

covers a wid,er range of circumstances.

Imagine the following scenario. An employee is granted leave

(noted in the service book) but returns to duty a month later than

he was supposed to. Rule 27(1) says that unauthorised absence in
continuation of authorised leave is a condoned interruption that

does not forfeit past service, but suppose that the manager decides
to grant extraordinary leave to cover the absence retrospectively.
Whether this period of extraordinary leave now counts towards

qualifying service depends on the procedures that are followed
and what is entered in the srxviee book.

If the extmostiinary leave is granted ‘on medicrd eertitlcate’ then it
counts towards qualifying service by Rule 21 and it is enough to
note this in the service book. If the grounds for the leave are
‘inability to rejoin duty on account of civil commotion’ then a

competent authority muy allow the period to qualify (Rule 21).
According i.o the GIDs, at one time necessary orders had to be

passed by ‘an authority other than the leave sanctioning authority’

but the procedure has now been simplified. This type of
extraordinary leave now qualifies automatically ‘without any

further sanctions’. If neither of these grounds apply (and the leave

is not granted for ‘prosecuting higher technical and scientific
studies’ during the absence) the period does not count towards
pension.

According to CID(1) under Rule 21 extraordinary leave on all
other grounds is treated as non-qualifying. But a definite entry
must be made in the service book to this effect. “Even where this
is not done, it should still be possible to rectify the omission

during the period for preparatory action [specified] . . . At the end
of that period, however, no further enquiry into past events or
check of past records should be undertaken. Specific entries in the
service recotds regarding nonqualifying periods will be taken
note of and such periods excluded from the service. All spells of
extraordinary leave not covered by such specific entries will be
deemed to be qualifying service”.

125

For the purpose of calculating pension entitlements at the end of

the employee’s career it is sufficient to check for the presence of a

definite entry excluding the period of extraordinary leave from
qualifying service. (Our representation also checks whether there
were medical certificate or civil commotion or scientific study

grounds in case the entry was made in error.) But a program that
oversees the maintenance of service books would have to do

more. It should inform its user of the procedure to follow (“To
grant this kind of leave retrospectively, obtain clearance from
authority X by completing form F“); it should not allow certain
entries to made at all, or indicate that they are being made in

breach of the Rules (“You cannot grant leave on medical grounds

and then exclude it from pension” or “You cannot include this

entry in the service book now”); ideally it would also point out the

consequences of omitting or including an entry if this could affect

the eventual pension entitlement (“If you do not exclude this

period of leave explicitly then it will qualify for pension

automatically”).

Such a program would be an application of some considerable

novelty and it would require attention to some interesting
technical questions. The main technical requirements would
appear to be:

. Some kind of representation of the deontic modalities is
required, though it is impossible to say without closer examination
whether the program itself would need to engage in reasoning
with these modalities and what kind of deontic logic would be

required. Questions have been raised about the adequacy of
various deontic Iogics, and the role of deontic reasoning generally

in legal analysis programs, but no clear answers have emerged.
See for example the discussion in [Bench-Capon 1989], [Jones

1990], [McCarty 1989], [Sergot 1990] and work referred to there.

. The representation of adminismative (quasi-) legal procedures

has received comparatively little attention. The only attempts of
which we are aware are the approaches described in [Nitta et al.

1988] and [Roberts 1988]. Of course it maybe that the program
does not require an explicit representation of procedures (with
which it can reason) but simply the ability to present the

description of a procedure in the form of a text. There are

numerous examples of systems that perform the latter.

● Finally, af.most all legal analysis programs (of which we are

aware) have concentrated on the problem of determining whether
some legal concept hoIds on the facts of a given case in hand.

There is some technical interest in how to implement a system that
would take a more active role, in this case bringing to its user’s

attention the (quasi-)legal consequences of adding another entry to
the service book when it has been omitted.

We wish to make one further concluding remark. It has been

observed before that rules and regulations and legislative
provisions vary widely in their character, and that questions about
the adequacy of a representation cannot be divorced from

questions about what the representation is for and how it will be

used. In this example like in many others, the same Rule can be
read, and used, and represented its many different ways. On a
superficial reading, many of the Pension Rules seem to “give

conditions that Wntribute to the definition of qualifying service. A
closer reading, in this case helped by the GIDs, reveals that the
conditions are not part of the definition of qualifying service but
constrain rather the way that the calculations are performed and
the administrative details that support them.

7. CONCLUSION AND FURTHER DEVELOPMENTS

We have described a program that computes an employee’s

pension entitlement according to the CCS Pension Rules in the
standard reference text. This program can be regarded either as a

legal analysis program (because of the techniques employed in its
construction) or as a data processing application (because of the

task that it performs).

There are many other possible representations of the Rules
definimg qualifying serf ice, especially as regards the treatment of
time. We have presented only what seemed to us to be the

simplest and most perspicuous representation, where all data

about an employee ‘S Government career and the Rules defining

qualifying service are formulated in terms of time periods only.

An alternative approach would focus instead on the transitions

between these time periods, that is on events like appointment,

promotion, transfer to another post, the start of a period of
extraordinary leave, resumption of duty, and so on. We have

experimented with a formulation of the Rules in the style of the
event calculus [Kowalski & Sergot 1986] where states or the time
periods of interest are computed from the events that initiate or
terminate them. The Rules can be formulated in this alternative
framewor~ yielding a representation that arguably copes more
gracefully with some of the detail. What is not clear until the

exercise is complete is whether the resulting representation would
be easier to explain to a Government employee or pension
adminis~ator.

An intermediate approach would leave the representation of the
Rules unchanged, but would describe an employee’s service

history as a sequence of eventa in the form of a narrative. The
event calculus can then be applied directly to provide an interface

between the two styles of representation. This third possibility is
perhaps the most promising and the most elegang since a narrative
account would correspond more closely to what actually appeam
in a service book. Unfortunately it is also the approach which
requires the greatest re-implementation of the data entry program,
which is the most tedious and time-consuming part of any

implementation.

We have not discussed these various options for the treatment of

time in any detail because there is nothing specifically ‘legal’

about them. Of more significance to the construction of legal
applications specitlcally is the fact that our program deals with

only one aspect of the Rules defining qualifying service. It
calculates pension entitlement from the information in the service
book at the time of retirement.

Like many regulations, the CCS Pension Rules devote as much or
more attention to administrative matters. We sketched in section 6
why the representation would have to be different if we attempted

to provide a program to deal with the administmtive aspects of the
Pension Rules; the maintenance of an electronic veraion of the
service book is the obvious application. It is difficult to believe

that a prospective clieng in this case the Government pension
departments, would be satisfied with a system that ignores the
mass of administrative detail entirely. It is this missing third
component of the system which appears to present the greatest
challenge and the one which is most deserving of future attention.

ACKNOWLEDGEMENTS

We wish to express our thanks to the United Nations Development

Prograsnme (UNDP) for its support through the Knowledge Based
Computer Systems project. A.S. Karnble held a UNDP Fellowship
for part of this work.

126

REFERENCES

Bajaj, K.K., Dubash, R.K., Kowalski, R.A. [1989a] Central
Government Pension Rules as a Logic Program. In
Knowledge Based Computer Systems (Ramani, S.,
Chandrasekar, R., Anjaneyulu, K. S.R., Eds), Narosa
Publishing, New Delhi, 1989, pp 19-28.

Ilajaj, K. K., Dubash, R. K., Kamble, A.S., Kowaiski, R.A.,
Murthy, ILK. [1989b] Indian Import Policy and Procedures
as a Logic Program. Prac. Third International Conference on

Logica, Ir@ormatica, Diritto (Martino, A. A., Ed). Istitutn per
la Documentazione Giuridica, Florence 1989.

Bench-Capon, T.J.M. [1989] Deep models, Normative
reasoning and Legal expert systems. Proc. Second
International Conference on Arlijicial Intelligence and Law,
Vancouver, 1987 (ACM Press), pp 3745.

Bench-Capon, TJ.M., Robinson, G.O., Routen, T.W,, Sergot,
M.J. [1987] Logic Programming for Large Scale
Applications in Law: A formalisation of Supplementary
Benefit legislation. Proc. First International Conference on
Artificial Intelligence and Law, Boston, May 1987 (ACM
press), Pp 190-198.

Hammond, P., Sergot, M.J. [1983] A PROLOG shell for logic
based expert systems. In Expert Systems 83: Proc. Third
Technical Conference of the British Computer Society
Specialist Group on Expert Systems, Cambridge, December
1983 (British Computer Scciety), pp 95-104.

Jones, A.J.I. [1990] Deontic Logic and Legal Knowledge
Representation. Ratw Juris 3,2 (July 1990), pp 237-244.

Kowalski, R.A., Sergot, MJ. [1986] A Logic based Calculus of
Events. New Generation Computing 4, 1 (Feb. 1986), pp 67-
95. Also in Knowledge Base Management Systems (Thanos,
Schmid~ Eds). Spnnger-Verlag, Heidelberg, 1989.

McCarty, L.T. [1989] A Language for Legal Discourse I. Basic
features, Proc. Second International Conference on Artificial
Intelligence and Law, Vancouver, 1987 (ACM Press), pp
180-189.

Nitta, K., Nagao, J., Mizutori, T. [1988] KRIP2: A Knowledge
Representation and Inference System for Procedural Law.
New Generation Computing 5,4 (1988), pp 319-359.

Roberts, H. [1988] Knowledge Representatwn for Procedural

Law. MSC thesis. Department of Computing, Imperial
College, London, 1988.

Sergot, M.J. [1!)83] A Query-the-User Facility for Logic
Programming. In Integrated Interactive Computer Systems

(Degano, P., Sandcwall, E., Eds). North-Holland,
Amsterdam, 1983. Also in New Horizons in Educational
Computing (Yazdarti, M., Ed). Ellis Horwood, Chichester,
1984, pp 145-163.

Sergot, MJ. [1988] Representing Legislation as Logic Programs.
In Machine Intelligence 11 (Hayes, J.E., Michie, D.,
Richards, J., Eds). Oxford University Pmss, 1988, pp 209-
260.

Sergot, M.J. [19!)0] The Representation of Law in Computer
Programs: A Survey and Comparison. In Knowledge Based

Systems and Legal Applications (Bench-Capon, TJ.M., Ed,).
Academic Press 1990.

Sergot, M.J., Sadri, F., Kowalski, R. A., Kriwaczek, F.,
Hammond, P., Cory, H.T. [1986] The British Nationality
Act as a Lngic Program. Communication of the ACM 29,5

(May 1986), pp 370-386.
Stamper, R. [19801 LEGOL: Modelling Legal Rules by

Computer. In Computer Science and Law (NibletL B., Ed).
Cambridge University Press, New York, 1980, pp 45-71.

MacProlog is a product of Logic programming Associates Ltd.

127

