
Representing and reasoning about open-te~turecl predicates

Kathryn E. Sanders

Department of Computer Science, Box 1910

Brown University, Providence, RI 02912 U.S.A.

ksQcs.brown.edu

April 29, 1991

Abstract

In this paper, I will describe a method for represent-

ing and reasoning about open-textured predicates. This

method is being implemented in CHIRON, a system I am

developing in the domain of United States personal in-

come tax planning.

1 Introduction

In this paper, I will describe a method for represent-
ing and reasoning about open-textured predicates. This

method is being implemented in CHIRON, a system I am

developing in the domain of United States personal in-

come tax planning [Sanders, 1991].

The popular view of lawyers is the trial lawyer —

Perry Mason, Clarence Darrow, or the lawyers on LA

Law. Many lawyers, however, make their living planning

transactions, such as the sale of a piece of property,

the establishment of a trust, or the reorganization of a

corporation.

In constructing plans under United States tax law,

lawyers have two main types of information to work

with: rules (including statutes and the associated reg-

ulations) and cases. In practice, lawyers often take ad-

vantage of a third source of information, plans based on

past experience of similar transactions. Often, however,

no such plan is available, perhaps because the lawyer

has never performed this particular type of transaction

before, perhaps because the law has changed so recently

that no plans are available. And even where there is

such a plan, if it is challenged in court, it must be jus-

tified in terms of the statutes and case law. In CHIRON,

therefore, I am examining the way in which plans are

Permissionrocopywithcutfeeall orpartof thismaterialis gmntedpmtidcdrhat
tkecopiesarcnotmadeordistributedfcadirectmnrrncrcialadwnrcge,theACM
copyrightnoticeandthetitleof thepublicatimranditsdate●pp-. U@n~= ~
givm that mpyingisbypanrissionof tbeAwrciatim for ComputingMa-.
ToCOPYotherwise,or torepublish,requiresafeeador specillcpcmnkkm.

@ ACM 0-89791 -399 -X/91 /0600/O137 $1.50

developed from statutes and cases.

Like other Anglo-American statutes, the United

States Internal Revenue Code is open-textured. It con-

tains phrases that are underspecified. For example,

\ 1034 of the Internal Revenue Code provides that if an

individual sells his “principal residence” and buys and

uses another “principal residence” within a certain pe-

riod of time, he can defer paying tax on the income (if

any) from the sale. The phrase “principal residence” is

not defined within the statute. Some information about

the legal meaning of the phrase can be derived from the

commonsense meaning of the words; additional infor-

mation is obtained from cases.

The open-textured nature of the rules places a major

constraint on planners in this domain. Somehow, start-

ing with open-textured rules, the planner must gener-

ate a set of facts that satisfy (or avoid satisfying) those

rules.

Each case makes a connection between the rules and

one particular set of facts. Information about the tax-

payer and his actions is given in the statement of facts;

given those facts, the court determines whether certain

statutory rules have been satisfied or not. If you look

at the statement of facts as a plan (although possibly

not a plan the taxpayer intended), cases can be seen as

the evaluation of that plan by a court. Cases provide

examples of plans that succeeded or failed.

The facts of these examples can be used as the basis

for new plans. Since the courts are bound by precedent,

similar cases must be decided similarly. Thus, planners

attempt to construct plans that are similar to previous

successful plans and different from unsuccessful ones.

For a legal reasoning system to perform this task, it

must have some method for representing and reasoning

about open-textured predicates. In Section 2 of this pa-

per, I will survey various approaches used for reasoning

about open-textured rules in related work. In Section

3, I will describe the method used in CHIRON, in Section

4, I will give a detailed example, and in Section 5, I will

summarize the results of this paper.

137

2 Related Work

There is a long tradition of work on planning and design

in artificial intelligence (see, e.g., [Allen et al., 1990]). In

terms of one recent framework, CHIRON can be classified

as a system whose generic task is construction in a dc-

main without a complete theory, where it is necessary

to reason with weakly-defined concepts and the num-

ber of possible plans is so large that exhaustive search

is, if not impossible, certainly impractical [Steels, 1990].

Planning in law shares many issues with planning in

other domains; indeed, the problem of reasoning with

weakly-defined, or open-textured, rules is not unique to

law. Any planning rule expressed in natural language,

such as “be careful, “ “never get involved in a land war

in Asia,” or “buy low, sell high,” may suffer from the

same problem.

The previous literature in planning has not addressed

the problem of reasoning with open-textured rules, how-

ever. Perhaps because the issue is especially well illus-

trated in law, it has been given much more attention

in the artificial intelligence and law literature. In this

section, I will survey the approaches to reasoning about

open-textured rules that are most closely related to my

own.

2.1 McCarty

McCarty was perhaps the first to address the problem
of representing and reasoning with open-textured pred-

icates in the context of artificial intelligence and law.

His first project was TAXMAN, a program that analyzed

cases in the domain of corporate tax law. For this

project, McCarty designed a representation language

using an economical set of statutory predicates that was

sufficiently expressive to state the facts of an input case

in this domain in detail [McCarty, 1977].

TAXMAN took as input the description of a corpo-

rate reorganization and, upon request from the user,
determined whether the transaction qualified for tax-

free treatment under certain provisions of the Internal

Revenue Code. First, it processed the input facts in or-

der, using forward chaining rules to expand them to a

greater level of detail; then it used backwards chaining

rules to determine whether the expanded facts satisfied

the relevant provisions of the Internal Revenue Code.
The system moved flexibly back and forth between con-

crete descriptions and abstractions.

TAXMAN was limited by the fact that all of its abstrac-
tions were defined by rules. This works fairly well for
some simple inferences, such as determining that some-

one is a stockholder. Like other areaa of law, however,

corporate tax involves open-textured concepts. Impor-

tant concepts that are not defined in the statute include

“business purpose” and “step transaction. ” McCarty

concluded that TAX MAN’S rules were insufficient for rep-

resenting these concepts.

In his next project, TAXMAN II, McCarty began in-

vestigating ways of modifying TAXMAN to handle open-

textured concepts [McCarty, 1980, McCarty and Srid-

haran, 1982]. One approach might have been to add

cases to the knowledge base. Examples of “business pur-

pose” and “step transaction” are given in various cases

(see, e.g., Gregory v. He/verirzg, 293 U.S. 465 (1935),

and Helvering v. Elkhorn Coal Co., 95 F. 2d 732 (4th

Cir. 1938), cert. denied, 305 U.S. 605 (1938)). If TAX-

MAN had some facility for representing or reasoning with

cases, it might be able to make use of these examples.

But McCarty did not add cases, at least not directly.

Instead, he proposed to represent open-textured con-

cepts using a prototype, a concrete description expressed

in the lower-level representation language, and a se-

quence of deformations, or transformations of one con-

crete description into another. For example, a stock-

holding relationship could be represented by a pointer

to the prototype of a pure equity interest, represented

by a particular set of rights and obligations between the

owner and the issuing corporation; plus an incremental

set of transformations in the direction of a debt interest.

The detail and precision of his low-level representation

language make it effective for representing such small

incremental changes.

McCarty’s contributions are first, the idea that a set

of related cases could be used to represent an open-

textured concept; and second, the suggestion that the

set of possible transformations of a case could be lim-

ited to those which preserve conceptual coherence in the

corresponding concept [McCarty, 1980, McCarty, 1989].

Unfortunately, TAXMAN H was never implemented.

As a result, McCarty offers no solution to algorithmic

issues such as how to choose the prototypes, how to in-

dex them, how to search the space of prototypes, how
to search the space of transformations, and the relation-

ship of the prototypes to actual cases.

In joint work with Dean Schlobohm, an estate plan-

ning attorney, McCarty has sketched out a design for a

legal planning system [Schlobohm and McCarty, 1989].

They argue that lawyers construct plans by retriev-

ing prototype plans and transforming them to meet the

clients’ goals. They discuss how trusts and the Inter-

nal Revenue Code can be represented using McCart y‘s
representation language. However, as with TAXMAN II,

no solution is proposed for the algorithmic issues such

as how the prototypes are chosen, indexing, and search.

And again, there is no explicit facility for representing

or reasoning with legal cases.

138

2.2 Gardner

Gardner has also addressed the open-textured statu-

tory predicate problem. Her system, GP,l like TAX-

MAN, takes a sequence of events as input and deter-

mines whether that sequence satisfies certain legal re-

quirements [Gardner, 1987]. GP’s domain is contract

law, but the problem is essentially the same.

Gardner’s solution is quite different from McCarty’s,

however. Like McCarty, she starts with a rule-based

system. Unlike McCarty, she uses cases. First, GP fires

its rules until they “run out,” that is, until it reaches

a rule that contains a term that is not expanded by

some further rule. Then it looks at the commonsense

meaning of the term and past cases whose facts match

the current case. Where the commonsense meaning and

past cases are all consistent, GP classifies the case ac-

cordingly, either in or outside of the term in question.

Where no commonsense meaning is given and there are

no past cases on point, or where the past cases disagree

with each other, the input is considered a “hard case”

and GP leaves its classification to the user.

For each past case, Gardner determined which open-

textured statutory predicates were involved in the case

and which of the facts set forth in the case report were

relevant to each open-textured statutory predicate. An

open-textured statutory predicate and the facts relevant

to it form a “case pattern,” and cases are represented

as a list of case patterns. When analyzing an input

case with regard to a particular open-textured statu-

tory predicate, GP retrieves the cases involving that

statutory predicate whose facts match the facts of the

statutory predicate’s case pattern,

In effect, each open-textured predicate corresponds to

a set of cases. The relationships between the cases are

not spelled out, however. There are no levels of abstrac-

tion between the facts and the statutory predicates. GP

has no information about case transformations, such as

those suggested by McCarty. As a result, it is hard

for GP to compaze and contrast past cases, and it has

no mechanism for handling novel situations. It cannot

modify an earlier case to fit a new situation or resolve

conflict between cases. Cases are used to determine that

a problem exists, but not as a basis for a solution.

2.3 HYPO

HYPO illustrates a use of cases that is different from

Gardner’s [Ashley, 1988]. Like TAXMAN and GP, HYPO

takes facts as input. As in the earlier systems, the prob-

lem is to determine whether the facts satisfy certain le-

gal requirements (in this case, whether they constitute

1 “Gardner’s program.” So called for convenience, since Gard-
ner did not name her system.

a trade secrets violation). Unlike the earlier systems,

however, HYPO does not attempt to solve the problem.

Instead, it generates arguments based on previous cases,

User input and cases are both represented in simpli-

fied form, using a standard “legal case-frame” to {lold

the important facts of the case. Legal case frames also

include such information as the date of the decision, the

court deciding the case, and the official citation. Each

of the cases in HYPO’S case base is stored using a fixed

set of indices (termed “dimensions”). When the user in-

puts a legal situation, expressed in the legal case-frame

language, HYPO uses this representation to calculate the

dimension values for the situation, and then uses these

values to index into the most similar cases. The system

then constructs arguments for both plaintiff and defen-

dant based on the dimensions each retrieved case shares

(or fails to share) with the current situation.

HYPO does not incorporate rules explicitly, but it is

addressing the same open-textured statutory predicate

problem as TAXMAN 11 and GP. Like GP, HYPO uses a

set of cases to correspond to an open-textured predicate.

In effect, the whole system can be seen as using cases to

interpret a single open-textured predicate, “trade secret

violation.” All the cases in the case base correspond to

that predicate. Unlike GP, HYPO also includes dimen-

sions, a level of abstraction between the case facts and

the predicate being interpreted. As a result, HYPO’ can

compare and contrast cases in a way that GP could not

have done. In GP, the open-textured predicate corre-

sponds to an unstructured set of cases; in HYPO, the set

of cases is structured by the dimensions.

In some respects, HYPO’s dimensions operate like Mc-

Carty’s transformations. They enable the system to

modify cases, for example to create a hypothetical. In

addition, HYPO incorporates knowledge about which

modifications strengthen or weaken a case. There is

no notion of a prototype, however.

2.4 CABARET

CABARET’S solution to the problem of reasoning about

open-textured rules is similar to HYPO’S [RLssland and

Skalak, 1991]. Like HYPO, CABARET is a legal analysis

system. It takes a set of facts as input and generates an

argument for or against the application of open-textured

rules to those facts.

Unlike HYPO, CABARET applies explicit statutory

rules to its input. Instead of the single implicit pred-

icate “trade secrets violation,” which was the subject

of HYPO’S arguments, CABARET interprets ~280A of the

United Statea Internal Revenue Code, the provision gov-

erning deductions for the cogt of maintaining an office
at home. To perform this task, CABARET integrates a

casx+based reasoner modelled on HYPO with a rule-based

139

reasoner.

The main contribution of this project is in the area

of controlling mixed case-based and rule-based systems.

CABARET interleaves case-based and rule-based reason-

ing using control knowledge isolated in a separate mod-

ule. The use of cases and dimensions is essentially the

same as HYPO’S, and as in HYPO, there is no notion of

a prototype.

2.5 Bench-Capon and Sergot

Bench-Capon and Sergot encountered the problem of

representing and reasoning about open-textured pred-

icates in a series of projects on the representation of

legislation as logic programs [Bench-Capon and Ser-

got, 1988]. They suggest that a legal reasoning system

should handle open-textured concepts by giving the user

arguments for and against the application of the con-

cept in borderline cases. This is similar to the approach

taken by HYPO and CABARET. The primary difference

is that Bench-Capon and Sergot advocate storing and

using the general rule of a case, annotated with its facts,

rather than reasoning directly from the facts. This sug-

gested approach does not involve any use of prototypes,

at least not explicitly, and does not seem to capture the

idea of one case being stronger or weaker than another

that is expressed by HYPO’s dimensions.

s CHIRON’S solution

CHIRON is a planner. It takes as input a transaction

the client intends to perform and (optional) background

information, and outputs a plan or plans for perform-

ing that transaction with favorable income tax conse-

quences. In order to perform this task, it must rep-

resent and reason with the open-textured rules of the

income tax law. Its solution to this problem combines
rules, prototypes, cases, and dimensions, drawing on

ideas from McCarty, Gardner, HYPO, and CABARET.

Like CABARET, CHIRON is a hybrid system, combining

rule-based and case-based modules. Since control is not

a primary focus of this project, however, CHIRON’s con-

trol structure is much simpler than CABARET ‘s. Plan-

ning proceeds in two stages: first, the rule-based planner

constructs a partial plan based on the tax rules. This

plan will contain open-textured subplans corresponding
to the open-textured portions of the rules on which it

is based. Second, the case-based planner takes the par-

tial plan and uses it as the basis for a plan that can be
executed by the user. In this paper, I will focus on the

second stage; for further details about the construction
of the partial plan, see [Sanders, 1991].

In the second stage of planning, CHIRON’S case-based

module uses the partial plan to index into its case base.

It retrieves a prototype plan corresponding to the par-

tial plan and a set of past cases where taxpayers at-

tempted, successfully or unsuccessfully, to execute plans

that also correspond to the partial plan.

The prototypes are based partly on the commonsense

meaning of the statutory predicates. Terms such as

“principal residence,” although they are underspecified.

do have some commonsense meaning. Additional infor-

mation can be obtained from the cases. [n any law case,

there will be some easy questions which are not at issue.

For example, the taxpayer’s old house may be clearly

his principal residence, while the new one is at issue, or

vice versa. The easy questions give you some informa-

tion about the prototypical case. And hard questions

can also provide information. For example, if the issue

in a case is whether a house can qualify as a principal

residence if the owner is not living there, we can infer

that actually living in the house is part of the prototype.

After retrieving the prototype and a set of past cases,

the case-based planner then tests the prototype plan to

determine whether it satisfies the constraints input by

the user. If so, it outputs the prototype as a suggested

plan. If not, it has three choices: adapt the prototype
so that it will satisfy the constraints, relax the violated

constraints, or abandon the plan.

The ways in which a prototype plan can be adapted
are the dimensions; they are stored explicitly in a sep-

arate domain knowledge module. The dimensions are

suggested by cases. For example, the cases interpreting

principal residence consider whether a house is a princi-

pal residence if you have one or more other residences,

if you have not lived in the house for years and cannot

move back because the rent control law prohibits it, if

you have not lived in the house for years and do not

choose to move back, etc. The corresponding dimen-

sions are: number of the taxpayer’s residences, amount

of time since the taxpayer occupied this house, strength

of reason for not returning to the house.

The prototypes are related to the actual cases by the

dimensions. Cases indicate the possible adaptations of

the prototype; they also limit their extent. Negative

cases — for example, one that holds that if you’ve been

away from a house for five years, it ceases to be your

principal residence, or one that holds that if you spend

an equal amount of time in each of ten houses, none of

them is your principal residence – limit the degree to
which a plan can vary from the prototype.

CHIRON’s domain knowledge module also contains in-
formation about which types of constraints can be re-

laxed. If the client is not living in his house, for example,

CHIRON may advise him to move in; but if the client is

22 years old, CHIRON will not suggest that he become

55.

If the case-based planner succeeds, it outputs a plan

140

annotated with citations to supporting rules and cases.

~ifter outputting a plan. C~iIRON will query the user

to determine whether to continue. If the casebased

planner succeeds and the user requests another plan,

the case-based planner returns control to the rule-based

planner. which then attempts to construct another plan

for the same transaction. Similarly, if the case-based

planner is forced to abandon a plan, it returns control

to the rule-based planner, which continues and attempts

to construct another plan. P!ans are output roughly

in order of their desirability from a tax point of view,

but rather than attempting to construct a single“best”

plan, CHIRON leaves the final choice of plan Up to the

“user. The system will halt when the user stops request-

ing new plans, or when it is unable to find another pos-

sible plan. A diagram of this architecture is given in

Figure 1.

Like TAXMAN 11, CHIRON uses prototypes and trans-

formations (dimensions). CHIRON attempts to provide

answers to some of the questions left unanswered by

TAXMAN II: how to choose the prototypes, how to in-

dex them, how to search the space of prototypes, how

to choose and retrieve transformations, and so forth.

[n addition, CHIRON explicitly incorporates cases into

this process. Like GP, CHIRON uses both rules and

cases, but as in HYPO and CABARET, the cases are re-

lated to each other by dimensions. Unlike GP, JIYPO, or

CABARET, CHIRON uses prototypes. Unlike GP, HYPO,

or CABARET, CHIRON is a planner. As a resuit, it must

generate a set of facts rather than recognizing one. Since

there will usually be a range of possibilities correspond-

ing to any open-textured plan, it is useful to have a

default plan, which can be chosen unless there is some

reason to do otherwise, and the prototype serves as such

a default.

;Inother way of looking at this is that in CHIRON. the

court c,ases partially define a space of possible plans,

with the prototype at the origin. CHIRON’S goal is to

construct a plan that falls within that space of possibil-

ities. Specifically, it will construct a plan as similar to

the prototype aa possible. The prototype is a conserva-

tive plan, what a tax lawyer would call a ‘-safe harbor.”’

Thus, CIIIRON’S strategy gives plans a conservative bias,
which is consistent with much of tax planning; it could

l)e altered if desired to obtain a more aggressive planner.

CHIRON’s approach resembles the propose-and-revise

method used by many construction systems [Steels,

1990]. Tliese systems can typically he broken down into

I hree modules: generate a partial solution, test the so-

I([tion to determine whether the input constraints have

I)een satisfied, and if necessary, a(lapt the partial solu-

(ion so that the constraints are satisfied, The partial

solution corresponds to CIIIRON’5 prototype plan: and

I Ile constraints correspond to the transaction and back-

User facts

& goals

(constraints)

~

RULE-BASED PLANNER

partial A
plans report success

v or failure

Y

CASE-BASED PLANNER

m

o

~ case

+1 d base

E6—(Jiiii

I

i

plan(s)

Figure 1: CHIRON’S architecture.

ground information input by the user. CHIRON differs

from these systems in that it provides an explicit role for

previous cases and relates them to the partial solution

(prototype). In addition, it allows for the possibility of

relaxing the constraints in certain cases.

A Example

Suppose you have a client who wants to sell a house. ~-”n-
der LTnited States income tax law. some possll)le plans

iwe:

141

$1034. Rollover of gain on sale of principal residence.

(a) Nonrecognition of gain. -If property (in this section called

“old residence”) used by the taxpayer as his principal resi-

dence is sold by him and, within a period beginning 2 years

before the date of such sale and ending 2 years after such

date, property (in this section called “new residence”) is pur-

chased and used by the taxpayer as his principal residence,

gain (if any) from such sale shall be recognized only to the
extent that the taxpayer’s adjusted sales price (as defined in
subsection (b)) of the old residence exceeds the taxpayer’s
cost of purchasing the new residence.

Figure 2: !j1034(a) of the Internal Revenue Code.

sell the house and pay tax on the income;

sell the house at a loss;

occupy the house until the time of sale (to make

it a principal residence) and buy and occupy an-

other house within the statutory time limit (cur-

rently two years).

occupy the house until the time of sale, and, if the

taxpayer is over 55, take a one-time exclusion of a

portion of the gain;

occupy the house until the time of sale, take the

over-55 exclusion, and invest the remainder of the

gain in another house;

rent the house to tenants and exchange it for an-

other house that is also rented; and

sell the house and donate the income to charity.

Suppose you input the information that the client haa
the goal of selling a house, but no additional background

information. CHIRON will then attempt to construct a

plan that includes selling the house, and in addition,

satisfies the system goal of reducing the income tax due

on this transaction. First, CHIRON’S rule-based module
will construct a partial plan satisfying these goals. Sup-

pose it chooses the plan suggested by fj1034 of the Inter-

nal Revenue Code: show that the house is the client’s

principal residence at the time of sale, and buy and use

another principal residence within two years before or

after the sale. A relevant portion of s1034 is given in

Figure 2.

This plan is still too abstract. “Principal residence”
is an open-textured predicate. So CHIRON retrieves the

prototype for this plan and all the cases from its case

base where a taxpayer attempted to execute the plan.
The prototype is: physically occupy the old house until

the date of sale or the date of purchase of a new house,
whichever comes first; and after you buy the new house,

move there and physically occupy that house. (“Phys-

ically occupy” is a term used to include sleeping in a

house, keeping your possessions there, eating your meals

there, and so forth.)

There are a number of cases interpreting this partial

plan; one of the most interesting is Trisko v. Commis-

sioner, 29 T.C. 515 (1957). In this case, the taxpayer

sold a house that he hadn’t lived in for three years. The

issue in the case was whether the house should be con-

sidered his principal residence.

Trisko bought the house in 1941. Except for a cou-

ple of years in the army during the war, he lived there

with his family until 1948. At that time he was working

for the Foreign Service, which offered him a temporary

position in Europe. He kept the house because he in-
tended to return to it when he was transferred back to

the United States. In the meanwhile, he rented it to

a series of tenants who were responsible for maintain-

ing the property. When he and his family returned to

the United States in 1951, however, there was a seri-

ous housing shortage and strict rent control laws had

been imposed near Washington, D. C., where his house

was located. As a result, he was legally prevented from

terminating the lease and moving back into his house.

After four or five months, he sold the house subject to

the lease and bought another one nearby. The court

held that under the circumstances, even though he had

not lived in the house for three years, it was his principal

residence at the time of sale.

Cases are represented using a structure much like

HYPO’s legal case frames: both are based on the

“squibs” or case summaries written by law students. My

representation includes fields for the official citation, the

court, the date of the decision, the facts, and the hold-

ings. The description language I use for the facts is an

extension of the temporal logic developed in [Shoham,

1988], modified to incorporate the three modal opera-

tors ‘want,’ ‘know,’ and ‘believe,’ as well as the deontic

predicates suggested by McCarty [McCarty, 1983]. As a

description language, this representation is very similar

to McCarty’s LLD [McCarty, 1989b], but its inference

rules are simpler. A student’s summary would also in-

clude some discussion of the court’s reasoning; instead,

I use a very simplified representation, a list of “links.”

This list indicates whether a proposition or event makes

another proposition or event more or leas likely. If it is

necessary to adapt the facts of a case in constructing a

new plan, these links indicate which of the results in the
case may be affected.

The representation of the facts of a case corresponds

closely to the facts as given in the official case report.

It is not exact — for example, the taxpayer in this case

owned the house jointly with his wife and was joint ly li-

able for the taxes. For simplicity, the case is represented

as if he were the sole owner. In general, however, the

goal is to include as much detail as possible.

142

Suppose for simplicity that Z’risko is the only case re-

trieved in our example. In comparing it with the proto-

type, the relevant dimension is time, the amount of time

that the owner haa spent away from his first house be-

fore the earlier of the sale date and the date of purchsse

of the second house. In the prototype, this amount of

time is zero; in Trisko, roughly 3 years.

Next, the system will compare the current situation

with the prototype. In this example, the prototype sat-

isfies the input: the prototype plan involves selling the

house. No further information was input, so CHIRON

assumes that the prototype plan will satisfy the user’s

requirements, There is no need to consider Trisko. cH-

IRON will instantiate the plan, output it with a citation

to ~1034, and ask the user if he or she wants any more

suggest ions.

Suppose the current situation is somewhat different.

Suppose, for example, that your client hss not been oc-

cupying the house. Instead, he has been away for two

years in business school. He intended to return to his

home at the end of the (two-year) program, but was un-

able to find a job near his house. This case is stronger

than Tm”sko along the time dimension, so the system

will construct the ~1034 plan and cite Trisko as sup-

port. It will suggest strengthening the client’s reasons

for leaving home and failing to move back. Arguably

Trisko’s justification was stronger than this client ‘s, but

CHIRON did not retrieve any unsuccessful case with the

same weakness, so the weakness is not fatal. CHIRON

will also suggest, as an alternative plan, that the client

move back into the house (that is, relax the constraint

imposed by the input information).

Finally, suppose that your client has been away from

home for six years. If TRISKO is the only case re-

trieved, CHIRON will extrapolate along the time-away-

from-home dimension and suggest the same two plans.

On the other hand, if the case base also includes a case

where the taxpayer was away from home for five years

and lost, instead of adapting the prototype, CHIRON will

suggest that the client move back into the house, or if

that is not possible, CHIRON will abandon the ~1034 plan

and look for another one.

5 Conclusions

In this paper, I have presented a method for represent-

ing and reasoning about open-textured predicates. This

method is being implemented in CHIRON, a system I am

developing in the domain of United States personal in-

come tax planning [Sanders, 1991].

CHIRON is a planner. It takes ss input the representa-
tion of a transaction the client intends to perform and

(optional) background information, and outputs a plan

or plans for performing that transaction with favorable

income tax consequences. In order to perform this task,

it must represent and reason with the open-textured

rules of the income tax law. Its solution to this prob-

lem combines rules, prototypes, cases, and dimensions,

drawing on ideaa from McCarty, Gardner, HYPO, and

CABARET. Each of these ideas is found in one or more

of the earlier systems; but none of the earlier systems

integrates them all.

CHIRON is a hybrid system, combining rule-based and

case-based modules. It constructs plans in two stages:

first, the rule-based planner constructs a partial plan

based on the tax rules. This plan will contain open-
textured subplans corresponding to the open-textured

portions of the rules on which it is based. Second, the

case-based planner takes the partial plan and uses it as

the basis for a plan that can be executed by the user,

It uses the partial plan to index into its case base, and

retrieves a prototype plan corresponding to the partial

plan and a set of past cases where taxpayers attempted,

successfully or unsuccessfully, to execute similar plans.

After retrieving the prototype and a set of past cases,

the case-based planner then tests the prototype plan to

determine whether it satisfies the constraints input by

the user. If so, it outputs the prototype as a suggested

plan. If not, it has three choices: adapt the prototype

so that it will satisfy the constraints, relax the violated

constraints, or abandon the plan.

The ways in which a prototype plan can be adapted

are the dimensions; they are stored explicitly in a sep-

arate module. The dimensions are suggested by cases;

the dimensions along which the cases differ from the

prototype are also dimensions along which the proto-

type can be adapted in constructing a new plan. Cases

indicate the dimensions along which the prototype can

be adapted; they also limit their extent. Negative cases

limit the degree to which a plan can vary from the pro-

totype.

CHIRON also has information about which types of

constraints can be relaxed. If the client is not living

in his house, for example, CHIRON may advise him to

move in; but if the client is 22 years old, CHIRON will

not suggest that he become 55.

If the case-based planner succeeds, it outputs a plan

annotated with citations to supporting rules and cases.

After outputting a plan, CHIRON will query the user

to determine whether to continue. If the css~based

planner succeeds and the user requests another plan,

the casebased planner returns control to the rule-based
planner, which then attempts to construct another plan

for the same transaction. Similarly, if the case-based

planner is forced to abandon a plan, it returns control
to the rule-baaed planner, which continues and attempts

to construct another plan. Plans are output roughly

143

in order of their desirability from a tax point of view,

but rather than attempting to construct a single “best”

plan, CHIRON leaves the final choice of plan up to the

user, The system will halt when the user stops request-

ing new plans, or when it is unable to find another pos-

sible plan.

In CHIRON1 the court cases partially define a space of

possible plans, with the prototype at the origin. CHI-

RON’S goal is to construct a plan that falls within that

space of possibilities. Specifically, it will construct a

plan as similar to the prototype as possible. The proto-

type is a conservative plan, what a tax lawyer would call

a “safe harbor.” Thus, CHIRON’S strategy gives plans a

conservative bias, which is consistent with much of tax

planning; it could be altered if desired to obtain a more

aggressive planner.

Acknowledgements

This research has been supported by IBM contracts

17290066, 17291066, 17292066, and 17293066, and in

part by a National Science Foundation Presidential

Young Investigator Award IRI-8957601 with matching

funds from IBM, by the Advanced Research Projects

Agency of the Department of Defense monitored by the

Air Force Office of Scientific Research under Contract

No. F49620-88-C-0132, and by the National Science

Foundation in conjunction with the Advanced Research

Projects Agency of the Department of Defense under

Contract No. IRI-8905436.

The author gratefully acknowledges the criticisms and

encouragement of Mark Boddy, Karl Branting, Eugene

Charniak, Tom Dean, Robert McCartney, Leora Mor-
genstern, Edwina Rissland, and David Skalak.

References

[Allen et al., 1990] Allen, James; Hendler, James; and

Tate, Austin 1990. Readings in Planning. Morgan

Kaufman, San Mateo, California.

[Ashley, 1988] Ashley, Kevin D. 1988. Modelling legal

argument: reasoning with cases and hypothetical.
Technical Report 88-01, University of Massachusetts,

Amherst, Department of Computer and Information

Science. (PhD Thesis).

[Bench-Capon and Sergot, 1988] Bench-Capon, Trevor

and Sergot, Marek J. 1988. Towards a rule-based

representation of open texture in law. In Computer

power and legal language. Quorum Books, New York.

39-60.

[Gardner, 1987] Gardner, Anne v.d.L. 1987. An artz-
jicial intelligence approach to legal reasoning. X1lT

Press, Cambridge, Massachusetts.

[McCarty and Sridharan, 1982] McCarty, L. Thorne

and Sridharan, N.S. 1982. A computational theory of

legal argument. Technical Report LRP-TR-13, Labo-

ratory for Computer Science Research, Rutgers Uni-

versity.

[McCarty, 1977] McCarty, L. Thorne 1977. Reflections

on TAXMAN: an experiment in artificial intelligence

and legal reasoning. Harvard Law Review 90:837–893.

[McCarty, 1980] McCarty, L. Thorne 1980. The T~X-

MAN project: towards a cognitive theory of legal ar-

gument. In Niblett, Bryan, editor 1980, Computer

Science and Law. Cambridge University Press, Cam-

bridge, England. 23-43.

[McCarty, 1983] McCarty, L. Thorne 1983. Permissions

and obligations. In Proceedings of the Eighth Inter-

national Joint Conference on Artificial Intelligence,

Karlsruhe, West Germany. 287-294.

[McCarty, 1989a] McCarty, L. Thorne 1989a. Comput-

ing with prototypes (preliminary report). In Proceed-

ings of the Bar-Ilan Symposium on the Foundations

of Artificial Intelligence.

[McCarty, 1989b] McCarty, L. Thorne 1989b. A lan-

guage for legal discourse: I. basic features. In Pro-

ceedings of the Second International Conference on

Artificial Intelligence and Law, Vancouver, British

Columbia. 180-189.

[Klssland and Skalak, 1991] Rissland, Edwina L. and
Skalak, David B. 1991. CABARET: rule interpreta-

tion in a hybrid architecture. International Journal

of Man-Machine Studies. (to appear.).

[Sanders, 1991] Sanders, Kathryn E. 1991. Planning in
an open-textured domain: a thesis proposal. Techni-

cal Report 91-08, Brown University.

[Schlobohm and McCarty, 1989] Schlobohm, Dean and

McCarty, L. Thorne 1989. EPS II: Estate planning

with prototypes. In Proceedings of the Second In-

ternational Conference on Artificial Intelligence and

Law, Vancouver, British Columbia. 1-10.

[Shoham, 1988] Shoham, Yoav 1988. Reasoning about

change: time and causation from the standpoint of

artificial intelligence. MIT Press, Cambridge, Mas-

sachusetts.

[Steels, 1990] Steels, LUC 1990. Components of exper-
tise. Artificial Intelligence Magazine 11:30-49.

144

