
Automatically Processing Amendments to Legislation

Timothy Arnold-Moore

Multimedia Database Systems Research Group

Collaborative Information Technology Research Institute

Royal Melbourne Institute of Technology

Melbourne, Australia

email: t j a@cs. rmit. edu. au

Abstract

This paper proposes an architecture for a system which ac-

cepts Amending Acts expressed in SGML and produces a

database of resulting versions of the Principal Acts, and

describes its implementation. It discusses the core natu-

ral language processing module which uses an ATN to parse
the components of the Acts into a frame representation of

amendment actions. This representation is then used to pro-

duce database transactions which add the subsequent ver-

sions to the database.

1 Legislation in computers

While considerable effort has been expended in improv-

ing the quality of systems which retrieve judicial deci-

sions or case law, the tools for producing and managing

legislation fail to take advantage of the potential that is

available. Pearce reports from a survey of cases in Aus-

tralia in 1980 that approximately 40% of reported cases

ruled on the meaning of some piece of legislation and a

further 30% applied some legislation, a total of 70% [14].

He also reports similar results in England. With the

continual expansion of the field of coverage of legisla-

tion over time, this percentage can only have grown

since. Tools which aid the management of legislation

have been described elsewhere including the use of logic

to normalize statutes ancl eliminate ambiguity [1], the

logical modelling of legislation using semantic nets [8]

and production rules [16], the use of expert systems to

capture legislative provisions and act as policy manu-

als for civil servants [1 O], and the use of a knowledge-

base~ system to construct links between related sections

in legislation [11]. With the limited exceptionof expert

Permission to copy without fee all or psrt of this material is gmated provided
that the copies sre not reads or distributed for direct commercial advantage, the
ACM copyright notice ~d the title of the publication snd its date appear, and
notice is given that copyingis by permission of the Association for Computing
Machjnery. To copy od=wise, or to republish, requires a fee and[or specific
pemussiom

@ 1995 ACM 0-89791-758-8/95/0005/0297 $1.50

systems, none of these tools has been adopted as a ma-

jor tool of government in the creation, management, and

distribution of legislation in .4ustralia.

There are two fundamental differences between case

law and legislation which raise new issues for the

providers of computer-aided legal research (CALR) sys-

tems. The first is that legislation has a complex struc-

ture which follows predefine rules. All Acts contain

numbered sect ions. These sect ions can themselves con-

t ain subsections, paragraphs, subparagraphs, clauses,

subclauses and definitions. In larger Acts these sections

may be collected in a combination of chapters, parts,

divisions and subdivisions. To avoid confusion with the

specific meaning of these terms in legislation we collec-

tively describe these as the eiements of an Act. Few

existing CALR systems support the complete range of

opportunities this structure provides for retrieval by the

content of particular elements and retrieval of elements

at an arbitrary level. This structure allows a formal

system of reference (or citation) which identifies each

element clearly and unambiguously. Contrast this with

case law where citation of part of the decision usually

relies on referring to some aspect of presentation (e.g.

page number) which changes in different reports of the

same case.

The second and more important for the purposes of

this paper is that its content call change with the paa-

sage of time. Sections (or indeed larger and smaller

elements) can be added, removed or altered. In Aus-

tralia, a Principal Act is created in one of two situa-

tions. The first is when a new body of law is reduced to

legislation creating a new .4ct where no other existed.

The second is where a large scale restructuring of ex-

isting legislation is made creating a new Act (or group

of Acts) which completely replaces a previous Act or

group of Acts. In between, Amending Acts are passed

which make alterations to the Principal Acts. This is

further complicated by the fact that Amending Acts

may refer to more than one Principal Act ancl an Act

297

which is a Principal Act may also repeal another Prin-

cipal Act. The Australian legislators (comprising the

Federal Parliament, the Parliaments of the 6 States and

2 Territories and the subordinate legislative bodies and

authorities) have adopted the textual style of amend-

ment where amendments require words to be omitted

and others inserted [14]. This means that the law at

any particular moment of time is captured as a version

of the Principal Act as amended. This is in contrast

to the English style of referential amendment which re-

quires the Principal Act to be read in different terms.

This requires the Principal Act to be read together with

all the amendments [14] rather than simply applying the

amendments to the Acts.

The major problem for legislation systems is that up-

dating is slow and inclusion of amendments is compli-

cated [17]. The need for tools for assisting in the draft-

ing of legislation has been recognized widely [5, 6, 17, 18]

but little appears to have changed in the field.

While only the Principal Acts and the Amending

Acts have legal force, lawyers and legal researchers

would prefer to have in front of them the law as it

stands at the time relevant for their particular problem.

Lawyers in Australia and many other common law juris-

dictions will be familiar with consolidations or reprints

of legislation. Periodically the authorized printer of gov-

ernment legislation will issue a consolidation of a par-

ticular Act which presents the Principal Act with all of

the amendments applied i.e. with wording changes, and

appropriate elements inserted or deleted. Along with

applying the amendments, the consolidate ions oft en pro-

vide either by annotations in the body of the Act or

by means of an index or table at the rear, a list of all

the amendments which have affected each section allow-

ing a legal researcher to easily trace back through the

history of any section. If not there is usually a third

part y annot at ion service provided in a separate volume.

The consolidations are currently generated by hand in

all Australian jurisdictions and, as considerable work is

involved in producing them, they are not printed with

every amendment. Many law libraries supplement con-

solidations by pasting subsequent amendments (usually

provided by a third party service) into the most recent

consolidation thus ensuring that the users have access

to the most recent version.

However, lawyers’ needs are different from the needs

of other disciplines which rely heavily on electronic

sources in that they are often interested in the law as

it was at some distant time in the past [7]. If a lawyer

brings a case to court involving an accident which hap-

penecl on the first of June, 1981, the relevant substantial

law is (usually) the law as it was on that date, not the

law as since amended. The ideal would be for law li-

braries to have a copy of the relevant consolidation in

which the appropriate amendments are pasted for every

cliff erent version of a given Act,. This could mean stor-

ing many hundreds of copies of some Acts and even

the best law libraries can’t support this level of service.

They usually aim to provide the most recent version to-

gether with the Principal Acts and the Amending Acts

as enacted by parliament. Legal researchers can then

make use of the annotations in the most recent version

(or annotation service) to get back to the law as it was

at a particular moment in the past. This can be a time-

consuming exercise if the Act is frequently amended or

the matter being researched is quite old.

Current CALR systems reflect these changes only by

presenting to the user either the Act as it appeared on

a particular date, or by presenting the original Act with

all of its subsequent amendments, a solution not even as

good as that of paper libraries, Unlike paper libraries

which would need to store a copy of each Act in every

possible version, electronic libraries need not indulge

such wasteful duplication. There is great potential for

CALR systems not only to present legislation in a for-

mat familiar to lawyers (like that of the paper consoli-

dation) but to present it as it would have appeared at

any arbitrary point in time with annotations available

with the text.

The problems of how to store these various ver-

sions in electronic databases are discussed at length

elsewhere [2]. This paper addresses the problem of

analysing the language and terms of Amending Acts

to produce the appropriate changes to the database. It

describes an Amendment Processing System (APS) to

process Amending Acts describing its architecture and

components. The natural language processing compo-

nent of the system is analysed in further detail looking

at some of its sub-networks. Finally some conclusions

are presented and some areas for further exploration are

suggested.

2 The APS Architecture

Two of the major problems with natural language pro-

cessing (NLP) by computer are handling ambiguity and

the extent of domain knowledge needed by the NLP

system to truly ‘understand’ the text [3]. Legislation is

especially difficult in this respect as the possible subject

of legislation covers the whole spectrum of human en-

deavour making the domain virtually unbounded. Am-

biguity is also problematic as the number of cases which

involve the determination of the meaning of legislation

demonstrates. However, if we restrict a system to con-

sidering just the language that makes amendments (and

ancillary language relevant to amendments) we have a

manageable domain. Most jurisdictions have either for-

mal or informal conventions for the language used to

describe amendments to Acts to eliminate ambiguity

as ambiguity in the description of amendments cannot

298

be tolerated. This also leads to a reduced vocabulary

and a much more predictable structure in the content

of particular amending sections. Amending Acts there-

fore provide an obvious application for processing by

computer.

In order to fit this processing into a CALR system

we need to fit the various components together. Three

components are required (see Figure 1):

1.

2.

3.

a text database management system which encodes

the structure of Acts in which to store Principal,

Amending, and consolidations of the Acts;

an NLP module which produces a. structured repre-

sentation of amendment actions from their English

description in the Amending Acts; and

a text processing module which produces new con-

solidations from- the structured representation of

actions and existing versions of the Principal Act.

The text database system needs to manage multi-

ple versions of a single document and to manage highly

structured documents [2]. We have chosen to use the

Structured Information Manager (SIM) [13] produced at

CITRI and marketed by the Ferntree Computer Corpo-

ration which, whi [e not direct 1y supporting all version-

ing functionality desired, can be used to manage ver-

sioned text and allows the retrieval of elements within

documents or Acts. SIM stores documents in the Stan-

dard Generalized Markup Language (SGML) [9], an

1S0 Standard for document interchange which provides

a grammar for describing the structure of documents.

SGML has received broad acceptance as an appropriate

tool for encoding legislation as well as a variety of other

types of document. Many providers of legislation in

elect ronic form use SCJML to encode their dist ribut ion.

Tools exist to convert electronic versions [22] and even

paper versions into SGML text., The structure encoding

provided by SGML also proves useful in the processing

of amendments so an SC~ML encoding is used as the

text input to the NLP module and the text processing

module.

The choice of structured representation is crucial to

the complexity of the text processing module, The

represent ation must capture particular features of each

amendment including:

● the (Source) element which makes the amendment;

● the Target element of the amendment;

● the Time atwhich the amendment is to commence;

● the Type of amendment to be made;

● any old text to be “removed:

which Occurrence of the old text is to be removed;

any New text to be added;

the text/element Before any text to be added; and

the text/element Afier any text to be added.

A representation which allows this with some flexibility

to add extra features is the frame representation first

described by Minsky [12]. A frame stores a number of

features of specified types in a structure which allows

extraction of each feature when needed. An example

frame is shown in the Appendix as the output of the

NLP module.

Having constructed such a frame for each amend-

ment, a text processing module can be constructed using

a scripted editor, to apply these frames to the appropri-

ate version of the legislation to produce new versions.

SIM provides a scripting language which allows the ma-

nipulation of complex, structured documents expressed

in SGML. This scripting language has been used to im-

plement the text processing module in the prototype

system. The only major component which remains is

the NLP module.

3 The NLP Module

We wish to incorporate our NLP module in a system for

handling a large database of legislation. Unlike most

NLP systems which require a great deal of semantic

and synt attic information from the text often with mul-

tiple passes over the text to ensure that the syntactic

and semantic information is consistent, we need only ex-

tract the features for each amendment action from the

text. The required ‘understanding’ of natural language

is therefore considerably simpler than that required of

more general systems. Efficiency of calculation is very

important as the throughput, is potentially very large

(for example building a database of all Commonwealth

legislation from 1901 to the present). Therefore we pre-

fer a simple, one pass method for extracting the infor-

mation. Such a method is the augmented-transition net-

work (ATN) described by Wood [24] formalizing and ex-

tending the work of Thorne et al. [20] and Bobrow and

Fraser [4]. Some of the advantages of the ATN parsing

method described by Wood ~24] include:

it is easily readable by humans;

it can parse in a single pass by postponing decisions

about which rout e to take;

it is easily extendible;

it captures regularities in the parsing process; and

it is very flexible in the structures that can be gen-

erated by parsing.

299

frames
*

+ NLP text processing
module module

amending versions new versions
Acts of Acts of Acts

4

database of
Acts and versions

Figure 1: Architecture of the Amendment Processing System

An ATN parser can be easily implemented in the pro-

gramming language Prolog using the top-down, left-to-

right solver and unification that is built into the lan-

guage [15, 25]. Although it is argued that definite clause

grammars (DCGS) are to be preferred over ATNs [15]

it is much easier to eliminate the need for backtracking

(the trying of alternative paths through the grammar)

in ATNs by making use of registers to store intermediate

results. Such a deterministic network produces more ef-

ficient parsers as time is not wasted trying alternatives

which may prove unfruitful.

AII ATN comprises a number of states, and a number

of arcs between states. Each arc defines the conditions

and input requirecl to traverse to a subsequent state and

what to output. These it has in common with finite-

state transition networks (FSTNS). ATNs also allow

the description of named sub-networks. An arc can go

to such a sub-network, and after completion of the sub-

net work, processing continues from the previous state in

the main network. These sub-networks can be entered

as often as is necessary (i.e. recursively) hence the name,

recursive transition network (RTN). Sub-networks allow

the description of regularities. An augmented transition

network (ATN) is an RTN augmented by the addition

of registers in which to hold preliminary results as pro-

cessing cent inues. Unlike FSTNS or RTNs, these reg-

isters can then later be used as conditions on the arcs

facilitating the construction of single pass processing.

Registers can also be used to output information in a

different order to that in which it appears in the input

text. This allows the construction of arbitrary complex

structures containing information gleaned from the in-

put text. Thus the amendment action frame can be gen-

erated in the parser itself. These characteristics make

ATNs ideal for implementing our NLP module. We now

describe some of the sub-networks in the NLP module.

4 NLP sub-networks

4.1 Principal Act definitions

The first major problem in implementing the parser is

identifying the target element to be modified. Amend-

ing sections often refer to an element in ‘the Principal

Act’ which must be defined elsewhere in the Act, either

for the whole Act or for a specified element (usually a

part or division) within the Amending Act. Such def-

inition sections usually appear at the beginning of the

Act or the element to which they refer. So the Act can

be processed from beginning to end incorporating these

sect ions as they occur. The main network recognizes

a definition of a Principal Act and enters a PRINCIPAL

ACT sub-network. This sub-network alters the current

definition of “Principal Act” which is stored in a regis-

ter. Greater error checking is provided by monitoring

the scope of each definition and ensuring that a defini-

tion is only used in the scope in which it was intended.

This is achieved by extending the register to contain a

list of Principal Act definitions and their scope.

4.2 Citations

Having identified the Act in which the modification is

to occur, the next problem is identification of the ele-

ment within the Act which is to be modified. Statutes

can contain a variety of citation formats [23] however

those in amending sections are usually limited to simple

citations of a single element, or occasionally a contigu-

ous range of elements which Wilson terms an extended

reference (e.g. “sections 1 to 3“). The prototype sys-

tem handles both the simple and extended references

although the later proved somewhat more difficult to

implement as Wilson found. Regardless of the citation

format, the location information is often split, appearing

300

in fragments throughout the amending section. Because

of the scattering of the information about location, a

frame representation was used for storing the target lo-

cation as was done by Merld et al [11] (and source lo-

cation for consistency). The frame representation can

easily be converted to any citation standard when re-

quired. Whenever further clarification of the location

is available from the input the Loc.4moN sub-network

is entered. This updates the location frame which is

passed to it. It is not necessary to record the short title

in the location frame as an Act is uniquely determined

by the year and the Act number in that year. If needed

the short title can be derived from this.

4.3 Time

The time at which an amendment comes into effect is

crucial for ensuring that the correct version of the Prin-

cipal Act is available for every moment in time. In all

Australian jurisdictions where an Act commences on a

particular day, it comes into operation immediately on

the expiry of the preceding day [14]. Thus the smallest

unit of time to be represented is a day. An Act may

commence a certain time after it receives the vice-regal

assent, on a day fixed by the Act, on the proclamation

of the CJoveruor or Governor-General (acting on the ad-

vice of his or her Ministers) or at some time fixed by

reference to a certain event. Since most authorized ver-

sions of Acts have the date of commencement as a foot-

note to the title page, it seems reasonable to expect this

date to appear in the SGML encoding of the amending

Act. Unfortunately different elements of the Acts may

come into effect at different times. A separate section is

used specifying the commencement times of effected el-

ements. W bile the handling of temporal references can

be problematic, the current version of the NLP mod-

ule includes a TIME sub-network for handling sections

which specify commencement times for the Act or dif-

ferent elements of the Act with the default being the

commencement date in the encoding of the Act. This

sub-network handles most of the more common expres-

sions of commencement times of elements.

It is possible that an amending Act may come into

force after a subsequent Act amending the same Princi-

pal. Although rare, retrospective legislation is permit-

ted in Australia. Commencement times dependent on

certain events occuring can also create an unexpected

ordering of amending Acts. The amendments must then

be applied to multiple versions of the Principal. The

simplest solution is to undo modifications in any subse-

quent versions, apply the intervening modifications and

then reapply the later modifications. More sophisti-

cated management could simply propagate changes to

later versions reporting any conflicts between changes.

These may actually require judicial interpretation.

4.4 Sections

A single section or sub-section in the Amending Act

(the source section) is invariably used for each insertion

or repeal of a (target) section, or higher element such

as a chapter, part, division or sub-division, in the Prin-

cipal Act. The normal way of organizing amendments

below the target section level is to collect arnemlmeuts

to a single target section in a single source section or

sub-section. Therefore most amending sections or sub-

sections begin with “Section (Target section no) of (Tar-

get act tit/e) is amended“ so we describe this part of

the ATN in greater detail. A sample ATN for such sec-

tions is provided in Figure 2 (some simplifications have

been made for the purposes of presentation although the

sub-network is still quite complex).

If more than one modification is made to the target

section, the source section or subsection is divided into

paragraphs each of which contains a complete modifica-

tion. This corresponds to the parser reaching state 5 on

the ATN in Figure 2. Otherwise the network proceeds

directly to state 6. When the modification is processed

the network will reach state 901 where an amending

action frame is output. If there are paragraphs the net-

work will traverse to state 902 from which it can return

to state 5 to process the next paragraph or exit to state

999 at the end of the section or subsection. Sections

and subsections without paragraphs and hence only one

modification go directly from state 901 to 999.

The information for the remaining features is ex-

tracted between state 6 and state 901. There are 6 dif-

ferent types of amendment action possible in an amend-

ing section or subsection:

Action type

omit. string

omit _element

replace_ string

replace_ element

insert_ string

insert _element

Description

Deletes all of the designated

Occurrence(s) of Old string in

the Target element

Deletes the Target element

Replaces all of the designated

Occurrence(s) of Old string

with New string in the Target

element

Replaces the Ta~qet element

wit h New, a complete element

Inserts New string after the

After string or before (he

Before string in the Target

element,

Insmts New, a complete ele-

ment, after the After or before

the Before location

Actions of the first four types are distin~uished by the

word “omitting” after state 6. Actions of the latter two

301

Figure 2: Simplified ATN sub-network for AMENDING S~CTIONS

302

types are distinguished by the word “inserting” after

state 6. The remainder of the sub-network identifies the

various features using a combination of SGML tags and

key words in the text to ultimately distinguish between

the various types of amendment action. An example

of each type of amendment action appears in its SGML

text form and in the resulting Amendment Action frame

in Appendix 5.

4.5 Schedules

A collection of minor amendments is often gathered in

one or more schedules which appear at the end of the

Act. While schedules are strictly speaking part of the

Act and have legal force in their own right [14], where

such consequential amendments appear in a schedule

there is invariably a section or subsection in the body

of the Amending Act drawing attention to the amend-

ments in the schedule. Where a single Act is involved

the wording is usually “The Principal Act is amended

as set out in the Schedule” or similar words referring to

a particular Act or a numbered Schedule. The Sched-

ule usually comprises a description of the element to be

amended in bold followed by an amendment action sim-

ilar to those after state 6 in the AMENDING SECTION

sub-network (see Figure 2). Alternatively this informa-

tion is captured in a two column table.

Where more than one Act is involved the wording is

usually “The Acts set out in the Schedule are amended

as set out in the Schedule” or similar. Schedules of this

type usually contain an Act title followed by a list of

elements with the amendment action for each element,

followed by another Act title and so on.

All of these forms can be handled by th~ existing

parser which produces a separate frame for each amend-

ing action as with the amending sections.

5 Conclusion and further work

The NLP processor has been constructed in NU-

Prolog [19] and tested on a relatively small set of exam-

ple Federal Acts (including the Grape Research Levy

Act 1986 and the States Grants (Schools Assistance)

Act 1989 and the Acts which amend them – a total

of 10 Acts) which were selected because they are rel-

atively small and recent Acts that provide a rich vari-

et y of amendment types. The NLP module attempts

to process the whole Amending Act, recognizing t ypi-

cal sections which form part of Amending Acts but re-

quire no amending action as well as the ones mentioned

above. Sect ions which cannot be parsed or recognized

are flagged for the user to handle (either by extending

the NLP module or by performing the database transac-

tions directly). Some small extensions were required to

the ATN with the first four amending Acts but subse-

quent amending Acts were handled with only one excep-

tion (which was an amending section with alternative

wording to be inserted depending on the time of com-

mencement of another Act). While variations which are

likely to appear more than once should be incorporated

into the NLP module it was thought that unique and

complex amending sections are probably better handled

individually anyway.

More complex time sections and schedule arrange-

ments can be found in other Acts of the Commonwealth

Parliament so wider testing is needed with a larger sam-

ple set. Work is presently under way to encode the

Family Law Act 1976, which is a much larger Princi-

pal Act with more than 42 Amending Acts to date. A

few of these Amending Acts amend more than a third

of the sections in the Principal Act. Pilot work is also

under way to adapt the NLP module for Tasmanian leg-

islation (Tasmania is one of the Australian States) for

possible inclusion in the government’s integrated legis-

lation drafting and management system. This system

would mainly be used for including prior legislation in

the legislation database as the drafters are keen to pro-

duce the new versions directly and derive the Amending

Acts rather than derive the versions from the Amending

Acts.

It was considered that using a DCG formalism might

make the NLP module more easily modified [15]. Al-

though it is claimed that parsers in each of these for-

malisms (ATN and DCG) are easy to extend and mod-

ify, prototypes in both formalisms seemed to require

considerable programming expertise to modify. It is

intended to develop a graphical manipulation tool for

constructing appropriate ATNs for subsequent versions

of the prototype as ATNs lend themselves to graphical

represent ation more easily than DCGS.

Because of the fact that legislation can be repealed

by Principal Acts and not just amending Acts, the re-

peal of whole Acts has not been considered in this study.

Further complications arise from the fact that an Act

can be impliedly repealed by a later inconsistent Act [14]

or be ruled unconstitutional. State legislation can also

be overridden by inconsistent Federal legislation, Some

mechanism for including this information would be re-

quired of a commercial system although this will be diffi-

cult if not impossible to automate as it involves semantic

analysis in a much wider domain.

Despite these limitations, this study demonstrates

the viability of automating significant portions of the

application of amendments to legislation and opens the

door for truly intelligent legislative drafting and mana-

gement environments.

303

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

L. Allen and C. Saxon. Exploring computer-aided

generation of questions for normalizing legal rules.

In Walter [21].

T. Arnold-Moore and R. Sacks-Davis. Databases of

legislation: The problems of consolidations. Tech-

nical Report CITRI TR/94-9, Collaborative In-

formation Technology Research Institute (CITRI),

1994. To appear in the Law Library Journal.

D. Berman and C. Hafner. Obstacles to the devel-

opment of logic-based models of legal reasoning. In

Walter [21].

D. G. Bobrow and J. B. Fraser. An augmented

state transition network analysis procedure. In in-

ternational Joint Conf. on Al (IJCAI), pp. 557-

567, 1969.

A. Clark and K. Economies. Technics and praxis:

Technological innovation and legal practice in mod-

ern society. Yearbook of La w Comptders and Tech-

nology, 4:16, 1989.

M. Corbett. Indexing and searching statutory text.

Law Library Journal, 84:759-67, 1992.

G. Greeuleaf, A. Mowbray, and D. Lewis. Teach-

ing lawyers information retrieval: the AIRS train-

ing system. In Information Online ’88: Australian

Online Information Conference, Sydney, 1988.

C. D. Hafner. An Information Retrieval System

based on a Computer Model of Legal Knowledge.

UM1 Research Press, Ann Arbor, MI, 1981.

International Organization for Standardization. In-

formation processing – text and office systems –

Standard Generalised Markup Language (SGML),

1986. ISO/IEC 8879:1986.

P. Johnson and D. Mead. Legislative knowledge

base systems for public administration – some prac-

t ical issues. Technical report, Softlaw Corporation,

Canberra, 1991.

W. Merkl, S. Vieweg, and A. Karapetjan. KELP:

a hypertext oriented user-interface for an intelli-

gent legal fulltext information retrieval system. In

International Conference on Database and Expert

System Applications, p. 399, Viennaj 1990.

M. Minsky. A framework for representing knowl-

edge. In P. H. Winston and B. K. P. Horn, editors,

The Psychology of Computer Vision, pp. 211-277.

McGraw-Hill, New York, 1975.

CITRI. Structured Information Manager (SIM)

Manual, Vols 1-15. Melbourne, 1994.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. C. Pearce. Statutory Interpretation in Australia.

Butterworths, Sydney, 2nd edition, 1981.

F. C. N. Pereira and D. H. D. Warren. Definite

clause grammars for language analysis – a survey

of the formalism and a comparison with augmented

transition networks. Artificial Intelligence, 13:231-

278, 1980.

M. Sergot, l?. Sadri, R. A. Kowalski, and l?. Kri-

waczek. The British Nationality Act as a logic pro-

gram. Communications of the ACM, 29:370-85,

1986.

R. L. Stoyles. The unfulfilled promise: Use of

computers by and for legislatures. Cornput er/Laul

Journal, 9:73, 1987.

C. F. H. Tapper. Computers and legislation. Al-

abama Law Review, 23(1):1–42, 1970.

J. A. Thorn and J. Z. (Eds). NU-Prolog Reference

Manual. Australia, 1990. Available as Deparment

of Computer Science Technical Report No 86/10

Version 1.5.24.

J. Thorne, P. Bratley, and H. Dewar. The syntactic

analysis of English by machine. In D. Michie, edi-

tor, Machine Intelligence 3, pp. 281–309. Elsevier,

New York, 1968.

C. Walter, editor. Computer Power and Legal Lan-

guage: The Use of Computational Linguistics, Ar-

tificial Intelligence, and Expert Systems in the Law.

Quorum Books, New York, 1988. Papers from the

2nd Annual Conference on Law and Technology,

Houston.

E. Wilson. Electronic books: the automatic

production of hypertext documents from existing

printed sources. In Fourth Annual Conference of

the U W Centre for the New Oxford English Dic-

tionary: Information in Text, pp. 29--45, Ontario,

Canada, 1988.

E. Wilson. Integrated information retrieval of law

in a hypertext environment, In Proceedings of the

ACM International Conference on Research and

Development in Information Retrieval [SIGIR),

pp. 663–77, Grenoble, France, 1988.

W. A. Woods. Transition network grammars for

natural language analysis. Communications of the

ACM, 13(10):591-606, 1970.

W. A. Woods. Grammar, augmented transition

network. In S. C. Shapiro and D. Eckroth, editors,

Encyclopedia of Artificial Intelligence, pp. 323-333.

John Wiley & Sons, Inc., New York, 1987.

304

Appendix: Example output of the NLP module

Below is a representation of some output from the NLP module. First we provide a simplified SGML encoding of

a fictitious Amending Act derived from various Acts which amend the States Grants (Schools Assistance) Act 1989

(Cth) No 1 and then we list the resulting output frames

<act>

<at> States Grants Amendment Act 1990< /at>< an>67</an>

<cmnmence>l Jan 1991</commence>

<sec><sn>l</sn>

For the purposes of this Act <deft>Princlpal Act</deft> means the <at>States Grants

(Schools Assistance) Act 1989</at>.

</see>

<secXsn>2</sn>

Section 4 of this Act shall conunence on the 30 April 1991 and the remainder of the Act

shall commence on a date to be fixed by proclamation.

</see>

<sec><sn>3</sn>

Section 4 of the Principal Act is amended by omitting the definition of

<deft>llinister</deft> in subsection (2).

</see>

<sec><sn>4</sn>

Section 14 of the Principal Act is amended:

<par><parn>a</parn>

by omitting from subsection (1) <q>some uninteresting text</q> and

substituting <q>an alternative</q>.

</par>

<par><parn>b</pUn>

by omitting from subsection (3) <q>some redundant text</q>.

</par>

</see>

<sec><sn>5</sn>

Section 25 of the Principal Act is amended:

<par><parn>b</parn>

by omitting subsection (2) and substituting the following:

<q><ssec><ssn>2</ssn>This is a substitute subsection,</ssec>

</q> .

</par>

<par><parn>b</pa.rn>

by inserting <q>some replacement text</q> in subsection (4) after

<q>some text for location purposes</q>.

</par>

<par><parn>c</parn>

by inserting the following subsection after subsection (5):

<q><ssec><ssn>5A</ssn>This is a newly inserted subsection.</ssec>

</q> .

</par>

</see>

</act>

305

Which produces the following output frames (those features with a nil entry have been left out):

Source:

Target:

Time:

Type:

Occur:

Source:

Target:

Time:

Type:

Old:

Occur:

New:

Source:

Target:

Time:

Type:

Old :

Occur:

Source:

Target:

Time:

Type:

New:

Source:

Target:

Time:

Type:

Occur:

New:

After:

Source:

1’ime:

Type:

New:

After:

1oc(199O, 67, n, n, n, n, 3, n, n, n, n, n, n)

1oc(I989, 1, n, n, n, n, 4, 2, “Minister”, n, n, n, n)

1 Jan 1990

omit.element

1

loc(i990, 67, n, n, n, n, 4, n, n, a, n, n, n)

1oc(I989, 1, n, n, n, n, 14, 1, n, n, n, n, n)

30 Apr 1990

replace.string

“some uninteresting text”
4
A

“an alternative”

1oc(199O, 67, n, n, n, n, 4, n, n, b, n, n, n)

1oc(I989, 1, n, n, n, n, 14, 3, n, n, n, n, n)

30 Apr 1990

omit_string

“some redundant text”

1

1oc(199O, 67, n, n, n, n, 5, n, n, a, n, n, n)

1oc(I989, 1, n, n, n, n, 25, 2, n, n, n, n, n)

1 Jan 1990

replace_element
,*<s~ec><ssn>2</ssn>This is a substitute subsection.<jssec>”

1oc(I99O, 67, n, n, n, n, 5, n, n, b, n, n, n)

1oc(1989, 1, n, n, n, n, 25, 4, n, n, n, n, n)

1 Jan 1990

insert_string

1

“some replacement text”

“some text for location purposes”

1oc(I99O, 67, n, n, n, n, 5, n, n, c, n, n, n)

i Jan 1990

insert_element
@t<ssec><ssn>5A</ssn>This is a newly inserted subsection.<issec>”

1oc(I989, i, n, n, n, n, 25, 5, n, n, n, n, n)

306

