
A Computational Framework for Dialectical Reasoning

Pierre St-Vincent 1, Daniel Poulin2 and Paul Bratleyl

ZCentre de recherche en droit public

poulind@droit.umontreal.ca

lD@pafiement d’informatique et de recherche 0p6rati0nnelle

{stvincen, bratley]@iro.umontreal.ca

University de Montreal
c.p. 6128, Succursale A

Montr6al (Qu6bec)
Canada H3C 3J7

Abstract

Dialectics are important not only in law but in every domain
where knowledge is not certain; that is, everywhere
assumptions must be made. After a review of recent
advances in computational dialectics and related fields, we
present the framework of a system for constructing
dialectical arguments from a rule-based representation of
law.

In this system, meta level reasoning serves to allow for
multiple utilisations of the rules. At the object level, rules
grouped in modules represent “ground” knowledge. At the
meta level, modules contain meta level rules that query other
modules, at the object level or at some meta level, for
arguments. During the construction of arguments, meta level
rules use a filtering mechanism that works like simple
regular expressions. This mechanism selects lower level
rules according to their contexts.

The object rules of the system are marked with interpretative
contexts to permit varying points of view while maintaining
an isomorphic representation of knowledge. The rules can be
preceded by explicit negation, and the presence of
contradictory rules allows conflicting arguments to be built.
Examples are given and a discussion of future work
concludes the paper.

1. Introduction

There is nothing new in a dialectical approach to
knowledge. Since ancient times, the art of dialectics has been
allied to that of logic to add conviction to an argument,
rather than merely proving it formally. For

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Mashi”ery, To Gopy otherwise, or m republish, requires a fee and/or specific
permission.

0 1995 ACM 0-89791-758-8/95/0005/0137 $1.50

Plato, dialectics was the art of discussion by question and
answer; for Aristotle, arguments based on uncertain
premisses, that could be debated and defeated, were
dialectical in nature. Since Hegel dialectics has been seen
rather as an approach to reasoning that recognizes the
inseparable nature of contradictory elements that unite in a
final synthesis. Logic and dialectics both support one
another and oppose one another. Both aim to ensure correct
ways of thinking, but while the former limits itself to formal
truth, the latter tries to convince, to bring the hearer not
merely to understand, but to agree.

Legal reasoning seems to partake more of dialectics than of
logic. A lawyer does not feel himself confined to a single
reading of his texts that he would propose in every case.
Depending on his client, and depending on his objective, he
may allow himself the necessary dialectic liberty of giving
more weight to some point of view which, while not the most
evident, is nevertheless plausible, and which, above all,
advances the interests he represents. This is by no means to
say that he is free to advance any view he chooses, no matter
how unlikely, but that among several possible defensible
lines of reasoning he will choose the one that serves his
purposes. Sometimes it is possible to defend different
readings of legal rules; at others different interpretations of
the facts may give an advocate the required room for
manmuvre; but he will never be reduced to silence. Despite
being themselves trained in such dialectical exercises,
lawyers are sometimes surprised to come across them in
other disciplines, even those deemed to be among the most
positivist of the sciences. Thus in cases concerning patents,
for example, the most eminent jurists can be astonished to
encounter an old friend: “How is it that, invariably, and in a
discipline and a procedure that is supposed to be both
scientific and objective, there are always two independent,
eminent, and experienced experts who completely disagree
with each other?” [Henderson 94, p.2] It is simple to explain
this ubiquity of dialectics: no doubt it is true that whenever
points of view diverge and arguments arise, then a dialectic
process is inevitable. This simple truth must necessarily be
taken into account in any attempt to model legal reasoning.

A number of pioneering systems that attempted to model legal
reasoning were heavily influenced by logic [Smith 87,
Susskind 87]; sometimes logic was even proposed as the
natural language to use to express legal norms [Sergot 86].
Little by little, however, researchers began to explore other
avenues that allow them to express more easily different

1!37

approaches to such norms. Rissland and Ashley were among
the first to understand the importance of being able to
express the alternate lines of reasoning that characterize
legal arguments. Their systems of case-based reasoning have
always tried to model the different approaches accepted by
the courts, whether in the area of commercial secrets, tax
exemptions, or elsewhere [Rissland 87, Ashley 90].

Quite recently a number of approaches have been suggested
that aim to go beyond the single-mindedness of the early
systems, and to extend the dialectical capabilities of case-
based reasoning systems to the wider class of legal expert
systems in general. Many of the researchers involved have
favoured using some form of default logic, while others rely
on meta reasoning.

For instance, Prakken proposed a logical system involving
the use of Reiter’s normal defaults lPrakken 93]. It allows
for ordering conflicting arguments by comparing them using,
for instance, Iex superior, lex posterior or lex specialis.
When many defaults are applicable to derive an argument
they can in turn be ordered, if necessary. This scheme is
extended to combine multiple orderings and even the meta-
level production of orderings.

Similarly Brewka [Brewka 94] uses a prioritized default
logic based on Reiter’s logic. It can implement explicit partial
orders by defining an operator (“e”) that can be used either
in the formulas or in the defaults. Its scheme is thus very
general. For example, it allows defaults to be specified in the
ordering of other defaults.

Gordon has studied a different problem, namely identifying
the legal points involved in an argument [Gordon 93]. His
system uses another nonmonotonic logic, the “conditional
entailment” of Geffner and Pearl [Geffner 92]. It can order
conflicting rules either using an “automatic” measure of

specificity or using defaults to encode the priorities. Gordon
budds upon this logic to implement the “Pleadings Game” in
which two players, the plaintiff and the defendant, argue
about a legal problem while respecting Alexy’s rules of
rationality [Alexy 89]. A “formalization of Toulmin’s
theory of practical argumentation” the system allows for an
identification of the issues of a problem.

Schobbens too has designed a logic that allows him to take
account of the reliability of witnesses by ranking their
testimony, and to consider the priority of higher-level laws
(lex superior), and to make initial assumptions
[Schobbens 93]. Hage also has presented a system able to
solve conflicts between rules [Hage 93].

Sartor uses meta reasoning in logic programming. He wants
to “extend formal methods outside the domain of deduction,
to the moments of dialectical conflict - and therefore of
choice and evaluation – which characterize legal and moral
reasoning.” [Sartor 94, p. 178] His system allows for
justified preferences, exceptions, and so on. It uses contexts
to “name” the rules and identify them. Following the Prolog
execution scheme, the system builds arguments that can defeat
one another depending on information represented by
priority rules. In this way, priorities being represented by
“normal” rules, can be defeated in their turn. Only “success”
arguments are producible by this system; it does not

implement so-called “negation by failure” and the system has
only one level.

As far as meta reasoning is concerned, Hamfelt was the first
to propose a system using several levels of knowledge to
model the action of interpretative rules when applied to the
substantive legal rules [Hamfelt 89]. His system is different
from those where the role of the meta-rules is to implement
mechanisms for control or introspection. Instead, the meta-
rules (the rules of interpretation) are used to modify the rules
at the lower level (the substantive legal rules). It remains to
be seen whether it is possible to write meta-rules able to
generate automatically legally acceptable variations of the
substantive rules. Schild too has described a system using
meta-knowledge to create rules. Here the generated rules are
intended to implement substantive rules that use “vague”
predicates. In this system, whenever such a predicate is not
defined by other rules, a meta-rule is triggered to create new
rules, based on comments found in the pertinent
jurisprudence (the “obiter”). These new rules are supposed
to apply to the factual situation being considered [Schild 93].
Poulin proposed using meta-rules in a more general way. In
his system, the meta-rules represent four kinds of knowledge
general, procedural, adversarial and inferential. The rules
of the field in question, relieved of these considerations, can
then be expressed in a declarative fashion. More
importantly, contradictory rules can now coexist at the
object level. Conflicts between rules are resolved by meta-
rules that model the interpretative techniques used by
lawyers [Poulin 93a; 93b].

The following sections present a computational framework
to implement the type of model proposed by Poulirr. We shall
be particularly interested in the production of coherent
arguments in a setting where the object level rules may be
contradictory. Throughout the following sections we give
examples of rules and meta-rules that illustrate the
computations involved. It is worth emphasizing, to avoid
misunderstanding, that these examples are intended to
exercise the system being built or to illustrate a point, not to
represent genuine legal situations.

2. Overview

The principal goal of the argument producing system
presented here is to allow us to build experimental
dialectical systems that can be easily modified to test
different research hypotheses. The system produces
arguments, that is, lines of reasoning to support a desired
conclusion. For ease of modification, a fixed scheme is not in
order. Thus we designed a programming language that is an
extension of Prolog, and a runtime support system. Only the
core of the language is described in this paper. Its
irnplem-tation is now atrncmt co~plete.

Arguments produced by the system are like proof trees
augmented with contextual annotations. However in case of
failure, where a proof tree would be empty and useless, an
argument explains the reason for the failure and shows those
parts of the proof that succeeded, if any.

138

The language is based on metaprogramming. This clears the

way to using a purely declarative representation of object
level knowledge, as proposed by Poulin [Poulin 93a]. On the
other hand the production of arguments is mostly procedural,
and the rules for this are placed at some meta level. There
can be any number of meta levels. The rules themselves differ
whether they are at some meta level or at the object level. At
the object level the rules should mirror the if-then structure
of the rules of law [Sergot 86]; further, they should be as
isomorphic as possible to the sources [Bench-Capon 92]. At
the meta levels the rules should allow us to implement the

general, procedural, adversarial and inferential expertise of
legal thinking and judicial practice [Poulin 93a, 93b, 93c].

Whether object or meta, rules are marked with contexts. The
context of a rule can represent a variety of meta-knowledge.
This includes:

● The factual basis of the knowledge represented by the
rule. This basis ma indentify such things as the source

%x
of law originating t e rule. It could also indicate the
means by which t e knowledge was obtained, when and
where it was obtained, and by whom. For instance,
somethin might have been learned by eavesdropping on

%cellular p one frequencies.

● The theory of the particular field involved. In the legal
field, this includes the interpretative method used in
deriving the rule from some legal source [Wroblewski
88; Bergel 89; Du Pasquier 79].

● Claims that mayor may not be true. This will be
illustrated later.

A program is a set of modules,some at the object level, others
at meta levels. Using modules permits us to structure the rule
bases by grouping related rules; this grouping restricts the
search for matching rules and renders it more manageable for
the programmer. It also generalizes the rule bases by
allowing us to reuse common parts in different situations.

Object level modules (hereafter simply “object modules”)
begin with begi.n.object and end with enlcbj~ statements,
thus:

ti.ckd=t (sanple_cbjeet) .
. . .

en5_cbjwt.

Object level modules contain only object level rules.

Meta level modules (hereafter simply “meta modules”)
usually take other modules as parameters. As illustrated in

the example below, they begin with b@_mta statements
where their formal parameters are declared:

-.mf=a h=de.rmta @rcm=terlJ K=am=t=2)).
. . .

m.lmta.

The language implements a subtask management architecture
[van Harmelen 89]. Meta modules do their own inferencing.
When necessary they call other modules, either meta or
object, asking them to supply arguments. The called modules
then build and return arguments to their callers.
The modules that constitute a rule base, a “program” so to

speak, thus form an oriented graph where the links are the

requests and the nodes are the modules themselves. Cycles
may appear in this graph when requests make recursive
calls. The starting point of the rule base is a special module,
named top, that contains all the entry points. Since t o~ has no

parameters its requests can resolve at run-time all the module
references encountered. This is how module expressions
containing formal parameters are translated to expressions
containing only the names of meta modules or object modules.

The entry points are shown in menus so the user can initiate
his own requests. These entry points are defined with user
rules like the following

%rir--n-eta(a) .
/* amahere inside “tq” we cculd have this n.de: ‘/
User(’’rmm entzy label”) :-

-_cmkext * snm_~t in sace_rmihle.
d.mta.

Choosing the menu item menu ISX-ItZYlakel begins execution of
the request. The system will then construct arguments for the
chosen goal, putting questions to the user when it encounters
“user askable” facts. The resulting argument trees, whether
successes or failures, are finally drawn on screen.

For the experienced user a top level is also available that
allows immediate execution of any acceptable request.

3. The object Level Rules

At the object level the rules are like pure Prolog clauses
augmented by contexts and explicit negation. The body of a
rule consists of conjunctions and disjunctions of goals which
can be explicitly negated. The head of a rule consists of two
parts, a context and a goal, separated by the ‘=>’ operator:

Caltext=>g2d. :- omjumtimkdi.sjumtim.
1 I I

Any Prolog term, whether ground (i.e. variable free) or not,
can be used as a context. For example, suppose the following
facts and rules are in three different modules (the syntactic
elements that delimit the modules are not shown):

/’ ncdile “claim”, fact fl: ‘/
claim (ni.xm) = pacifist (xrkn) .

/’ mxWe “peacccks_trial”, fact f2: */
tezti.rmy(“ties Jam?scm” , date(24, apil, 1910)) =>

cn(lmtzkr.knif e, f 10x_of (kit&)) .

/’ rmMle ‘_loyrmt_cbj”, rule r3: ‘/

int~_cmtext (art (28,4 ,b) ,

textual (ox–&BIy._m3mi.KJ) ,

acalIm(cub(45))) -

sPJ%m@Lqti~ (~r S’KUSE) :-

militay(SKl?SE) ,

neu_mili~pt@ (SKrJ3E) .

The first fact is an instance of a simple claim, namely that
“Nixon claims he is a pacifist”. The second fact shows that
“The butcher’s knife was on the kitchen floor” is part of the
testimony given by Miss Jameson on April 24th 1910. It

139

/“ ?5 ‘1

gives an example of a factual context, i.e. that the rule comes
from someone’s testimony. This implies that the fact
cm(lmtcher_icnif e, flcor_of ftitcta)) can be used in

inferences as long as Miss Jameson’s testimony is legally

valid. Rule r 3 (adapted from [Poulin 93b]) is accompanied
by its interpretative context: its source is Canadian
Unemployment Board decision number 45 and this decision
follows a textual reading [McCormick 91] of article 28)4=b
of the Unemployment Act, based on the ordinary meaning of
words.

Contexts can also be used to represent the experts’ opinions
with which a rule is associated [Freeman 94]. For instance,
suppose we have two divergent opinions as to whether or
not a Greek sculpture is a forgery (here rs uses the explicit

negation operator “-i”):

t.hm~.of (profesmr (a.Z@a)) =>
forgery (kore) :-

0210r (tile, pink),

classical ~-) !

SkQ(chisel.s) ,

-.-of (Dmfe=EDc (1332?L)) =>

-- fcmgery(lmi+) :-

color (mzble, pink) ,

classical (_rticms) ,

Skrp(chisds) ,

origin (athens)

The first rule reads: “According to Professor Alpha, a kor~
is a forgery if its marble is pink, its proportions are classical
and it has been sculpted with sharp chisels,” while the
second reads: “According to Professor Beta, a kor~ is not a
forgery if its marble is pink, its proportions are classical and
it has been sculpted with sharp chisels BUT it originates
from Athens.”

Which argument will be preferred depends on the meta level
used. In cases like this, where opinions are given, the most
specific argument is not necessarily the best.

We can generalize from ground contexts, used in the
preceding examples, by using variables. For instance,
Nixon’s claim f 1 in our first example could be generalized as
follows with the variable EVERYBODY

Clainw (DmwB.mY) 5 ps.cifist (n&m) .

This means, obviously, that everybody claims that Nixon is a
pacifist.

The rules produce arguments much like proof trees. (For a
meta interpreter that explains its reasoning whether in case
of success or failure, see [Yal$inalp 89]). In case of success
the conjuncti

cent .> mnj :-al, S2, a3. /’ r10 ‘/

will produce the following argument, where the subtrees
produced by al, az and ax are shown inside triangles and
“cent => conj” is the root marked with its context

cent => coni

In case of failure the same conjunct will produce an argument
showing the parts that have succeeded and the cause of the
failure, following the execution scheme of Prolog. For
instance, suppose al succeeds but that there are no rules for
~, so a2 fails. We would then obtain the following argument,

where the tam no am (for “N ~t”) and m de

=> conj

identify failu~e nodes:- ‘

no arg:cont

i

no rule:c => a2

al

By inspecting this tree an experienced user can see which
parts have been successful up to some point and what is the
cause of the failure. As the tree suggests, there is a

compromise made here: whereas it shows the success of al,
no effort is made to determine the eventual success of ax. This
is a compromise between exploring all possible paths to
maximize the argument trees, and annoying the user with
questions that cannot possibly lead to success.

So-called negation by failure is implemented by reversing
failed arguments. Such failures then naturally become
successes of their counterparts.

While this section has concentrated on object level rules,
meta level rules produce argument trees in a similar way, as
we will see in the following section.

140

4, Meta level rules, Requests and Filters

Meta level rules have the same general structure as object
level rules. The difference lies in the fact that their bodies are
conjunctions and disjunctions of requests instead of

“ordinary”, Prolog-like goals. Requests implement the

search for arguments. They are calls made from meta level

modules to other modules asking them to provide arguments

in favour of some specific goal. The requests use filtering
expressionswhile constructing arguments to choose between
available rules according to their contexts, The important
point is that arguments are not selected by the filtering
expressions after their production but at each step during it.

In our system requests are like the “demo” predicate usual in
meta programming since Bowen and Kowalski’s early work
[Bowen 82]. A request consists of three parts, namely a
filtering expression, a goal and a module expression

cm-t(l),cent(2) + @ in n@a (scm.mxide) .
~~ ~

filkitg expressicm gcel nriWe ~i~

When we place a request in a meta level rule it looks like
this:

rule.ccntext => rule.nzm :-

Kquest_fil&~q .> @ h -=.

Filtering expressions (or “filters” for short) are like simple
regular expressions without parentheses. The absence of
parentheses implies that they are free of nested loops that
would unduly complicate their use and implementation. The
main difference between regular expressions and filtering

expressions lies in the presence of Prolog variables in the
latter. This means that unifications can occur when they are
used. Where regular expressions accept strings of characters,
filtering expressions accept sequences of contexts of
arguments under construction.

Define the context sequencesof an argument A to be

Csi(A) = the sequence of contexts along

the i-th branch of A

where the i-th branch is the path from root to i-th leaf
(counted from left to right). For example, let A be the
following argument which has three branches.

c(1) => p

/\

c(2) => q c(5) => t

/\ I
c(3) => r c(4) => S c(6) => L

Its context sequences are: CS1(A) = [c(l), c(2), c(3)], cs2(A) =

[c(l), c(2), c(4)], and CS3(A) = [c(l), c(5), c(6)].

Now a filtering expression accepts a complete argument tree
if it accepts all its context sequences. In detail, filters accept
context sequences as follows:

● A single term filter accepts a single context that unifies
with it after proper variable substitution. Consider for
instance the requests in the first column of the following
table. They accept the rules with contexts shown in
second column, and the resulting unifications are shown
in the third:

Request context => goal Unifications

ccnt~e(l) => p in m amkxte(l) => p none

c(X, X) =>p inm C(2, Y) => p x=2 arid Y=2

VPR=>pinm map ~

●

●

●

●

●

Unifications made when an single term filter accepts a
context are carried on to succeeding steps of accepting a
branch.

A Prolog hst of single term filters such as [a, b, c]
accepts contexts that unify with any one of the elements
of the list. Thus lists implement alternatives between
contexts.

A single term filter or a list of single term filters may be
preceded by these operators, with the meanings given

/.* /, the element may be repeated zero or more times

;
“+ “ the element must be repeated at least once;
,, , ,, the element is optional.

A sequence of the receding filters accepts context
sequencesaccept~by eachelementin turn. Sequence
elements are separated by commas.

A context sequence is completely acce ted by a filter
{when the last element of the sequence as been accepted

by the last element of the filter.

As a special case, the “always free variable” denoted
bv “$’ is a sinde term filter that never unifies and can
b; used as a w~ldcard.

A few examples will illustrate filtering expressions:

accepts arguments having roots unifying with
“interp_context (NIT, C@?T, &XIF.IX)” and having any
branch.

“ tkory_of(X), *$, fact => p in m

accepts arguments having roots unifying with
theo~_of (x) and branches mding with fact.

● th31x-Y_of (x), *$, @-&n.of (x)
=Zpi.nrn

accepts arguments having roots unifying with
theoW_of (x) and branches ending with the opinion of
same.

● ‘$, fact => p in m
accepts arguments with branches ending with fact

Module expressions define the modules in which a request
searches for arguments. The simplest module expressions are
the names of object modules and the formal parameters of
meta modules. These are combined with the names of meta

141

modules. For instance, in the module expression
~~_tie (saw_tie) we have scrw_rciko~ the name of an

object module, and meti.rrcdul~ the name of a meta module of
arity 1.

The exact place where an argument is constructed depends
on the module expressions it meets. For instance, suppose we
have object modules c ivil-~j and c r~–~j and ‘he

following meta modules

&cJir_meta(nEte/@3e) .
. . .

/’ Iuld”‘/
textual => respm+ble :- textual=> faulty in

r@a_law (civiLobj).

/’ rliw ‘/

texhlal => guilty :- textual => f?nllty in

m3ta_kw(a5mird_obj).

d_mAa.

k@m_=_(m-_lm(@j_lw)) .
,..

texmal => faulty :- ~ => ~li~t in ~j_l~.

cr&mta.

Then the execution of ru.lel will be followed by the request
~ => fatity made to c ivil_obj while rul& will be
followed by the same request, this time addressed to
m=_cbj. We see that the formal parameter of rne–_lw is
effectively replaced at execution time by the actual parameter
of the calling request.

For another example, the following request obtains all the
arguments for the goal s~e_ ~excepticm in the module

umr@oymn_obj:

/* mdiLe Wnenploym5mt_m?ta”,rule m2ti2_9rE *f

rretii_inta12_amtext(-ml’, H, =.=m ‘>
rreta_5pmse_mm-excPt (~r SFcusE) :-

/’ * filter: ‘/

inteq?-.m- (Am, oml’, SXJRCE) , $* =>

/’ tk @al: ‘/

swase_~_’ci~ (~f SFUISE) in

/’ the &e: “/

UH@wren_ti .

In meta_spous e_move_excpt/ all the rules for

sPouse_movin9_exc ePt ion in unernplowent–obj with
interpretative contexts unifying with interP_cont ext (ART,
CONT, SOURCE) ti k used. Thus if inter’p.contti (ART, CCN1’,

SOURCE) is called with ART, CONT and SOURCE free, then the
request will eventually backtrack on all available contexts
for spouse_moving_exception. The variables will convey
context information from the called module to the caller. This
example also shows the use of the catch-all filter * $ which
accepts any branch of any length.

For our final example we turn to the “canonica~ problem of
representing priorities between competing applicable laws.
For instance, “lex superior” and “lex posteriores” are two

ways to choose between conflicting legal rules .

Suppose that at the object level two hypothetical building

regulations are applicable. The first is a general but old law
to be applied nation-wide (the National Building Code,
na t _b c for short), while the second is a recent municipal
regulation (the Municipal Building Regulation, mun_br for

short). The object level also contains the “recent /superior”
relationships between the two. Each rule is accompanied by
its textual description, placed after the htext (“Help TEXT”)
operator:

&rin_cbject (Ixd.e5) . % Cbject levelomtahiw
%thekuildiw cd=

rEit_k=>
ti_aistarKe (5 , kmqakw)

htext
,,kcor>o the Natititil~ tithe

ninirml distance

ketween tv.u knngalcws is 5 inters.”.

mm_br =’

rrrir_distance (3 , Mm)

htext

“kcordiw to the M.micipal tildin3 Regulation the

minimal distame

betwem M3bnwalwsis3 ~_.”.

fact -

mJx_reCent (m_hr nat-~)

tkxt

“l& Mnicipal-ER is rrore reGent than

the Naticnal-EC”.

fact -

Swer-i-or (na_kc,ImIL.??)
h&dz

“The NaticmaUW is sq2erior to the
~u~.~ .

e@.??e.

The meta module priorities(o) uses “recent/superior”
information in some object level module o to build arguments
for a given predicate Pin this same module

M_mti(wiaities (0)).
lex_eupsriOr(SiperLiw) => P :-

(fact . . qxszrior (Swerkw, _-I..aW) ~ o),

(SUprr.a.w => P in o)

htext

‘This rule irrpl~@ lex sqxzrior for a given

predicate P in a saw rmxWe o. It unifies

its omtext ~tsr with the con&xt of

the sqerior law.”.

lexpterior (Recemtb.w)=7 F : –

recent(REcentbw, _otkrLaw) in 0) t(fact => mxq

(RecErltI.m -P inO)

htsxt

Wbis rule inplawnts lex pasterior for a given
predicate P in a scrre mm%.le o. It unifies its

Ccxltext parroter with the Onltext of the

Kore recent law. “ ,

6rd_m&le.

142

~D~ llrgum: succ6s[(leH_supErior[nat-bc)=>min-distmnce(5,bungalnw) in pri SD=

Hosucc&s((lex~uperi or(nntJc)=>m inAistance<5,bungalow) in priori ties(bcodes))>

1 1

H

+::;

fact=>superior(nGt_bc, munh-) nat_bc=>min-distance<5,bungalow)
;;::::

o

lU~flrgum: succbs((leH-posterinr(mun-br)=>min_distance[3,bungalnw) in Prin S12JSl

H+’
succbs((lex+osterior(munJr)=>minAistance(3,bungalow> in priori ties(bcodes>))

lex-posterior<munJr)=>min-distance(3,bungalow) in priori ties(bcodes)

~[

2::;

Iex-posterior(mun-br)=>mindistcwwe(3, bungalow)
......j.;......;;\;{
;~;$

fact=>more~ecent<munhr,nat-bcl in bcodes munAr=>min-distance(3,bungalow) in bcodes K!!!
:::!~

,;::;
+J;

fact=>more>ecent(mun-br .nat-be)
::::::

mun_br=>minA istance<3.bunaa low)

Figure 2 : Lex Posterior Argument

Nowsuppose weexecute the following request fora “lex
superior” solution at the toplevel:

?- d(lex.~ior(g-rgerr-ew) = ti_distarce(X,i) ~

~iorities(~)).

Weobtainthefollowing output:

~m=nat_@ X=5, B=kun@m

And the “lex superior” argument tree is produced (See Figure
1)

Thegraynodesrepresent theexecutionofrequests. Theplain
nodestakeplace ferrules and facts. and conjunct nodes are
connectedtothe sameparent.The thirdnodefrom topshows
the unification between the variable P in the rule for
lex_suPerior andthegoalmin_distance (5, bungalow) inthe

request.

If we then execute this request for “lex posterior”:

?. ~(leptaim(~~) => rnir@Ls_(X,B) ti

Priorities(lx&&s)).

We obtain:

Rece&Mwzmn_kr,X=3, B =lxrma.lcw

Andthe “lexposterior’’a rgumenti sbuilt(SeeFigure2).

We could continue to multiply our examples. For instance,
our system uses both negation by failure and explicit
negation. The use we make ofthese two concepts, and the
relation between them, will be described in another article.

5. Conclusion

Thesystem wehavedescribed is basedon the following
prernisses.

● Anex~ertsystem mustbeable touse theexpertise
pecuhar to its articular application area. Inlaw, this

imeans itmust eableto interpret legal rules, notsimply
apply them blindly.

● A legal expert system must be able to develop arguments
both for and against a given point of view.

Obect level rules must be stated in a declaratory
“ fas~ion,

From these considerations we were inevitably driven to use
ameta level architecture. Thesystem wehavebuiltcanhave
any number of meta levels; its structure is modular, it
incorporates filters tohandle contextual information, and it
produces proof trees (arguments) that take account of

differing interpretations of theobject level rules. Thecontrol

mechanisms areexpliciti using thesame object level rules, we

143

can fix a goal and have the system produce arguments
supporting it, and also arguments against it.

The system is implemented for Macintosh computers using
AAISProlog. The first working prototype, which had only
one rudimentary meta level, was nevertheless adequate to
allow us to test the general feasibility and desirability of
our ideas. A second version is now almost complete. Among
other things, this new version already allows us to learn
more about how to use the various kinds of negation. We
also intend to explore how not just rules, but facts too, can
be “interpreted” according to the contexts in which they
occur: how reliable they are, whether they are admissible in
evidence, and so on. Finally we intend in the course of 1995
to implement a complete example taken from a genuine area of
law to see how well the system performs on a real

application.

Acknowledgements

The work described in this paper is supported by the Social
Sciences and Humanities Research Council of Canada, and
by Quebec’s Fends pour la Formafion de Chercheurs ef l’Aide
a la Recherche,.

References

Alexy 89 Alexy, Robert, A Theoy of Legal
Argurrrenfatimr, Oxford, at the Clarendon Press, 1989.

Ashley 90 Ashley, K, D., Modeling Legal Argurnenf, MIT
Press, Cambridge, Mass., 1990.

Bench-Capon 92 Bench-Capon, T.J,M. and F. Coenen,
dsomorphisrn and legal knowledge based systern.w,

Artificial Intelligence and Law, vol. 1 (1992), pp. 65-86.

Bergel 89 Bergel, Jean-Louis, Thiorie gt%%ale du Droif,
CO1l.M&hodes du Droit, Dalloz, Paris, 2nd edition
1989.

Bowen 82 Bowen, Kenneth A. and R.A. Kowalski,
<<Amalgamating language and metalanguage in logic
programming~>, in Logic Programming (APIC Studies in
Dafa Processing 16), Academic Press, 1982.

Brewka 94 Brewka, G., <<Reasoning about Priorities in
Default Logic)), Proceedings of the Twelffh National
Conference on Art~icial Intelligence, Seattle, 1994,
AAAI Press/MIT Press, Menlo Park, vol. 2, pp. 940-
945.

Du Pasquier 88 Du Pasquier, Claude, Infroducfion d la
fhdorie gine%ale et 2 la philosophic du Droit, Delachaux
et Niestk$, Paris, 6th edition 1988.

Freeman 94 Freeman, Kathleen, Toward Formalizing
Dialectical Argumentation, PhD Thesis, CIS-TR-94-19,
Dept of Computer Science, University of Oregon, 1994.

Gordon 93 Gordon, Thomas F., t~The Pleadings Game -
Formalizing Procedural Justice~~, Proceedings of fhe
Fourth International Conference on Artificial
Intelligence and Law, Vrije Universiteit, Amsterdam,
1993, ACM Press, New York, pp. 10-19.

Geffner 93 Geffner, H. and J. Pearl, <<Conditional

Entailment Bridging Two Approaches to Default
Reasoning~~,Artificial Intelligence, 53, (2-3), pp. 209-
244, 1992.

Hage 93 Hage, Jaap, <<Monological reason-based
logic>,, Proceedings of the Fourth International
Conference on Artificial Intelligence and Law, Vrije
Universiteit, Amsterdam, 1993, ACM Press, New York,
pp. 30-39.

Harnfelt 89 Andreas Harnfelt and Jonas Barklund,
<(Metalevels in legal knowledge and their runnable

representation in logic,), in Pre-Proceedings of the Third
In fernafional Conference Logica Informatica Diritto –
Ezperf Systems in Law; November 1989, Florence, vol 2,
pp. 557-576.

Henderson 94 Henderson, Gordon F., ,,An
introduction to patent law~~, Patent Law in Canada,
Carswell, Scarborough, Ontario, 1994, pp. 1-14.

McCormick 91 McCormick, D.N. and R.S. Summers,
Inferprefing Statufes: A Comparative Study, Dartmouth,
Aldershot, 1991

Poulin 93a Poulin, Daniel, In ferprtfafion et sysfi?mes
experts en droit dcrit, M4moire de maltrise, Facult4 de
droit, Universit6 de Montr6al, Montr6al, 1993.

Poulin 93b Poulin, Daniel, Paul Bratley, Jacques Fr6mont
and Ejan Mackaay, <<Legal interpretation in expert
systernw, Proceedings of fhe Fourfh International
Conference on Artificial Intelligence and Law, Vrije
Universiteit, Amsterdam, 1993, ACM Press, New York,
p. 90-99.

Poulin 93c Poulin, Daniel, Pierre St-Vincent and Paul
Bratley, <<Contradiction and confirmatiorw, Proc. MI
Conf. on Da fabase and Expert Sysfems Applications —
DEXA ’93, Prague, September 1993 (Lecture Nores in
Compufer Science 720), Springer-Verlag, Berlin, 1993,
pp. 502-513.

Prakken 93 Prakkenr Henry, Logical Tools for modelling
Legal Argument, Phd Thesis, Vrije Universiteit,
Amsterdam, 1993.

Rissland 87 Rissland, E,L. and K. Ashley, <<Acase-based
system for trade secrets law>>, Proceedings of the Firsf
In fernafional Conference on Artificial Intelligence and
Law, Northeastern University, Boston, 1987, ACM
Press, New York, pp. 60-66.

Robert 86 <<Dialectique~~, Le grand Robert de la langue
fran~aise, ~ditions Le Robert, Paris, 1986, p. 508.

Sartor 93 Sartor, Giovanni, c<Asimple compational
model for nonmonotonic and adversarial Iegal
reasoning>>, Proceedings of the Fourth International
Conference on Artificial Intelligence and Law, Vrije
Universiteit, Amsterdam, 1993, ACM Press, New York,
pp. 192-201.

144

Sartor 94 Sartor, Giovanni, <<AFormal Model of Legal
Argumentation,, Ratio @-is, vol. 7, no. 2, july 1994,

pp. 177-211.

Schild 93 Schild, Uri J. and Shai Herzog, ,,The use of
meta-rules in rule-based legal computer systems~~,
Proceedings of the Fourth International Conference on
Artl>cial Intelligence and Law, Vrije Universiteit,
Amsterdam, 1993, ACM Press, New York, pp. 100-109.

Schobbens 93 Schobbens, Pierre-Yves, <<Alogic for
legal hierarchies>>, Proceedings of the Fourth
International Conference on Art~ficial Intelligence and
Law, Vrije Universiteit, Amsterdam, 1993, ACM Press,
New York, pp. 272-281.

Sergot 86 Sergot, M.J., F. Sadri, R.A. Kowalski, F.
Kriwaczek, P. Hammond and H.T. Cory, ~~TheBritish
Nationality Act as logic program~~, Communications of
ACM, VOL 29 (1986), pp. 370-386.

Smith 87 Smith, J.C. and C. Deedman, <~11-ieapplication
of expert systems technology to case-based law~~,
Proceedings of the First International Conference on
Artificial Intelligence and Law, Boston, 1987, ACM
Press, New York, pp. 85-93.

Susskind 87 Susskind, R.E., Expert Systems in Law: A
]urisprudenfial Inquiry, Oxford, at the Clarendon Press,
1987.

van Harmelen 89 van Harmelen, F., <<Aclassification of
meta-level architectures>, in Meta-Programming in
Logic Programming, eds H. Abrarnson and M.H. Rogers,
MIT Press, Cambridge,Mass., 1989

Wr6blewski 88 Wr6blewski, J., dnterpr&ation~~, in
A.J. Arneaud (cd.), Dicfionnaire encyclopidique de
thiorie et de sociologic du droit, Story-Scientia, Paris,
1988, pp. 199-201.

Yalqinalp 89 Yalginalp, L.U and L. Sterling, ~~An integrated
interpreter for explaining Prolog’s successes and
failures,, in Me fa-Programming in Logic Programming,
ed. H. AbramSon and M.H. Rogers, MIT Press,
Cambridge, Mass., 1989.

145

