
Knowing

Marc

Harvard

Documents

Lauritsen

Law School

Cambridge, Massachusetts 02138
LAURITQHULAW 1.HARVARD.EDU

Abstract

Drawing upon scholarship on legal drafting,

current document assembly technology, and

aspects of the Standard Generalized Markup

Language, this article discusses the forms of

knowledge at play in the creation of legal

documents. It also examines the notion of

self-describing documents and their potential

role in new modes of expressing and

delivering knowledge pertinent to legal

drafting.

1. Introduction

An experienced attorney sits down to draft an

employment agreement for the new treasurer of a

mid-sized business. She has ascertained from the

client employer what terms and provisions are desired

in general. With the aid of her notes, some reference

books, agreements in prior matters, a word processor,

and several hours of deliberation, the attorney

completes a suitable draft. After the client and

counsel for the employee review the document,

prompting some modest revisions, the agreement is

signed and goes into effect.

What knowledge was brought to bear by the lawyer in

the creation of this document? What did she know

about documents in general, about legal documents,

about” contracts, about employment contracts? What

~ be known about such things? Are the things that

can be known about document drafting meaningfully

or usefully distinguishable from other forms of legal

knowledge?

Permission to copy without fee all or part of this material is granted provided
tiat the copies are nor made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and it-s date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requixes a fee and/or specific
permission.

(3 1993 ACM 0-89791-606-9/93/0006/0184 $1.50

Computer-based practice systems are increasingly

being used by lawyers to draft documents like this

employment agreement. They are typically the

product of one or more legal experts, and embody

aspects of their knowledge. In what ways do these

programs express and communicate knowledge? How

do we begin to describe what these practice systems

“know”? What informational work, or intellectual

labor, is being done when the systems are in

operation? What cognitive resources (information,

knowledge, intelligence) fuel those processes?

Research and scholarship in artificial intelligence and

law have largely focussed on either the retrieval and

analysis of documents already in existence or the

processes of reasoning that precede the commitment

of decisions, promises, claims, and other legal actions

to written form. With a few exceptions, noted later,

the A1-and-law community has paid little heed to the

activity of document drafting per se.

By the same token, although a mature legal document

assembly software industry has emerged, the

increased expressive power of its offerings has not

engendered systematic attention to the knowledge

dimensions of the drafting process. Idiosyncratic and

ad hoc representation schemes abound in today’s

products,

The explorations contained in this article are

motivated by the author’s belief that our

understanding of legal cognition and the utility of our

computer-based practice tools would both be advanced

by more explicit attention to the knowledge dynamics

of everyday lawyering. After briefly reviewing some

legal drafting literature, today’s document assembly

technology, and

markup, I offer

knowledge” and

techniques of generalized document

some observations about “document

“knowledgeable documents”.

184

2. The art of legal drafting

One is tempted to think that the actual creaticm of a

legal document is a ministerial act, the simple writing

down of things already decided, To be sure, one

might say, lawyers WA while they’re writing, but

the writing is secondary to the substantive legal

analysis or planning tasks more properly at the center

of lawyerly attention. A related point of view,

somewhat at odds with the foregoing, is that legal

writing—beyond certain trivial dimensions of format

and orthography—entails processes of creativity and

imagination that are too sublime or author-specific to

be captured in any general formulae or finite set of

rules,

Although never given much academic attention, there

is a substantial body of work dedicated to

counteracting the above attitudes. One of the finest

contributors to the legal drafting literature was the late

Reed Dickerson. His Fundamentals of Legal Draj7ing

[1986] is a wonderful collection of insights and

information about this essential, albeit
underinvestigated, lawyering activity.

As Dickerson defines it, “legal drafting is the

crystallization and expression in definitive form of a

legal right, privilege, duty, status, or dispositicm. It

is the development and preparation of legal

instruments such as constitutions, statutes, regulations,

ordinances, contracts, wills, conveyances, indentures,

trusts, and leases. ” (p.3) Drafting is thus more

concerned with instruments that have a significant

“architecture” than with less structured forms of legal

writing, such as briefs, memoranda, and letters,

Legal drafting theory concerns itself with the qualities

that characterize well-formed legal instruments, and

derivatively, with the hallmarks of sound drafting

practice. In the first category fall such desiderata as

legal and factual correctness, completeness,

consistency, simplicity, clarity, and readability.
Well-drafted documents are free of errors and are

calculated to achieve their intended effect.

Stylistically, they avoid verbosity, redundancy,

jargon, vagueness, cliches, archaic expressions,, and

legalisms. Good documents are not boring, colorless,

overwritten, or filled with hedging terms, frequent use
of the passive voice, or overly long sentences. They
observe sound principals of arrangement.

Drafting theorists offer process criteria as well as

those descriptive of the end result. Good drafting

practice entails careful analysis and planning,

thorough research, systematic consideration of

alternatives, and punctilious proof reading,

Surprisingly few articles deal with the creative use of

computers in the legal drafting context. Layman
Allen’s and Charles Saxon’s work on normalized

drafting has encompassed computer programs for
eliciting and generating multiple structural
interpretations of legal rules. [Allen and Saxon,

1991]. Eve Wilson’s article Wilson, 1989] about the

Justus’ Clerk program is written from the drafting

perspective, paying particular attention to the role of

precedents in legal composition.

3. Document assembly technology

It has been well over a decade since Jim Sprowl

[Sprowl, 1979], Larry Farmer, and others (e.g.,

Saxon, 1981) undertook their pioneering work in legal

document assembly. Building on those conceptual

foundations, and exploiting the intervening explosion

of desktop computing power, law office software

vendors have fielded several dozen products with

document assembly functions, These general

developments, and two specific products, are

examined in [Lauritsen, 1992]. (The same article also

reviews the rather sparse history of document

assembly in AI-and-law circles.)

The present generation of document assemblers

provides a diversity of ways to perform the basic

functions of building templates, eliciting information

from a user, and assembling documents. The minimal

feature set for a serious software contender in this

field has grown considerably, and the high-end

products afford means for resourceful authors to store

and communicate a wide range of knowledge about

documents.

Despite considerable successes, today’s document

assembly software falls short of its potential on

several counts. As Thomas Gordon [1989] has

pointed out, most commercial products lack the

advantages of declarative knowledge representations,
such as automated explanation, do not handle defaults

and exceptions very well, and provide no support for
reasoning in multiple interpretative contexts. They

are still following the procedural markup paradigm

l~s

associated with Sprowl, wherein master documents are

expressed in terms of if-then structures, repeat loops,

and variables. Neither the documents nor the

legal-factual circumstances occasioning their particular

configurations are explicitly modeled.

4. Standard Generalized Markup Language

Standard Generalized Markup Language (ISO 8879)

(“SGML”) was published as an official international

standard in 1986. It provides a framework for

describing the structure and content of documents

independently of any particular physical format.

Following the notational conventions (or metasyntax)

of SGML, document type definitions (DTDs) can be

formulated, and specific document instances thereafter

marked up in accordance with them. SGML-aware

parsers and other programs can then validate, format,

and otherwise process the marked up documents.

A document type definition declares the elements of

which a conforming document can be composed and

specifies a content model for each element. Content

models define elements in terms of plain text and/or

subsidiary elements, along with their permissible or

required occurrences, combinations, and sequences.

(SGML uses a syntax for content models that is

similar to that of “regular express ions,” which can in

Once a document type has been defined, the

hierarchical structure of an individual document can

be indicated via nested sets of start tags and end tags.

(In practice, markup minimization conventions make

many tags unnecessary. For instance, an

end-of-chapter tag implies that the last paragraph in

that chapter has also ended.)

A document type definition for the employment

agreement described at the beginning of this article

might look something like Figure 1. (Both this

example and the discussion are oversimplified.)

Each element declaration in a DTD contains an

element name and a content model. Most content

models in this example reference other elements.

Those linked by commas must appear in the order

specified; those linked by ampersands may appear in

any order. Elements marked with ? are optional;

those marked with + may occur one or more times;

those marked with * may occur zero or more times.

CDATA is a reserved word representing an arbitrary

string of characters.

A document instance of this type (not shown due to

shortage of space) would be marked up with paired

tags (such as < duties> or <benefits>) at the

beginning and end of each of the defined elements that

turn be viewed as describing finite state automata.) it contains.

< I DocTypE emp agreement [

< ! ELEMENT emp—agreement . . (caption, preamble, duties,—
compensation, benefits,

confidentiality, termination,

other_provisions, signatures) >

c ! ELEMENT caption -- (“Employment Agreement”) >

c ! ELEMENT preamble . . (effective_date & employer_name

& employee name) >
< ! ELEMENT duties .— (princ_dut~es, other-duties,

extent_of services?) >

< ! ELEMENT compensation (salary, =ommission?, bonus?) >
< ! ELEMENT benef its -. (health, disability, vacation,

sick_ leave) >

--~ ! ELEMENT other flrOvs I construction &

entire_agreement & severability

& mist*)>

< !ELEMIZNT Signatures (.mplOYer_name & emPlOYee_name

& execution_date) >

~! ELEMENT print duties _- iti.tie+ & purpose &—
supervision? & region?) >

~ !ELiMENT emplOyer_name ~CDATA) >

c !ELEMENT employ ee_name (CDATA) >
< !ELEMENT mis~ -. (CDATA) >

.

i>”

Figure 1

186

Much of the attention being paid to SGML these days

revolves around the use of generalized nnarkup

techniques to facilitate electronic publishing of

finished texts, But, as developed further in Section 6,

the tools and methodologies it represents have equally

dramatic applicability to processes of document

configuration and assembly.

SGML has significant applications elsewhere in the

law. For instance, the electronic filings undler the

United States’ Securities and Exchange Commission’s

EDGAR system must be in SGML format. Eve

Wilson [1992] describes how a hypertext front end

can access an SGML-tagged law report by mapping

from a document type definition into the source file.

It is a safe assumption that generalized markup will

become a major factor in the legal technology field.

The SGML movement is a major step in the direction

of formalizing the syntactic structure of cases,

statutes, and other legal documents — we in the AI-

and-law community will want to be involved in that

process.

5. Document knowledge

In attempting to characterize the many things we can

know about - documents, h

preliminary distinctions and

What a document expresses

it

As a subject or product

document generally is of

is useful to make some

observations:

vs. what is known about

of legal reasoning, a

interest because of the

knowledge or information it expresses (or omits), and

not because of its structure, provenance, or other

attributes. Apart from occasional self-
references—e. g., to their names, authors, dates of

creation, or purposes-documents are about extrinsic

phenomena. But the expressive content of a document

is only part of what a legal drafter (or drafting

system) needs to be concerned with. We know things

about documents that are not ordinarily expressed @

or contained @ those documents. It is not always

enough just to know what a document says. We are

often interested in the logical framework into which
its content falls.

Class vs. instance

A second basic distinction is that between a document

class and its instances, or, stated otherwise, between

a type of document and particular exemplars of that

type. When a document class or type is modeled, the

model (variously called a master document, template,

form, script, skeleton, boilerplate, or something else)

can be regarded as a document about particular

exemplars: a metadocument. An SGML document

type definition, for instance, is a canonical

metadocument. (Precedents, or examples, in contrast,

are fellow instances of an implied class of

documents.)

All forms of documentary knowledge can be ascribed

to a particular level of generality. We can know

things about documents in general, about certain

broad categories of documents, and about particular

types. There is no fixed hierarchy of superclasses and

subclasses: it all depends upon on the characteristics

or dimensions in terms of which we wish to abstract

and generalize.

What counts as an instance is defined by one’s

measure of adequate concreteness. Are identical

copies of the “same” document different “instances”

of that document? What about two different formats?

Versions? Perhaps the most common (and sensible)

delimiter of difference is at the word level: if the

words are different, the documents are different.

Defining a metadocurnent and configuring an instance

are two fi.mdamentally distinct tasks, but, as noted

later, they are usefully interwoven in computer-aided

drafting contexts.

The end product document does not generally retain

any knowledge about how it was configured, how it

might be (or have been) configured differently, or

even whether it is entirely in conformity with any

document model. The template’s structure is used as

temporary scaffolding that is only inferentially present

in the final product.

The class/instance distinction is similar to that
between document assembly “engines” or authoring
environments, and the applications which are built
using them. The former do embody some forms of

187

knowledge (or metaknowledge, such as the fact that it

is often the case that several answers to a given legal

or factual question are mutually exclusive), but mostly

they only afford opportunities for knowledge to be

expressed. In this respect they are like expert system

shells or spreadsheet programs: empty vessels

awaiting substantive content. The main question to

ask of a document assembly authoring environment is

“what knowledge M it represent?, ” and of an

application written in it, “what knowledge ~ it

represent?”

Knowing about instances and classes

There is, of course, much that can be known about a

given document instance. We can know about its

logical content: what words, or other tokens, does it

contain, and in what order? What language is it in?

We can know about its physical form: How long is it?

What page format, typographical style, print color(s)

does it have? The document can be described at the

most concrete level as a map of bits (ink dots, pixels,

or other renderings) on a two-dimensional surface, or,

at the most abstract, as a hierarchy of structural

elements.

Much more interesting, however, for present purposes

are the things we can know about document classes

and the processes by which given instances of them

can be configured.

A document W is characterized by

+ a universe of permissible components,

which may have other components as content,

and

+ constraints on (and other information

about) the occurrences, combinations, and

orderings of those components.

In the case of a complaint in an action for payment on
a note, the universe of captions, averments, and other

textual components may be quite small, and the rules

governing their configuration quite simple and
well-defined. In the case of a major commercial
transaction document set, the universe of components
may be huge, and the grammar of their composition

exquisitely complex.

Partial orderings

Much of the knowledge being applied in legal drafting

is neither law-specific nor drafting-specific. Legal

composition is parasitic on more general forms of

knowledge, such as English orthography, grammar,

and style. And drafting draws upon rules of

substantive law, considerations of strategy, and other

knowledge resources generally seen as informing the

entire lawyering craft. No knowledge base designed

for computer-aided document drafting would purport

to cover these two vast domains of knowledge, yet

they are essential factors.

Moreover, our knowledge about documents—whether

tacit or expressed—is inevitably incomplete and

fragmentary. The rules and guidelines governing

legal composition do not suffice to deterministically

drive a given document configuration task. Even the

most documented documents can be severely

underspecified. The codified rules routinely run out

long before all possible alternative formulations of a

non-trivial section have been exhausted.

The norms that form the subject of document

knowledge, in other words, specify partial orderings.

They constrain the drafting process, but don’t

determine it.

Not only is compliance with an articulated set of

norms rarely sufficient to assure a complete or

adequate document; most times full compliance is not

even necessary. This is because the applicable norms

involve varying degrees of obligation or prohibition.

Many are nonbinding, advisory, or precatory. They

express generalities, stylistic tendencies, defaults,

suggestions.

Needless to say, knowledge can be useful without

being definitive or comprehensive. The knowledge

stock of an expert draftsman-or an expert

system—may well consist of rough-cut analyses,

suggestions, reminders, organizing principals,

heuristic interpretations, simplifications, and

abstractions of the relevant law.

Purpose

Legal documents are intended to have consequences.

They represent communicative acts, brimming with

intentionality. Behind each is an express or implied

188

hierarchy of purposes. Assembling a legal document

involves two intertwined teleologies: the purposes of

the document itself and the purpose of generating a

document that best addresses its purposes. In the real

world, a lot of strategic energy is consumed by efforts

to protect against (and sometimes to perpetrate)

intentional bias and ambiguity.

Document configuration

Configuring a document is a recursive process of

selecting and sequencing textual components. A

document set is composed of one or more documents.

Each document consists of one or more sections or

other sub-documents. Sections (perhaps further
divided into sub-sections) generally contain
paragraphs, which are made up of sentences.

Sentences are ordered sets of phrases, decomposable

into other phrases and/or single words, which are

strings of characters.

Document configuration presupposes some
pre-existing set of candidate building blocks, and

constraints on their permissible combination and

ordering. At this level of abstraction, then, document

knowledge involves information about a universe of

document components and how they can or should be

combined in hierarchies.

As linguistic phenomena, it is natural to think of

documents in grammatical terms. A template or

document type definition defines a grammar to wlhich

documents must conform in order to count as

well-formed instances of that type. Such document

grammars, moreover, have both syntactical and

lexical dimensions. The syntax of a document

definition resides in the content models of its declared

elements. The lexicon defines which formulations

qualify as given atomic elements. Syntactical

relationships can be expressed in a (potentially

recursive) graph consisting of part-of links; lexical

information is expressed with is-a links, orderable in

an abstraction/generalization network. Tools like

SGML make it possible to separate out this semamtic

network from a document’s geometrical hierarc~y of

pages, columns, frames, and lines, while yet

establishing a mapping between them.

Summing up

To sum up, whether expressed in a book, coded in a

document assembly application, or stored in our

heads, most knowledge pertinent to legal drafting falls

into the broad category of considerations touching on

the occurrences, combinations, and sequences of

document components. Because components may be

recursively nested, and because the kinds of

information bearing on the relative permissibility or

advisability of given configurations range from

binding rules to merest suggestions, the realm of

document knowledge is vast. We can have knowledge

about “what goes where” at any structural level, and

to any deontic degree. We can know what to use by

default when no considerations seem to require

otherwise. We can know what has worked in the

past. We can know about laws, social conventions,

patterns of human behavior, and other constellations

of facts that bear on the desired contents of a

document. We are eager to have all such knowledge

at our disposal when drafting, to the extent it can be

formalized economically.

6. Knowledgeable documents

Expressing our knowledge about legal documents with

descriptive formalisms based on SGML or related

standards could yield valuable benefits beyond

platform- and vendor-independence. Documents that

were knowledge-enriched through standardized

markup would lend themselves to multiple modes of

use: not only instance configuration, but nonsequential

browsing, querying, access and version control, and

maintenance, Document drafting could be conceived

as largely a process of information retrieval. Lawyers

would be more prepared to invest time in document

systematization because the knowledge would be

presentable in written form and be transportable from

one system to another.

Document assembly applications specifically designed

to work with “knowledgeable documents” could

deliver high levels of functionality with minimal
document-specific coding. Drawing upon the

information encoded in document models and

instances under draft, such applications would be able
to do such things as

+ advise the user what document

components are required or permitted at any

l~y

given insertion point, down to the

instantiation of a variable like < name of

employee >

+ provide lists of candidate texts or modules

for inclusion at such points, along with

considerations pro and con

+ generate all permissible permutations of

elements in a given context

+ validate the user’s draft against applicable

content models

+ allow the user to browse and manipulate

the document in a collapsible outline mode

+ alert the user to and display reference

material and annotations when present

+ keep track of configuration tasks

remaining to be done

+ notice and highlight content and structural

differences between versions of a document,

going beyond the word-level differences

offered by today’s document comparison

programs (and perhaps promoting greater

fairness and efficiency in document

negotiations)

Well-designed applications would maximize user

initiative in direct interaction with the document

model. The user should be permitted to start

anywhere, jump around, be as concrete or general as

desired in a given location, and leave sub-modules

temporarily unconfigured. He or she should at all

points be able to see the entire document so far as it

has been configured, view it at different levels of

abstraction, and, once a document is configured, get

some visual , representation of the permissible

deformations or reformulations of particular parts.

Applications that “understand” descriptive markup

should, moreover, facilitate user revision of document

models themselves. Attorneys should be able to

declare new content models, making entirely new

elements possible, or revise the combinatorial,
sequencing, or occurrence specifications of existing
elements. They should be able to add or delete
example formulations and annotations “on the fly, ”

with the revised document models being immediately

functional. They should be able to toggle among

several alternative content model formulations,

reflecting, say, different normalizations of a law

bearing on the document.

Today’s legal document assemblers offer only faint

glimpses of what is described above, but there are

promising reports of related work in other fields.

Chamberlain [1988], for instance, describes an

experimental what-you-see-is-what-you-get editor

called Quill, based on the SGML document model,

that allows users to interact directly with the logical

structure of documents, while maintaining semantic

integrity. Commercial products capable of reading

and processing SGML documents have become

available from vendors like ArborText, Electronic

Book Technologies, Exoterica, IBM, Interleaf,

SoftQuad, WordPerfect, and Xerox.

Bringing document knowledge to the surface through

descriptive markup and applications that exploit it

may have the collateral result of enabling more

advanced forms of legal knowledge engineering in the

document drafting arena. Rules and procedures can

be written in terms of named objects, their attributes,

and the contexts in which they appear. There are

even apparent applications of deontic logic to the

permissions and obligations constituting a legal

document type. Since document norms are rarely

definitive, and in practice often ignored or violated by

users, it will fall to our knowledge systems to

determine what should happen, given that some rules

have been violated. Like society, real documents are

often a compromise between abstract ideals and

practical contingencies, requiring legal regimes that

can function in the face of imperfect compliance.

A more fanciful extension of the possibilities

developed here involves moving from document

design to legal practice generally. The latter sphere

of action, of course, often involves real-time strategic
interaction with others that, unlike a document in

draft, cannot be edited. But it may be that extensions

to SGML such as HyTime (see Newcomb,

199 1)—which provides a standard way to express

scripted activities taking place in time and space (e.g.,
plays and operas)—have a role to play there.

Choosing and sequencing informational moves in legal

scenarios certainly lend themselves well to

dramaturgical frames of reference. Musical

composition programs may also offer useful models.

7. Conclusion

Emerging metalinguistics standards for expressing

document knowledge and evolving forms of document

processing technology ought to stimulate new ways to

understand and support legal drafting work. In order

to realize the potential of these conceptual :and

computational tools, however, we need to develop

better awareness of the forms of knowledge involved

in this characteristic lawyering activity. This article

has sought on the one hand to draw attention to the

richness and complexity of that knowledge, and, on

the other, to suggest the usefulness of a strategy of

explicit modeling using descriptive markup.

Acknowledgements

I am grateful to Daniel Evans, Thomas Gordlon,

Henry Perritt, and C. Howard Thomas for their

helpful comments on an earlier draft of this article.

References

Allen, L. and Saxon, C. 1991. More IA Needed in

AI: Interpretation Assistance for Coping With the

Problem of Multiple Structural Interpretations. In

Proceedings of the Third International Conference on

Artificial Intelligence and L.uw, 53-61

Charnberlin, D. 1988. An Adaption of Dataflow

Methods for WYSIWYG Document Processing.

Proceedings of the ACM Conference on Document

Processing Systems, 101-109

Dickerson, R. 1986. The Fundamentals of Legal

Drafting. Boston: Little, Brown and Company.

Goldfarb, C. 1990. l%e SGJ4L Handbook.

Oxford: Clarendon Press.

Lauritsen, M. 1992. Building Legal Practice Systems

with Today’s Commercial Authoring Tools. 1

Artificial Intelligence and Luw 87-102.

Newcomb, S., Kipp, N., and Newcomb, V. 1991.

The “HyTime” Hypermedia/Time-based Document

Structuring Language, Communications of the

A.C.M. Vol. 34, No. 11, pp. 67-83

Saxon, C. 1981. Computer Aided Drafiing of Legal

Documents. Ph.D. dissertation at the University of

Michigan. Ann Arbor: University Microfilms

International.

Sprowl, J. 1979. Automating the Legal Reasoning

Process: A Computer that uses Regulations and

Statutes to Draft Legal Documents. 1 Am. B. Found.

Res. J. 1-81

Wilson, E. 1989. Drafting Legal Documents with

Justus’ Clerk. In Pre-Proceedings of The 7hird

International Conference on Logic, Znformatics, and

Law, 2:909-922. Florence.

Wilson, E. 1992. Why we need standards: an example

from law, hypertext, and information retrieval.

Presented at the Second International Conference on

Substantive Technology in the Law School. Chicago.

Gordon, T. 1989, A Theory Construction Approach
to Legal Document Assembly. In Pre-Proceedings of

l%e 17tird International Conference on Logic,

Informatics, and Luw, 2:485-498. Florence.

