
Formalizing Robert’s Rules of Order.
An Experiment in Automating Mediation of

Group Decision Making

Henry Prakken
GMD - German National Research Center for Information Technology

Schloss Birlinghoven, 53754 Sankt Augustin, Germany
henry@cs.vu.nl

http://www.cs.vu.nl/ehenry

19 December 1997

Abstract

Robert’s Rules of Order are the standard procedure for deliberative societies of all kinds
in the USA. This paper reports on an ongoing experiment: formalizing these rules for
the purpose of implementing them as a procedural component of automated media-
tion systems for discussion and group decision making. Robert’s Rules of Order have
been chosen for this experiment because they are well-known, precisely formulated,
and well-tested in practice. Although they need to be adapted for electronic applica-
tions, their formalization should nevertheless give useful insights into the problems and
prospects of adding a procedural component to automated mediation systems.

The research is carried out in the context of the ZENO mediation system, developed
at the GMD Bonn. One of ZENO’s components is a WWW-accessible discussion
forum. The aim of the ongoing experiment is to extend this forum with rules of order,
and with a corresponding mudule that assists the human mediator in maintaining order
at the forum, and in giving advice to the users of the forum on their options, rights and
obligations in the discussion.

This paper reports on the first part of the experiment, formalizing Robert’s Rules of
Order in first-order predicate logic. This formal specification should be the basis for a
more operational specification, and for the eventual implementation as a component of
ZENO.

4

Contents

1 Introduction 5

2 Robert’s Rules of Order: overview and relevant parts 9
2.1 Overview . 9
2.2 What is to be included in ROBERT 11
2.3 What is formalized in this report . 11

3 ROBERT as a component of ZENO 14
3.1 Two functions of ROBERT . 14
3.2 Tasks for ROBERT . 15
3.3 How ROBERT should deal with violations of RRO 15

4 Choice of the formal specification tools 18
4.1 Distinguishing actual and required behaviour 18
4.2 Coping with the changing world of meetings 19

4.2.1 The choice of formalism . 19
4.2.2 The formalization method 19

4.3 Distinguishing actual and required behaviour 19
4.4 Coping with the changing world of meetings 20

4.4.1 The choice of formalism . 20

5 The formalization: definitions 24

6 The formalization: the motion hierarchy 27
6.1 Motions . 28
6.2 Privileged motions . 30
6.3 Incidental motions . 33
6.4 Subsidiary motions . 37
6.5 Principal motions . 41

7 The formalization: general conditions for when speech acts are in order 47
7.1 On when an act is correctly made . 47
7.2 On when an act is in order . 48

7.2.1 Acts other than motions: top level structure 48
7.2.2 Motions: top level structure 48

1

7.2.3 Floor condition .. 49
7.2.4 Precedence condition . .. 49
7.2.5 Renewal condition 50
7.2.6 Mode condition .. 50

8 The formalization: introducing and dealing with business 55
8.1 On bringing a question before the assembly 55
8.2 On dispensing with a question .. 59

8.2.1 Voting . 59
8.3 The pending question . 61

9 Evaluating the formalization of normative concepts 63

A Some Pictures 68

2

Preface

This paper is a report on my work at the FIT-KI, GMD Bonn, during my period of
employment as a temporary researcher at the GMD, from August 1st till December
31st, 1997. During this period, I started a project in collaboration with Tom Gordon, in
the context of the ZENO/GeoMed system, an automated mediation system for group
discussion and decision making, being developed at the GMD. The project aims to
extend ZENO’s discussion forum with rules of order, and with a corresponding mud-
ule for maintaining order at the forum. The present paper reports on the first part of
the ROBERT project, formally specifiying a particular system of rules of order, viz.
Robert’s Rules of Order, the standard procedure for deliberative societies of all kinds
in the USA.

The purpose of this paper is not to report on a finished piece of work, but to present
the work that I did during my stay at the GMD. Therefore, this report ends ‘in the
middle’ of the formalization process. Not all relevant parts of Robert’s Rules of Order
have yet been formalized, and some other parts have been formalized incompletely.
Moreover, some of the formalized parts have not yet been completely tested and de-
bugged. Nevertheless, my claim is that the formalization as it is included in the report
is of sufficent quality to be presented before and criticised by an academic audience.
Parts that are still too rough and preliminary to meet this standard have been left out of
this report.

I hope that this report will be a fruitful basis for continuing my collaboration on
this project with Tom Gordon and the rest of the ZENO/GeoMed team. I thank FIT-
KI, GMD for their hospitality, and Hans Voss and Tom Gordon for inviting me, with
financial support of VIM (A VIrtual Multicomputer), a project funded by the EC’s
Human Capital and Mobility programme.

3

Chapter 1

Introduction

Background

Robert’s Rules of Order are the standard procedure for deliberative societies of all
kinds in the USA. This paper reports on an ongoing experiment: formalizing these
rules for the purpose of implementing them as a procedural component of automated
mediation systems for discussion and group decision making. The project, which is
called ROBERT, is carried out in the context of the ZENO computer system, developed
at the GMD Bonn[Gordon, 1994b, Gordon & Karacapilidis, 1997]. This system serves
as an automated assistance tool for human mediators of discussions and group decision
processes. It is currently applied to urban planning procedures, in the context of the
GeoMed project[Karacapilidis et al., 1997], funded by the European Union.

One component of the ZENO system is a discussion forum that is accessible via the
World Wide Web, and where participants can raise issues, state positions with respect to
these issues, and put forward arguments for or against a position. The system provides
automated tools for maintaining and inspecting the resulting argumentation structure,
and also for recording decisions on the issues.

At present the use of the discussion forum is completely unregulated. However,
underlying the Zeno project is the view that rationality has a procedural side, which
for group decision processes means that the quality of the outcome of the process not
only depends on the quality of the arguments put forward, but also on the properties
of the disputation procedure in which the argumentation takes place. This view has
been put forward by several philosophers, perhaps starting with Toulmin’s [1958, pp.
7–8] advice that logicians who want to learn about reasoning in practice, should turn
away from mathematics and instead study jurisprudence, since outside mathematics the
validity of arguments would not depend on their syntactic form but on the disputational
process in which they have been defended. According to Toulmin an argument is valid
if it can stand against criticism in a properly conducted dispute, and the task of logicians
is to find criteria for when a dispute has been conducted properly; moreover, he thinks
that the law, with its emphasis on procedures, is an excellent place to find such criteria.

Although Toulmin was perhaps too polemic in his criticism of standard logic, the
idea that correct reasoning not only depends on syntax and semantics but also on proce-

5

dure has gained ground. For instance, Rescher[1977] has sketched a dialectical model
of scientific reasoning, of which he claims, among other things, that it can explain the
feasibility of inductive arguments: they must be accepted if they cannot be successfully
challenged in a properly conducted scientific dispute. In legal philosophy Alexy[1978]
has formulated a discourse theory of legal argumentation, based on the view that a legal
decision is just if it is the outcome of a fair procedure. A similar view on argumentation
in general underlies the so-called ‘pragma-dialectical’ school of argumentation theory
[van Eemeren & Grootendorst, 1992]. And in Artificial Intelligence (AI) Loui[1998]
has also defended a procedural view on rationality. According to him such a view
can explain why nondeterministic reasoning can still be rational, viz. if this reasoning
takes place in the context of a fair and effective protocol for dispute. Finally, Gor-
don’s [1994,1995] Pleadings Game, which is an AI model of procedural justice in civil
pleading, takes its point of departure in Alexy’s views.

In order to integrate the logical and procedural aspects of rational argumenta-
tion, both Brewka & Gordon [1994] and Gordon & Karacipilidis [1997], and Prakken
[1995,1997] have proposed a multi-layered view on argumentation. The first two lay-
ers assume a fixed body of information: thelogic layer defines which arguments can be
constructed with this information, and thedialectical layer determines, given certain
evaluation criteria that are also in the information base, which arguments survive the
competition with all conflicting arguments. The third,procedurallayer drops the as-
sumption of a fixed body of information and instead assumes that the information base
is constructed dynamically during the dispute (thus the first two layers apply to each
stage of a dispute). This layer defines the possible speech acts for doing so, and the
norms for when these speech acts may or must be used (Accordingly, Brewka & Gor-
don [1994] and Gordon & Karacipilidis [1997] explicitly divide the procedural layer
into aspeech actlayer and anorm layer.)1

Research goals of the ROBERT project

This multi-layered view on rational argumentation provides the background of the
ROBERT project, which aims to implement the procedural layer in the context of the
ZENO project. More specifically, the aim is to extend ZENO’s discussion forum with
rules of order, in particular, Robert’s Rules of Order (RRO), and with a corresponding
module (ROBERT) that assists the human mediator in maintaining order at the forum,
and in giving advice to the users of the forum on their options, rights and obligations in
the discussion. Although an ultimate goal is to integrate ROBERT with a formalization
of the logical and dialectical layer, the present project completely abstracts from these
two layers. In particular, ROBERT’s (and RRO’s) rules on debate do not assume any
logical or dialectical structure of the debate.

The ROBERT project should result in an answer to several research questions. First
of all, it should yield an ontology of the world of meetings, which can serve as a general
basis for implemented procedures for discussion and group decision making. Second,
the project should result in a methodology for extending mediation systems with rules

1Prakken [1997] also distinguishes a fourth,strategicor heuristiclayer, which defines rational argumen-
tation strategies within the procedural bounds of the third layer and the logical and dialectical bounds of the
first two layers.

6

of order. Another research goal is to test how these rules of order can be implemented
in a ‘soft’ way, i.e. such that they can be set aside when needed. The underlying
assumption here is that system which strictly enforces a certain procedure will not
be attractive for the users. Finally, the project should result in an answer whether
regulating automated discussion and group decision making is useful at all, and if so,
under which circumstances.

The choice for Robert’s Rules of Order

The choice for RRO requires some explanation, since their applicability to electronic
discussion is not obvious. RRO was meant for synchronous discussion, i.e. discussion
in meetings where all members are present at the same time, in the same place, and
where each member can immediately observe and respond to all procedural events that
are taking place. By contrast, in electronic discussion forums members often have no
full knowledge of who else is taking part in a discussion, and communication can be
delayed: messages that are sent before another message can arrive later, and so on.
Therefore RRO will need to be adapted for electronic applications,2 which might be a
considerable task.

Nevertheless, RRO have still been chosen for this experiment, for two reasons.
Firstly, as far as I know, there are as yet no suitable rules of order for electronic and
asynchronous discussion, and secondly, RRO are well-known, precisely formulated,
and well-tested in practice, and it is therefore expected that their formalization will still
give useful insights into the problems and prospects of adding a procedural component
to automated mediation systems.

Related research

In the literature at least one earlier suggestion for using RRO for similar tasks can be
found, viz. Page [1991], who suggests their use for controlling communication between
intelligent artificial agents. However, I have not found whether Page has carried out
his suggestion. Vreeswijk [1995] also refers to[Stary, 1991], who would have made
a similar suggestion, but I have not been able to trace that publication. Formal and
computational aspects of legal procedures have also been studied by Vreeswijk [e.g.
1995, 1996], who has attempted to formalize aspects of Peter Suber’s [1990] NOMIC
game, a game of which the purpose is to modify the rules of the game. Vreeswijk’s
insights are directly relevant for the ROBERT project, since RRO contains rules for
changing the rules of order (although these rules are left out of the present report).
Finally, Gordon [1994,1995] has formalized and implemented his normative model of
procedural justice in civil pleading, which became a source of inspiration of the ZENO
project.

2And it needs to be slightly modernized; see e.g.[Robert, 1986, p. 118]: “The minutes should be neatly
written with ink in the record book, leaving a margin for corrections. . . ”

7

Content of this report

The present paper reports on the ongoing formalization of RRO in first-order predicate
logic, which is the first part of the ROBERT project. The complete project also consists
of adapting the rules to electronic, asynchrounous group discussion, and implement-
ing them as a component of ZENO’s discussion forum. The present formalization is
developed with this aim in mind.

In Chapter 2 an overview is given of Robert’s Rules of Order, and it is specified
which parts of RRO are to be included in ROBERT, and which of those parts have
been formalized in this report. Then in Chapter 3 some implications are discussed of
the intended implementation of ROBERT as a component of ZENO, after which in
Chapter 4 the choice for first-order predicate logic as the specification formalism is
motivated. That chapter also discusses how in a formalization of the ever changing
world of meetings the notorious frame problem can be avoided. The chapters 5–8 then
contain the heart of this report, a (partial) formalization of Robert’s Rules of Order,
which receives a preliminary evaluation in Chapter 9, as to how well it captures the
normative aspects of RRO. Finally, the appendix contains some conceptual schemes.

8

Chapter 2

Robert’s Rules of Order:
overview and relevant parts

This chapter gives overview of Robert’s Rules of Order is given, and then lists which
parts of RRO are to be formalized in the ROBERT project, and which of those parts
have already been formalized in this report.

2.1 Overview

Robert’s Rules of Order are based on parliamentary procedure in the USA. They were
described by general H.M. Robert in 1876, and perfected by him for 35 years, in com-
munication with many users of the rules. Over the years, Robert’s rules have turned
from a description into a definition of parliamentary procedure (cf.[Page, 1991, p.
360]), and have become the standard rules of order for meetings of all kinds in the USA.
Although both several watered-down and several extended versions have appeared over
the years, the ROBERT project is based on the original text. The references in this re-
port are to a 1986 paperback publication of this text[Robert, 1986].

The ‘world’ of RRO is the world of meetings (more accurately, of sessions: each
session is a series of meetings separated by adjournments). The main objects of this
world are anassembly, consisting ofmembers, which can have severalroles(ordinary
member, chair, secretary, . . .), and finally,issues, or questionswhich are to be decided
by the assembly.

RRO defines an extensive repertoire of procedural speech acts with which those
present at a meeting can communicate. The primary topic treated by RRO is how to
bring business before the assembly, and how to have this business dealt with. The main
‘loop’ of RRO is that a member has to act to obtain the floor, after which s/he should
state a proposal (for which RRO uses the technical term ‘motion’), which must be
seconded by another member before the chair can open the motion to debate by stating
it. Debate is followed by a vote, after which new business can be introduced.

This main loop has many exceptional cases, while also many complications can
arise. As for the exceptions, some motions can be made while not having the floor,

9

some do not need to be seconded, some are not debatable, and some motions are not
decided by vote but by the chair. (A motion that satisfies all these exceptions is a point
of order). Virtually all of these exceptions are motions that, when adopted, have a
certain procedural effect, like a point of order, an amendment, an appeal, an objection
to the consideration of a question, a motion to adjourn, and so on. These procedu-
ral effects are one source of complications. Another source of complications is that
certain motions can be made when another motion is pending and, when seconded,
must be dealt with before the pending motion. This is captured by an order of prece-
dence among motions, determining which motions can be made while another motion
is pending.

The main precedence ordering is not defined on individual motions but on four
categories of motions, which, in descending order of precedence are:

� Privileged motions(fix time of adjournment, adjourn, questions of privilege, or-
ders of the day);

� Incidental motions(appeal/questions of order, objection to the consideration of
a question, reading papers, withdrawal of a motion, suspension of the rules);

� Subsidiary motions(lay on the table, previous question1, postpone to a certain
day, commit, amend, postpone indefinetely);

� Principal motions(any other motion, usually motions related to the society’s
purposes).

The largest part of RRO is devoted to a discussion of all these types of motions. Their
further order of precedence is defined, special conditions for when they are in order
are given (e.g. an objection to a consideration of a question must be made immediately
after the question has been introduced), the required majority for acceptance is defined,
it is stated whether they can be made without having the floor, whether they require a
second, whether they are debatable, renewable, amendable, reconsiderable, etc. . . , and
their procedural effects when adopted are defined.

In addition to motions, RRO regulates the way debate and vote are conducted,
the rights and duties of the officers of an assembly, the minutes, the functioning of
committees, and some other things, like the quorum, and orders of business.

A main feature of RRO is that they acknowledge that sometimes it is better to
temporarily put them aside. For instance, many questions of routine are not formulated
as a motion and then seconded and stated; instead, the chair often announces after
informal discussion that if no one objects, such an such is the action of the assembly.
The general rule is that anything goes until any member objects, after which RRO must
be strictly applied.

It seems obvious that this does not apply to all rules of RRO but only to certain less
important formalities. Assume, for instance, that a motion that requires a 2/3 majority
is in fact accepted by 56 % majority, without anyone present objecting. Now if mr X
is a member of the society who was not present at the meeting, then it seems that mr
X has a good case in court when appealing against the decision. However, if a trivial

1This is a technical name for a motion to immediately put the pending question to vote.

10

motion has not been seconded and has, without a vote, been announced by the chair
as accepted, and nobody present objects, then mr X’s case in court seems without any
chance.

2.2 What is to be included in ROBERT

The following points are to be formalised in the ROBERT project.

� Which procedural speech acts exist.

� When these acts are correctly performed.

� How an issue

– can be brought before the assembly (making an appropriate speech act,
seconded, stated).

– is considered (debate opened, conducted, closed).

– is dispensed with (decided, voted, or in some other way removed from
before the assembly).

� The precedence order among motions.

� The procedural effect of motions (when made, when adopted and when rejected).

� How a session is opened, closed, adjourned and continued after adjournment.

� Orders of business.

� Rights and obligations of the chair.

� The quorum.

� Informal consideration of a question.

� How to change the rules of order, bye-laws or standing rules.

The main topics that will not be formalized are the rules on considering business in
committees (RRO 28–32), decorum in debate (RRO 36), rights and duties of officers
other than the chair (RRO 41), and the minutes (RRO 41).

2.3 What is formalized in this report

� Which procedural speech acts exist.

All motions that are discussed in RRO have been formalized in a concept hier-
archy, including the rules for determining the attribute values. This has not yet
been done for the other acts, but many of these acts occur in rules of the present
formalization.

11

� When these acts are correctly performed.

The formalization divides this question into two subquestions: whether an act is
in order (i.e. whether it is made at the correct moment: for instance, an appeal
must be made directly after the appealed decision) and whether it is proper (i.e.
whether it can be made at all in this form: for instance, only amendable motions
can be amended). As for being in order, all conditions that hold for any kind of
speech act have been formalized (Chapter 7). Order conditions that are special
to certain motions have not yet been formalized. Conditions on whether an act is
proper have not yet been formalized at all.

� How an issue

– can be brought before the assembly (making an appropriate speech act,
seconded, stated).
This is fully formalized.

– is considered (debate opened, conducted, closed).
It is only formalized how a motion becomes open to debate.

– is dispensed with (decided, voted, or in some other way removed from
before the assembly).
The cases where the chair has to decide have been formalized and the vot-
ing procedure has been partly formalized. The other ways of removing a
question from before the assembly have been included in the motion hier-
archy, but their procedural effects have not yet been formalized.

� The precedence order among motions.

This has not yet been formalized.

� The procedural effect of motions (when made, when adopted and when rejected).

This has not yet been formalized.

� How a session is opened, closed, adjourned and continued after adjournment.

This has not yet been formalized.

� Orders of business.

This has not yet been formalized.

� Rights and obligations of the chair.

Some of the chair’s obligations have been formalized in the parts on bringing a
motion before the assembly, and on deciding and voting. The rest has not yet
been formalized.

� The quorum.

This has not yet been formalized.

� Informal consideration of a question.

This has not yet been formalized.

12

� How to change the rules of order, bye-laws or standing rules.

This has not yet been formalized.

13

Chapter 3

ROBERT as a component of
ZENO

As stated in the introduction, the ROBERT system should ultimately be integrated
with ZENO’s discussion forum. This chapter discusses the functions that ROBERT
can have within ZENO, and the corresponding tasks that it should be able to perform.
On the basis of this discussion some design issues are then discussed, in particular with
respect to how ROBERT should deal with violations of RRO by the users of ZENO’s
discussion forum (including the human mediator).

3.1 Two functions of ROBERT

As an implemented system, ROBERT can be included in the ZENO system for per-
forming two different functions.

1. As an autonomous expert system, giving advice to users of ZENO’s discussion
forum and to the human mediator, on procedural possibilities, rights, obliga-
tions. Here the human mediator independently maintains order at the forum, and
ROBERT fulfills much the same role as a book copy of RRO at the chair’s or a
participant’s table in an ‘ordinary’ meeting.

2. Connected with the discussion forum, as a tool for maintaining order at the fo-
rum. Here ROBERT performs certain actions on behalf of the chair (or the sec-
retary), like warning participants that they are out of order, or maintaining a list
of decisions.

The aim of the ROBERT project is that the same core system can perform both func-
tions (although for each of the functions probably some specific additional components
are needed). Accordingly, the present formalization should be such that it can be used
for implementing both of these functions.

14

3.2 Tasks for ROBERT

To fulfill the just-sketched functions within ZENO, ROBERT should be able to perform
at least the following two tasks:

1. Update the current state of the procedure;
2. Determine of any procedural act whether it conforms to the rules.

In addition, ROBERT might be made to perform two further tasks:

3. Determine for any incorrect act which correct act might have been
intended;

4. Determine how a certain procedural result can be obtained.

The third task probably requires that knowledge of a heuristic nature is added to ROBERT’s
knowledge base, while the fourth task requires the incorporation of a planner.

3.3 How ROBERT should deal with violations of RRO

Like any set of norms for human behaviour, the rules of RRO can be violated. How
should ROBERT deal with these violations? At first sight, one might think that the
implementation of ROBERT as a computer system yields an opportunity that human
chairs of ordinary meetings rarely have: ZENO’s discussion forum could be set up in
such a way that violation becomes physically impossible. For instance, if a participant
wants to push a button ‘Make motion’ just after another participant has moved a motion
that requires a second, the system might, instead of returning a window for typing the
motion, return a window saying that making a motion is impossible at this moment.
Such an implementation of RRO would be what Jones & Sergot [1993] call ‘regimen-
tation’ of norm-governed behaviour: the system is implemented in such a way that all
meetings will as a matter of fact conform to RRO.

However, as Jones & Sergot remark, regimentation is not always a good idea, and
ZENO’s discussion forum is a good example. It seems that to be workable in practice,
the system must not be too rigid. There is a real danger that if the system strictly en-
forces a certain procedure on the participants of a discussion, they will be discouraged
from using the discusion forum. This is even acknowledged by RRO itself, which,
as noted above, at various places formulates the principle that its formalities can be
dispensed with as long as no member objects (e.g. RRO 1 and RRO 3, p. 34).

Accordingly, a basic idea of the current project is that as an implemented system,
ROBERT should satisfy the following constraints.

1. It must be physically possible for the users (including the chair) to violate RRO;

2. It must be possible for the chair to set RRO aside when needed.

Let us look in more detail at the various ways in which RRO might be violated, and
how ROBERT should deal with them.

15

Violations by ordinary participants

Ordinary participants can violate RRO in only two ways, which are structurally similar,
viz. by performing an act that is not in order (not at the right moment) or improper
(not of the right kind).1 ROBERT can deal with such violations as follows. As for
knowledge representation, it suffices to specify under which conditions an act has the
property of being out of order, or improper. Then every time ROBERT derives that
an act is out of order or improper, it notifies all participants of the violation, possibly
with advice on action that is possible (for instance, a point of order). This message
should not only be sent to the chair (i.e. the human mediator), but to all participants,
since all participants have the right to rise to a point of order (RRO 14). Furthermore,
the ‘sanction’ for these kinds of violation is simply that the intended procedural effect
does not occur. For instance, an incorrectly moved motion does not become open for
seconding. And, of course, the chair can call the participant to order, and any other
participant can rise to a point of order.

Violations by the chair

The chair can, in its role of the chair, violate RRO in several different ways, which
are not easy to deal with in a uniform manner. Firstly, it is possible that the chair
does not perform an act that s/he must perform: for instance, not stating a seconded
and debatable motion, or not putting a motion to vote after debate has been closed. A
variant of this kind of violation is when the chair incorrectly performs such an act: for
instance, when stating a motion, the chair uses substantially different words than the
mover. A completely different kind of violation is when the chair incorrectly applies
RRO: for instance, the chair incorrectly rules a motion out of order, or declares a motion
adopted that needs a 2/3 vote but received only 56 % of the votes. Why is this a different
kind of violation?

With the first two kinds it is easy to make a simple syntactic difference between the
obligatory act and the act as it actually takes place. For instance, a formalized rule can
say then when a motion to end debate has been adopted, the next act of the chair must
be putting the motion to vote. Whether the chair indeed performs the obligatory action
is then a matter of factual input to the system, just as with the behaviour of ordinary
participants. The sanctions for this kind of violation are that ordinary participants can
rise to a point of order, and that the obligation to perform the act stays in effect as long
as it is not performed.

However, with the last kind of situation, erroneous application of RRO by the chair,
things are different. Here it does not make much sense to formalize RRO in such a way
that if, for instance, a participant starts debating a motion before it has been opened
to debate, the chairought torule the participant out of order. Instead, we want that
ROBERT infers that the participant is out of order, and informs the chair about this
fact, who can then accordingly rule the participant out of order. If otherwise, then
virtually no rule application can be made automatically by the system; nearly every
logical inference step that a reader of RRO would make will have to be replaced by

1RRO does not explicitly distinguish these two notions; the distinction hase been introduced into the
formalization to make it more structured.

16

factual input concerning the chair’s actual behaviour. Clearly, such a system would not
be very useful.

On the other hand, we have just stated that ROBERT should make violations of
RRO possible, so we must have at least some way of modelling erroneous application
of RRO. Here is a sketch of a proposal, in terms of consistency checking and belief
revision. The idea is that such violations are added as factual input by the chair, after
which the system detects and reports that the chair’s input contradicts ROBERT’s con-
clusions. For example, suppose that the chair mistakenly opens a motion to debate that
has not yet been seconded. The system then asks the chair: note that according to my
information the motion is not open to debate, so are you sure? Then the chair might
ask: why is it not open to debate?, after which the system exlains why, viz. because
the motion needs a second but has not yet been seconded. Then the chair might decide
whether to follow the system and withdraw his/her input (i.e. to acknowledge viola-
tion of RRO), or whether to sustain the input (i.e. to set RRO aside), in which case the
system revises its state.

Note that this interaction procedure might actually be very useful: it makes the
chair (or other users) aware of which conclusions have to be changed if the user’s input
is to be sustained. And this might make the user aware of the mistakes s/he has made.

Note also that when the chair sustains the erroneous input and opens the motion to
debate, then in this ‘subideal’ state all other rules on RRO still apply to the motion, for
instance, the rules on how to conduct debate, or on which motions can be made while
another one is pending.

This idea is still sketchy, and its implementation involves several nontrivial techni-
calities, such as the belief revision procedure. Nevertheless, it seems to provide a good
way for dealing with erroneous application of RRO by the chair, and at the same time
for implementing the rule that ‘anything goes until somebody objects’.

Summarizing this section on violations, two ways of dealing with violations will be
used. For violations by ordinary participants, and for certain types of violations by the
chair, a syntactic distinction will be made between required and actual behaviour, and
the system will notify the chair and/or other participants when it detects a discrepancy
between what happens and what should have happened. By contrast, a special type of
violation by the chair, viz. erroneous application of RRO, is detected as a contradiction
between procedural conclusions drawn by the system and those inputted by the chair.

17

Chapter 4

Choice of the formal
specification tools

This paper’s formalization of RRO is given with standard first-order logic. In the
present chapter this choice will be motivated. Two main issues must be discussed:
how to formalize the distinction between actual and required procedural behaviour,
and how to formalize information about a constantly changing world.

4.1 Distinguishing actual and required behaviour

Above we required for several types of behaviour that ROBERT should be able to syn-
tactically distinguish between actual and required behaviour. How can this be done?
Various ways are possible, including the use of a full-fledged deontic logic. However,
the present formalization stays within first-order logic. The normative character of
RRO is captured by three special ‘quasi-deontic’ predicates,Proper , In order ,
Correctly moved and two surrogate deontic predicates,Obliged to make
and Obliged to decide or state . The choice for this method is not irre-
versable, however, and therefore Chapter 9 will briefly compare it with a method using
deontic logic.

The quasi-deontic predicates are convenient for formalizing prohibitions (In order)
and obligations to make an act, if it is made, in a certain way (Proper). However, they
are less suitable for obligations to perform a certain act, like the obligation for the chair
to state a motion after it has been seconded. For such obligations the surrogate de-
ontic predicate,Obliged to make , and in one caseObliged to decide or
state will be used.

The use of quasi-deontic predicates is not so strange, since legal texts also often
use such predicates, like ‘tort’ and ‘criminal offence’. In fact, the Dutch criminal code
hardly contains any deontic expression: it mainly defines the notion of criminal offence
and several subcategories, and specifies the penalties for when actual behaviour satis-
fies these categories. It is left to the citizens to pragmatically infer from these penalties
that they had better not commit criminal offences. On the other hand, the use of the

18

surrogate deontic predicateObliged to make is ad hoc, since no further defini-
tions for this predicate are given. This will be further discussed in Chapter 9, which
also briefly discusses an alternative style of formalizing RRO, with deontic logic.

4.2 Coping with the changing world of meetings

4.2.1 The choice of formalism

The world of meetings is a constantly changing world. Speakers obtain or yield the
floor, and motions are introduced, debated and decided. Accordingly, differentstates
of a meeting can be distinguished, with different speakers, different pending questions,
and some other differences. States arechangedby procedural speech acts (moving,
seconding, acting to obtain the floor, voting, etc. . .), according to their procedural
effects as defined by RRO.

In computer science and AI, formalizing changing worlds is a heavily studied topic.
In computer science, many formalisms have been develop to specify the behaviour of
computer programs, in order to prove their correctness or other properties, and as a
basis for more operational specifications and for implementation (e.g. dynamic logic,
petri nets, process algebra, temporal logic and several others). In AI the main focus
has been on representing common-sense knowledge about actions and their effects in
the world, modelled by e.g. situation calculus, event calculus, and again dynamic and
temporal logic.

The present choice for standard first-order logic has not been made for deep rea-
sons. Instead it was motivated by the short period of my stay at the GMD. The goal
was to have a substantial part of the formalization finished by the end of this period,
and therefore not much time could be wasted on investigating the pros and cons of the
many available formalisms. Nevertheless, the choice is not final; when good reasons
arise, the formalization can still be translated into another language. I am confident
that this can be done without too much effort; if this is indeed the case, then the present
specification in first-order logic has still proven useful.

4.2.2 The formalization method

4.3 Distinguishing actual and required behaviour

Above we required for several types of behaviour that ROBERT should be able to syn-
tactically distinguish between actual and required behaviour. How can this be done?
Various ways are possible, including the use of a full-fledged deontic logic. However,
the present formalization stays within first-order logic. The normative character of
RRO is captured by three special ‘quasi-deontic’ predicates,Proper , In order ,
Correctly moved and two surrogate deontic predicates,Obliged to make
and Obliged to decide or state . The choice for this method is not irre-
versable, however, and therefore Chapter 9 will briefly compare it with a method using
deontic logic.

19

The quasi-deontic predicates are convenient for formalizing prohibitions (In order)
and obligations to make an act, if it is made, in a certain way (Proper). However, they
are less suitable for obligations to perform a certain act, like the obligation for the chair
to state a motion after it has been seconded. For such obligations the surrogate de-
ontic predicate,Obliged to make , and in one caseObliged to decide or
state will be used.

The use of quasi-deontic predicates is not so strange, since legal texts also often
use such predicates, like ‘tort’ and ‘criminal offence’. In fact, the Dutch criminal code
hardly contains any deontic expression: it mainly defines the notion of criminal offence
and several subcategories, and specifies the penalties for when actual behaviour satis-
fies these categories. It is left to the citizens to pragmatically infer from these penalties
that they had better not commit criminal offences. On the other hand, the use of the
surrogate deontic predicateObliged to make is ad hoc, since no further defini-
tions for this predicate are given. This will be further discussed in Chapter 9, which
also briefly discusses an alternative style of formalizing RRO, with deontic logic.

4.4 Coping with the changing world of meetings

4.4.1 The choice of formalism

The world of meetings is a constantly changing world. Speakers obtain or yield the
floor, and motions are introduced, debated and decided. Accordingly, differentstates
of a meeting can be distinguished, with different speakers, different pending questions,
and some other differences. States arechangedby procedural speech acts (moving,
seconding, acting to obtain the floor, voting, etc. . .), according to their procedural
effects as defined by RRO.

In computer science and AI, formalizing changing worlds is a heavily studied topic.
In computer science, many formalisms have been develop to specify the behaviour of
computer programs, in order to prove their correctness or other properties, and as a
basis for more operational specifications and for implementation (e.g. dynamic logic,
petri nets, process algebra, temporal logic and several others). In AI the main focus
has been on representing common-sense knowledge about actions and their effects in
the world, modelled by e.g. situation calculus, event calculus, and again dynamic and
temporal logic.

The present choice for standard first-order logic has not been made for deep rea-
sons. Instead it was motivated by the short period of my stay at the GMD. The goal
was to have a substantial part of the formalization finished by the end of this period,
and therefore not much time could be wasted on investigating the pros and cons of the
many available formalisms. Nevertheless, the choice is not final; when good reasons
arise, the formalization can still be translated into another language. I am confident
that this can be done without too much effort; if this is indeed the case, then the present
specification in first-order logic has still proven useful.

How can knowledge about states and state changes be formalized in first-order
logic? This report uses the following method. A state is conceived as a first-order
object, and aspects (attributes) of a state are expressed with predicates having the state

20

as an argument. For instance, the pending question of a certain state is expressed
asPending question (x; s), meaning thatx is the pending question ats, and the
speaker (who has the floor) in a certain state is expressed asHas floor (y; s). Events
occurring in a state are expressed likewise. For instance, that a motionm is seconded
ats by personp can be expressed asMotion (m) ^ Seconded (p;m; s). Cearly, this
formalization method implies a commitment to a state-based ontology (as in situation
calculus) instead of to an event-based ontology (as in event calculus).

Notational conventions

Let us define some notational conventions. Free variables are implicitly assumed to be
universally quantified, as in logic programming. The material implication is denoted
by). When relevant, first-order predicates have an argument for a state term. A dis-
cretely and linearly ordered set of states is asssumed. State variables are written as
possibly indexed or primeds. s0 is the immediate successor ors and0s its immediate
predecessor.s+ denotes a successor ofs ands� denotes a predecessor ofs. In partic-
ular, for anys, s+ ands� it holds thatLater (s; s+) andLater (s�; s) (Quantifiers
in the rules and the definition ofLater will make this more precise). Person variables
are written asy, y0, . . . , and variables for acts asx, x0, . . . orz, z0, Finally,Type
writer strings are predicate symbols when they begin with a capital, otherwise they
are function symbols.

Now the idea is that state changes are formalized with rules that have a terms in
their antecedent predicates, and a terms0 in their consequent predicates. For instance,
the rule that a debatable motion becomes open to debate after it is stated by the chair
can be written as

- Stated (chair; x; s) ^ Debatable (x)) Open to debate (x; s0)

However, readers familiar with the relevant AI literature will immediately recognize
a problem, viz. the so-called ‘frame problem’ (see e.g. Shanahan [1997]). Assume that
we have derived that a certain motionm is open to debate ats, and assume also that a
participantp becomes the next speaker at moments0. Then we want to conclude thatm
is still open to debate ats0. However, in standard first-order logic this can only be de-
rived if the knowledge base also contains the following rule, a so-called ‘frame axiom’:

- Open to debate (x; s) ^ : . . .) Open to debate (x; s0)

where . . . is the disjunction of all ways in which a motionceases being open to de-
bate. For various reasons this way of formalizing the effects of actions, where not only
what has changed must be specified, but also what has not changed, is widely consid-
ered to be unattractive. In particular, the frame axioms are often quite complex, and
reasoning with them is computationally expensive. Moreover, in actual common-sense
reasoning it seems that it is simply assumed that things do not change, unless an ex-
plicit reason for change becomes known. This is a form of nonmonotonic reasoning
(drawing plausible but uncertain conclusions in the absence of evidence of exceptions)
and many nonmonotonic logics have been applied to model this kind of reasoning (in-

21

cluding most applications of the situation calculus and the event calculus).
Can we use these nonmonotonic formalisms for our purposes? Unfortunately, none

of these systems seems completely satisfactory: there are both theoretical problems
and problems with computational efficiency. To avoid these problems, the present
formalization uses a nonlogical, procedural component. The idea is that of any state
of affairs that persists until it is changed by some event, the information is included in
a data structure called the record. The record is not made relative to a state, but exists
‘globally’, and the values of its attributes are updated when needed: each time when
the knowledge base derives a change in the value of some attribute (for instance, the
pending question or the current speaker) its value on the record is changed. And each
time when the logical reasoning process needs the value of a record attribute, a look-up
at the record is performed. In more detail (illustrated with the pending question):

� The record is not represented as a logical theory but as a data structure that is
seperate from the rest of the KB, i.e. in a different language.

� In the record the value of the above-mentioned predicates is recorded with-
out referring to the state. SoPending question (m) instead ofPending
question (m; s) (this shows that the languages of the KB and the record are
different).

� When a conclusionPending question (n; s) is derived from the knowledge
base, then at the record the value ofPending question is changed fromm
to n (perhaps with other information onn, e.g. the type of question, the mover,
and so on).

� A list is maintained of all questions that were once pending, with the begin and
(if already known) end states. e.g.Was pending (m1; s1; s2). This list can
be inspected by the reasoner whenever information on past pending questions is
needed. Simple functions must be implemented for determining, for instance,
that a motion was pending within a certain interval.

Let us briefly compare this method with the logical alternative. An advantage of the
purely logical formalization is that the history of a predicate likePending question
is available for reasoning: if ROBERT needs to know whether some motion was pend-
ing at any time, or at some particular time, it can find the answer with logical reasoning.
By contrast, in our procedural representation the information thatm was pending ats
is lost as soon as at somes+ some other motion becomes pending. This is the reason
why the record must also keep track of the history of the meeting, in particular of the
motions that were once pending. On the other hand, an advantage of the procedural
method is that it makes the structure of the formalization easier; there is no need for
closed world assumptions or for frame axioms.

Logicians might consider the procedural method to be ad hoc, but it can still be
motivated on intuitive grounds. Think of a meeting where behind the chair stands a
blackboard, at which the values of the record are written. Each time when an event
triggers a change in, say, the pending question, the chair erases the old value and writes
down the new one. And each time when the chair wants to know what is the pending

22

question, s/he looks at the blackboard. This seems a perfectly natural way of conceiving
what happens at actual meetings, so why not model it as directly as possible?

Let us finally list the predicates that in the present formalization are assumed to be
part of the record.

- Speaker (or whoHas floor). This says who is the speaker, if any.
- Question stack . This lists the motions that at any state are before the assembly
(debated or decided), in the process of being brought before the assembly (the phase
from being correctly moved to being stated), or temporarily set aside by another mo-
tion with higher precedence. The top of the question stack is the:
- Pending question . This is the question that is currently before the assembly.
It is either the motion that is in the process of being brought before the assembly, or
being debated, or being decided.
- Open to debate . This says which motion is currently debated, if any.
- Open to vote . This says which motion is currently voted on, if any. For any mo-
tion x that is open to vote, there are two attributesayes(x) andnoes(x), which record
the positive and negative votes cast.
- Order of business . This is a list of questions that must be dealt with, in a cer-
tain order. This list determines the pending question when no other events designate a
pending question.
- Orders of the day . Some questions are assigned a special time. They become
the pending question as soon as the chair announces them to be so, or when a member
successfully makes the motion ‘Call for the orders of the day’.
- Motions to be called up . Some motions are ‘entered on the record’ when
made and seconded, and must be called up by a member in order to become the pending
question (at present this only holds forMotion to reconsider , 27 RRO). Such
a call does not need a vote (in contrast to motions to take from the table, or calls for the
orders of the day).
- Table . This says which questions lay on the table. This predicate is invoked by the
motions ‘Lay on the table’ and ‘Take from the table’.
- Postponed . These are the motions that are postponed (to a certain time or inde-
finetely)
- In committee . This lists the motions that have been referred to a committee.
- History . This records the procedural acts that have been made during a session, as
well as the decisions on the motions made.

23

Chapter 5

The formalization: definitions

This chapter defines several predicates that are used in the formalization. The first defi-
nitions define “Of type X and open for making” as “Open for X-ing”. These predicates
are about situations where only acts of a certain type can be made (for example, a sec-
onding just after a motion has been correctly moved). For these cases the predicate
Open for making is useful for expressing general rules about this situation (for
instance, if an act that is open for making ats is prevented by some illegal act, it is still
open for making ats0), while the special predicates, e.g.Open for seconding ,
make the antecedents of specific rules more readable. See Section 7.2.6 for a detailed
discussion of theOpen for making predicate.

* Note on implementation:
If the specification is implemented in a rule-based language with a chaining-like infer-
ence mechanism, then only the if-part of the definitions should be stated, while their
consequents (the ‘Open for X-ing’ predicates), should only be used in the antecedents
of other rules. This is to avoid loops, as will be explained below.
* End note on implementation

As for the intuitive reading of the various predicates, the first rule below reads as ‘Ifx
is a motion andx is open for making for persony at states, thenx is open for moving
for persony at states’. And the atomic formulaSeconding (x; z) reads as ‘x is a
seconding of (motion)z’. Likewise for all other twoplace predicates.

- Motion (x) ^ Open for making (y; x; s), Open for moving (y; x; s)
- Seconding (x; z)^Open for making (y; x; s),Open for seconding (y; z; s)
- Stating (x; z)^Open for making (y; x; s),Open for stating (y; z; s)
- Appeal (x; z) ^ Open for making (y; x; s), Open for appeal (y; z; s)
- Act to obtain floor (x)^Open for making (y; x; s),Open for obtaining
floor (y; x; s)
- Yield floor (x) ^ Open for making (y; x; s), Open for yielding
floor (y; x; s)
- Decision (x; z)^Open for making (y; x; s),Open for decision (y; z; s)

24

- Act to obtain floor by mover (x)^Open for making (y; x; s),Open
for obtaining floor by mover (y; x; s)
- Act to yield floor by mover (x)^Open for making (y; x; s),Open
for yielding floor by mover (y; x; s)
- Entering on the record (x; z)^Open for making (y; x; s),Open for
entering on the record (y; z; s)
- Putting affirmative (x; z) ^ Open for making (y; x; s) , Open for
putting affirmative (y; z; s)
- Putting negative (x; z)^Open for making (y; x; s),Open for putting
negative (y; z; s)
- Decision or stating (x; z) ^ Open for making (y; x; s), Open for
decision or stating (y; z; s)
- Withdrawal (x; z)^Open for making (y; x; s),Open for withdrawal (y; z; s)
- Affirmative vote (x; z) ^ Open for making (y; x; s), Open for
affirmative voting (y; z; s)
- Negative vote (x; z)^Open for making (y; x; s),Open for negative
voting (y; z; s)

Next we make similar rules for the variousObliged to ... predicates.

- Stating (x; z)^Obliged to make (y; x; s),Obliged to state (y; z; s)
- Decision (x; z)^Obliged to make (y; x; s),Obliged to decide (y; z; s)
- Entering on the record (x; z)^Obliged to make (y; x; s),Obliged
to enter on the record (y; z; s)
- Putting affirmative (x; z)^Obliged to make (y; x; s),Obliged to
put affirmative (y; z; s)
- Putting negative (x; z)^Obliged to make (y; x; s),Obliged to put
negative (y; z; s)
- Decision or stating (x; z)^Obliged to make (y; x; s),Obliged to
decide or state (y; z; s)

The following rules abbreviate “made an action of type X” to “X-ed”. For motions,
we retain the term denoting the motion as an argument of the X-ed predicate. So,
for instance,Moved to adjourn (y; x; s) means that persony moved to adjourn
by motion to adjournx at states, andAppealed (y; x; z; s) means that persony ap-
pealed by appealx against decisionz at states. And Decision (x; z) means thatx is
a decision of questionz.

- Motion (x) ^ Made(y; x; s), Moved(y; x; s)
- Seconding (x; z) ^ Made(y; x; s), Seconded (y; z; s)
- Stating (x; z) ^ Made(y; x; s), Stated (y; z; s)
- Appeal (x; z) ^ Made(y; x; s), Appealed (y; x; z; s)
- Act to obtain floor (x)^Made(y; x; s),Acted to obtain floor (y; s)
- Yield floor (x) ^ Made(y; x; s), Yielded floor (y; s)
- Decision (x; z) ^ Made(y; x; s), Decided (y; z; s)
- Motion to reconsider (z; x)^Made(y; x; s),Moved to reconsider (y; z; x; s)

25

- Motion to fix time of adjournment (x)^Made(y; x; s),Moved to
fix time of adjournment (y; x; s)
- Motion to adjourn (x) ^ Made(y; x; s), Moved to adjourn (y; x; s)
- Call for the orders of the day (x) ^ Made(y; x; s) , Called for
the orders of the day (y; x; s)
- Motion to suspend the rules (x; r) ^Made(y; x; s),Moved to suspend
the rules (y; x; r; s)
- Motion to lay on the table (x; z) ^ Made(y; x; s) , Moved to lay
on the table (y; x; z; s)
- Previous question (x; z) ^ Made(y; x; s), Moved the previous
question (y; x; z; s)
- Act to call up (x; z) ^ Made(y; x; s), Acted to call up (y; x; z; s).
- Entering on the record (x; z) ^ Made(y; x; s), Entered on the
record (y; z; s)
- Putting affirmative (x; z)^Made(y; x; s), Affirmative put (y; z; s)
- Putting negative (x; z) ^ Made(y; x; s), Negative put (y; z; s)
- Decision or stating (x; z)^Made(y; x; s),Decided or stated (y; z; s)
- Motion (x) ^ Correctly made (y; x; s), Correctly moved (y; x; s)
- Withdrawal (x; z) ^ Made(y; x; s), Withdrawn (y; z; s)

Finally, here is a definition of a slightly different type.

- Acted to call up (y; x; z; s), Called up (z; s)

26

Chapter 6

The formalization: the motion
hierarchy

In this chapter the motion hierarchy of RRO is logically specified. A graphical overview
is contained in the appendix. In later phases of the ROBERT project the hierarchy is
to be extended with all types of procedural speech acts of RRO. The motions are rep-
resented as an inheritance hierarchy with exceptions, where each class has at most one
superclass. As is well-known, the latter condition prevents ‘clashes of intuition’. Some
attribute values are given directly, others by way of rules. When attribute values are ex-
plicitly specified for a certain class, the values of the same attribute of its superclass do
not apply to the subclass. Note this way of formalizing themotion hierarchy does not
commit to nonmonotonic reasoning methods; it is possible to translate the hierarchy
into standard first-order logic, as will be shown below.

References to RRO

The formalization in this and the following three chapters contains many references to
[Robert, 1986]. Expressionsn RRO, RROn, or justn, refer to sections of[Robert,
1986], and sometimes they are followed by page references to[Robert, 1986]. Alter-
natively, it is sometimes said that a certain formalization is based on the structure of
RRO, or on common sense.

Format of the hierarchy

Let us now turn to the precise format of the motion hierarchy. Each type of motion is
specified with the following scheme:

27

———————————————————————————————

Type:Predicate (x1; : : : ; xn) (Informal reading of predicate)

Superclass:[An act predicate]
Attributes:
- (:) Attribute 1(x1; : : : ; xm) (m 2 f1; 2g) (Informal reading of attribute)
- . . .

Rules:
A list of rules for determining attribute values.

———————————————————————————————

When attributes are twoplace, the second argument is almost always a state variable, to
capture that the value of the attribute depends on the state of the meeting.

This scheme translates into standard first-order formulas in the following way. Su-
perclass relations are defined by rules

Type (x)) Superclass (x)

And attribute values, when not given by specific rules, are given as rules

Type (x) ^ : Exception 1(x) ^ . . .^ : Exception n(x)) (:) Attribute i(x)

Here eachException i(x) refers to an exception holding for a subclass. For more
structured ways of formalizing exceptions see e.g. Prakken [1997].

———————————————————————————————

6.1 Motions

Type:Motion (x) (x is a motion)
Superclass:Act

Attributes:
- Debatable (x) (motions are debatable)
-: In order when another has floor (x; s) (motions are not in order when
another has the floor) This attribute has a second argument for the state because some-
times its value depends on the situation (See e.g.Question of privilege)
- Requires second (x) (motions require a second)
- Required majority (x; simple) (The required vote for motions is a simple ma-
jority)
- Decision mode (x; vote) (motions are decided by vote (alternative: by chair’s de-
cision))

28

- Applicable to it (z; x)? See rules. (all except postpone indefinetely, 24)
- Renewable (x; s)? See rules. (Motions are renewable after the introduction of any
motion that alters the state of affairs, 26).
- Reconsiderable (x) (motions are reconsiderable)
- : To be entered on the record when made (motions need not be en-
tered on the record when made (only exception: reconsider))

The attributeApplicable to it is intended to capture the subsidiary motion ap-
plicable to a motion.

Rules:
* FormalizingApplicable to it
- Motion (x)^Subsidiary (z; x)^:Motion to postpone indefinetely (z; x)
) Applicable to it (z; x)
- Motion (x)^Motion to postpone indefinetely (z; x)):Applicable
to it (z; x) (See 24 RRO)

* FormalizingRenewable
This is formalized with a predicateAltered state of affairs (x; s; s+), which
informally reads as ‘the state of affairs concerningx is different ins+ than ins’. The
reason why it is not formalized with an act that actually changes the state of affairs at
a statet betweens ands+ is that aftert but befores+ the situation might be restored
in its original form ats, and this is very difficult to formalize.

- Moved(x; s1)^ Later (s2; s1)^Decided (y; x; s2)^ Later (s3; s2)^Altered
state of affairs (x; s1; s3)^:Renewed between (x; s1; s3))Renewable (x; s3)
- Moved(x; s1)^ Later (s2; s1)^Decided (y; x; s2)^ Later (s3; s2)^ (:Altered
state of affairs (x; s1; s3)_Renewed between (x; s1; s3))):Renewable (x; s3)

There is aninterpretation problemhere. The above rule assumes that a motion can
only be renewed if it has been decided, but there are other ways to dispense with a mo-
tion. Take, for instance, the case where a motion is postponed indefinetely: can such a
motion also be renewed? Maybe there are other, similar cases.

The idea is that the predicateAltered state of affairs can be defined
by further rules, or even in terms of changes of the record. Alternatively, it could be
useful to leave the interpretation of this predicate to the user.

Here is the definition of the predicateRenewed between .

- Moved(y; x; s1)^ Later (s1; s2)^ 9x
0; y0; s3(Between (s1; s3; s2)^Correctly

moved(y0; x0; s3)^Of same content (x; x0)),Renewed between (x; s1; s2)

* Note on formalizing ‘reconsiderable?’
According to 27 RRO there is a time limit on the possibility to reconsider: “during the
day or the day after ..” and according to 60 RRO (p. 196) must be reconsidered during
the same session. However, this is a matter of the right order conditions. The attribute
Reconsiderable states whether a motion is reconsiderable ‘in principle’, and for

29

reconsiderable motions further rules specify when a reconsideration is in order.
* End note on formalizing ‘reconsiderable?’

———————————————————————————————

6.2 Privileged motions

Type:Privileged motion (x) (9)
Superclass:Motion

Attributes:
- : Debatable (x) (privileged motions are not debatable, 9,35)

———————————————————————————————

Fix time of adjournment (10)

Type:Motion to fix time of adjournment (x)
Superclass:See rule

Attributes:
- Applicable to it (z; x)? See rules. (All butMotion to postpone indefinetely ,
special rule forAmendment when privileged.)

Rules:
- Moved to fix time of adjournment (y; x; s) ^ Pending (x0; s) ^ x 6=
x0) Privileged motion (x)
- Moved to fix time of adjournment (y; x; s) ^ :9x0Pending (x0; s) ^
x 6= x0) Principal motion (x)

These two rules say that the motion to fix time of adjournment is privileged if made
when another motion is pending, otherwise, it stands as a principal motion.

- Motion to fix time of adjournment (x) ^ Privileged motion (x)
^
Amendment(z; x) ^ Changes time of (z; x)) Applicable to it (z; x)
- Motion to fix time of adjournment (x) ^ Privileged motion (x)
^
Amendment(z; x)^:Changes time of (z; x)):Applicable to it (z; x)

These two rules say that the motion to fix time of adjournment (when privileged) is
only amendable by amending the time.

- Motion to fix time of adjournment (x) ^ Privileged motion (x)
^

30

:Amendment(z; x)^:Motion to postpone indefinetely (z; x))Applicable
to it (z; x)
- Motion to fix time of adjournment (x) ^ Privileged motion (x)
^Motion to postpone indefinetely (z; x)):Applicable to it (z; x)

These rules regulate the case where the subsidiary is not an amendment; then it is
applicable toFix time of adjournment iff it is not Motion to postpone
indefinetely .

- Comment 1:A problem was how to formalize that this motion is only privileged
if made when no other motion is pending. The alternative is to distinguish two types of
motions,Motion to fix time of adjournment (when other motion
is pending) andMotion to fix time of adjournment (when no other
motion is pending) . The present formulation has been chosen since it allows
reasoning about whether a certain instance of ‘fix time of adjournment’ is privileged or
not: this seems a question that a chairman often has to answer.
- Comment 2:The text of 10 RRO contradicts with the list on p.12 RRO on whether
this motion is amendable. ‘Amendable’ has been chosen since the table on p. 11 does
not say that it cannot be amended. And various WWW pages also say that this motion
is amendable. 10 RRO seems to be a trivial error.

———————————————————————————————

Adjourn (11)

Type:Motion to adjourn (x)
Superclass:Privileged motion

Attributes:
- Applicable to it (z; x)? See rule.
- Renewable (x)? See rule. (Renewable iff there has been progress in debate, or any
business transacted, RRO 26).
- : Reconsiderable (x)

Rules:
- Motion to adjourn (x)^Subsidiary (z; x)):Applicable to it (z; x)

- Moved to adjourn (y; x; s1) ^ Later (s2; s1) ^ Business transacted
between (s1; s2) ^ : Renewed before (x; s2)) Renewable (x; s2)
- Moved to adjourn (y; x; s1) ^ Later (s2; s1) ^ : Business transacted
between (s1; s2)) : Renewable (x; s2)
- Moved to adjourn (y; x; s1) ^ Later (s2; s1) ^ Renewed before (x; s2))
: Renewable (x; s2)

- Progress in debate between (s1; s2))Business transacted between (s1; s2)

31

Here is the definition of the predicateRenewed before .

- Moved(y; x; s1)^ Later (s1; s2)^ 9x
0; y0; s3(Between (s1; s3; s2)^Correctly

moved(y0; x0; s3)^ Of same content (x; x0)), Renewed before (x; s2)

———————————————————————————————

Question of privilege (12)

This motion concerns a question relating to the rights and privileges of the assembly,
or any of its members.

Type:Question of privilege (x)
Superclass:Privileged motion

Attributes:
- Debatable (x) (9,35)
- In order when another has floor (x; s)? (see rule)
- Applicable to it (z; x)? See rule (all)

Rules:
- Question of privilege (x) ^ Requires immediate action (x; s))
In order when another has floor (x; s)
- Question of privilege (x) ^ : Requires immediate action (x; s)
) : In order when another has floor (x; s)

- Question of privilege (x)^Subsidiary (z; x))Applicable to it (z; x)

———————————————————————————————

Call for the orders of the day (13)

Some motions are assigned to a special time. When that time comes, this motion can
be used to call them up.

Type:Call for the orders of the day (x)
Superclass:Privileged motion

Attributes:
- In order when another has floor (x; s)
- : Requires second (x) (3,13)
- Applicable to it (z; x)? See rule (all butAmendment andMotion to postpone
indefinetely)
- Renewable (x; s)? (See rule, RRO 61, p. 198)

Rules:

32

- Call for the orders of the day (x)^Subsidiary (z; x)^:Amendment(z; x)
^:Motion to postpone indefinetely (z; x))Applicable to it (z; x)
- Call for the orders of the day (x)^Amendment(z; x)):Applicable
to it (z; x)
- Call for the orders of the day (x) ^ Motion to postpone
indefinetely (z; x)) : Applicable to it (z; x)

- Called for the orders of the day (y; x; s1)^ Later (s2; s1)^Pending (x0; s1)
^ : Business (x0; s2) : Renewed before (x; s2)) Renewable (x; s2)
- Called for the orders of the day (y; x; s1)^ Later (s2; s1)^Pending (x0; s1)
^ Business (x0; s2)) : Renewable (x; s2)
- Called for the orders of the day (y; x; s1)^ Later (s2; s1)^Renewed
before (x; s2)) : Renewable (x; s2)

These rules say that this motion is renewable iff the question that was pending when it
was first made, has been dealt with (61, p. 198)

———————————————————————————————

6.3 Incidental motions

Type:Incidental motion (x) (8)
Superclass:Motion

Attributes:
- : Debatable (x)
- Applicable to it (z; x)? See rules (all subsidiaries exceptAmendment and
Motion to postpone indefinetely)

Rules:
- Incidental motion (x) ^ Subsidiary (z; x) ^ : Amendment(z; x) ^ :
Motion to postpone indefinetely (z; x)) Applicable to it (z; x)
- Incidental motion (x)^Amendment(z; x)):Applicable to it (z; x)
- Incidental motion (x) ^ Motion to postpone indefinetely (z; x)
)
: Applicable to it (z; x)

———————————————————————————————

Question of order (14)

Type:Question of order (x)
Superclass:Incidental motion

33

Attributes:
In order when another has floor (x; s)
- : Requires second (x) (3)
- Decision mode (x; chair)
- Applicable to it (z; x)? See rules.

Rules:
- Question of order (x)^Subsidiary (z; x)):Applicable to it (z; x)

———————————————————————————————

Appeal (14)

An appeal can be made to any decision of the chair.

Type:Appeal (x; z)
Superclass:Incidental motion

Attributes:
- In order when another has floor (x; s) (See table on p.11)
- Debatable (x)? See rules.
- Applicable to it (z; x)? See rules. (onlyLay on the table andPrevious
question , but only if appeal is debatable)

Rules:
- Appeal (x; z) ^ Relates to indecorum (x)) : Debatable (x)
- Appeal (x; z)^Relates to transgressions of rules of speaking (x)
) : Debatable (x)
- Appeal (x; z)^Relates to priority of business (x)):Debatable (x)
- Appeal (x; z) ^ Made(x; s) ^ Previous question (z) ^ Pending (z; s))
: Debatable (x)
- Appeal (x; z)^:Relates to indecorum (x)^:Relates to transgressions
of rules of speaking (x)^:Relates to priority of business (x)
^
(: Previous question (z) _ : Pending (z; s))) Debatable (x)

- Appeal (x; z)^Debatable (x)^ Lay on the table (z; x))Applicable
to it (z; x)
- Appeal (x; z)^Debatable (x)^Previous question (z; x))Applicable
to it (z; x)

- Appeal (x; z)^Debatable (x)^Subsidiary (z; x)^ : Lay on the table (z; x)
^ : Previous question (z; x)): Applicable to it (z; x)

- Appeal (x; z) ^ : Debatable (x) ^ Subsidiary (z; x)) : Applicable
to it (z; x)

34

Next we list the rules for when a chair’s decision becomes open for appeal.

- Motion (x)^Decision mode (x; chair)^Decided (chair; x; s))Open for
appeal (y; x; s0)
- Motion (x) ^ Open for appeal (y; x; s) ^ : Appeal (z; x)) : Open for
making (y; z; s)

These rules (14,61) say that when the chair has just made a decision, appeal against
the decision must and can be made at the next moment.

———————————————————————————————

Objection to the consideration of a question (15)

The objective of this motion is to entirely remove the subject from before the assembly.

Type:Objection to the consideration of a question (x; z)
Superclass:Incidental motion

Attributes:
- In order when another has floor (x; s)
- Applicable to it (z; x)? See rules. (None)
- : Requires second (x)
- Required majority (x; 2=3)

Rules:
- Objection to the consideration of a question (x; z)^Subsidiary (z0; x)
) : Applicable to it (z0; x)

———————————————————————————————

Request to read papers (16)

Type:Request to read papers (x)
Superclass:Incidental motion

———————————————————————————————

Withdrawal of a motion (17)

Type:Withdrawal of a motion (17) (x; z)
Superclass:Incidental motion

———————————————————————————————

35

Suspension of the rules (18)

Type:Motion to suspend the rules (x; r)
Superclass:Incidental motion

Attributes:
- Required majority (x; z)? See rule
- Applicable to it (z; x)? See rules (None)
- Renewable (x; s)? See rule
- : Reconsiderable (x)

Rules:
-Motion to suspend the rules (x; r) ^Deprives maximally one-third
of members of right (x)) Required majority (x; unanimous)
- Motion to suspend the rules (x; r) ^:Deprives maximally one-third
of members of right (x; r)) Required majority (x; 2=3)

- Motion to suspend the rules (x; r) ^Subsidiary (z; x)):Applicable
to it (z; x)

- Moved to suspend the rules (y; x; r; s1)^ Later (s2; s1) ^Adjournment (z; s3)
^ Between (s3; s1; s2) : Renewed before (x; s2)) Renewable (x; s2)
- Moved to suspend the rules (y; x; r; s1)^ Later (s2; s1) ^Adjournment (z; s3)
^ : Between (s3; s1; s2)) : Renewable (x; s2)
- Moved to suspend the rules (y; x; r; s1) ^ Later (s2; s1) ^ Renewed
before (x; s2)) : Renewable (x; s2)

- Motion to suspend the rules (x; r) ^Motion to suspend the rules (x0; r)
^ Same purpose (x; x0)) Of same content (x; x0)
- Motion to suspend the rules (x; r) ^Motion to suspend the rules (x0; r)
^ : Same purpose (x; x0)) : Of same content (x; x0)

These rules interpret the concept ‘suspensions of the same rule for the same purpose’
in 18 RRO as ‘suspensions with the same content’.

———————————————————————————————

6.4 Subsidiary motions

Type:Subsidiary motion (x) (7)
Superclass:Motion

———————————————————————————————

36

Lay on the table (19)

The objective of this motion is to temporarily lay a question aside, in order to take up
more urgent business.

Type:Motion to lay on the table (x; z)
Superclass:Subsidiary motion

Attributes:
- : Debatable (x)
- Applicable to it (z; x)? See rules (None)
- Reconsiderable (x)? See rule

Rules:
- Motion to lay on the table (x; z)^Subsidiary (z; x)):Applicable
to it (z; x)

- Moved to lay on the table (y; x; z; s) ^ 9x+ Accepted (x; s+))
: Reconsiderable (x)
- Moved to lay on the table (y; x; z; s) ^ : 9x+ Accepted (x; s+))
Reconsiderable (x)

———————————————————————————————

Previous question (20)

This is a motion to immediately end debate on the pending question and put it to vote.

Type:Previous question (x; z)
Superclass:Subsidiary motion

Attributes:
- : Debatable (x)
- Required majority (x; 2=3)
- Applicable to it (z; x)? See rules (none)
- Reconsiderable (x)? See rule

Rules:
- Previous question (x; z)^Subsidiary (z; x)):Applicable to it (z; x)

The previous question is reconsiderable iff not (partly) executed. This is formalized
as a special order condition:

- Moved the previous question (y; x; z; s1) ^ Later (s2; s1) ^Moved to
reconsider (y0; z; x; s2) ^ Before reconsideration deadline (s2; x) ^
:Partly executed (x; s2))Special order conditions fulfilled (z; s2)

37

- Moved the previous question (y; x; z; s1) ^ Later (s2; s1) ^Moved to
reconsider (y0; z; x; s2) ^ Partly executed (x; s2)) : Special order
conditions fulfilled (z; s2)

———————————————————————————————

Postpone to a certain day (21)

Type:Motion to postpone to a certain day (x; z)
Superclass:Subsidiary motion

Attributes:
- Debatable (x)? See rule
- Applicable to it (z; x)? See rules (previous question, and rule for amendment)
- Reconsiderable (x)? See rule

Rules:
- This motion is debatable, but not further than necessary for enabling the assembly to
judge the propriety of the postponement. This rule will be formalized when the rules
on debate are formalized.

- Motion to postpone to a certain day (x; z)^Previous question (x0; x)
) Applicable to it (x0; x)

- Motion to postpone to a certain day (x; z) ^ Amendment(x0; x) ^
Changes time of (x0; x)) Applicable to it (x0; x)
- Motion to postpone to a certain day (x; z) ^ Amendment(x0; x) ^
: Changes time of (x0; x)) : Applicable to it (x0; x)

These two rules say that a motion to postpone to a certain day is only amendable by
amending the time.

- Motion to postpone to a certain day (x; z)^:Previous question (x0; x)
^ : Amendment(x0; x)): Applicable to it (x0; x)

———————————————————————————————

Refer to a committee (22)

The object of this motion is to have the motion clarified by a committee, before it can
be dealt with by the assembly.

Type:Motion to refer to a committee (x; z)
Superclass:Subsidiary motion

38

Attributes:
- Applicable to it (z; x)? See rules (Only amendment, but see rule)

Rules:
- Motion to refer to a committee (x; z)^Amendment(x0; x)^ (Alters
committee (x0; x)_ Instructs committee (x0; x)))Applicable to it (x0; x)
- Motion to refer to a committee (x; z)^Amendment(x0; x)^ :Alters
committee (x0; x) ^ : Instructs committee (x0; x)) : Applicable to
it (x0; x)

These two rules say that a motion to refer to a committee is only amendable by al-
tering the committee, or giving it instructions.

- Motion to refer to a committee (x; z) ^ : Amendment(x0; x))
: Applicable to it (x0; x)

———————————————————————————————

Amendment (23)

Type:Amendment(x; z)
Superclass:Subsidiary motion

Attributes:
- Applicable to it (z; x)? See rules (Previous question, amendment (but see
rule) and see rule)
: Renewable (x; s)

Rules:
- Amendment(x; z)^ Amendment(x0; x)^: 9z0 Amendment(z; z0))Applicable
to it (x0; x)
- Amendment(x; z)^ Amendment(x0; x)^ 9z0 Amendment(z; z0)):Applicable
to it (x0; x)

These rules say that an amendment may be amended, unless it is itself an amendment
of an amendment.

- Amendment(x; z)^ Previous question (x0; x))Applicable to it (x0; x)
- Amendment(x; z) ^ : Previous question (x0; x) ^ : Amendment(x0x))
: Applicable to it (x0; x)

———————————————————————————————

Filling blanks (23)

Type:Filling blanks (x; z; b) (‘motion x fills blanksb of motionz’)

39

Superclass:Amendment

Attributes:
- : Requires second (x)

Different proposals for filling blanks are not treated as amendments of each other, but
as alternative amendments of the motion with the blanks (23 RRO, p. 69). This is for-
malized by giving the predicateFilling blanks a third argument, for the blanks
of the motion denoted by the second argument.

———————————————————————————————

Nomination (23)

Type:Nomination (x; y; z) (‘motionx nominates persony for z’)
Superclass:Amendment

Attributes:
- : Requires second (x) (Since RRO 23, p. 69 says that they are treated in a sim-
ilar manner as filling blanks.)

A second nomination is not an amendment of a previous one, but an independent
amendment, to be treated separately.

———————————————————————————————

Postpone indefinetely (24)

Type:Motion to postpone indefinetely (x; z)
Superclass:Subsidiary motion

Attributes:
- Applicable to it (z; x)? See rules (only previous question)

Rules:
- Motion to postpone indefinetely (x; z)^Previous question (x0; x)
)
Applicable to it (x0; x)
- Motion to postpone indefinetely (x; z)^: Previous question (x0; x)
) : Applicable to it (x0; x)

———————————————————————————————

40

6.5 Principal motions

Principal motions (6) usually concern the society’s purposes and therefore usually do
not have procedural effects, but only effects on the external world. Any motion that
does not classify as another type of motion, is a principal motion. RRO recognizes
some specific types of principal motions that have procedural effects, which are listed
below. However, this list is not exhaustive; a principal motion can have any content.

Type:Principal motion (x)
Superclass:Motion

Attributes:
- Applicable to it (z; x)? See rule (all)
- : Renewable (x; s)

Rules:
- Principal motion (x) ^ Subsidiary motion (x0)) Applicable to
it (x0; x)

Strictly speaking there is aninterpretation problemhere, since RRO does not explic-
itly comment on whether the latter rule holds for all subsidiaries. But implicitly RRO
seems to assume throughout that this is the case.

———————————————————————————————

Take from the table (19)

This motion can be used to order that motions laying on the table (19) are taken up
again by the assembly.

Type:Motion to take from the table (x; z)
Superclass:Principal motion

Attributes:
- : Debatable (x)
- Applicable to it (z; x)? See rules (None, RRO 19, pp. 54,56)
- Reconsiderable (x)? See rule (only when rejected)

Rules:
- Motion to take from the table (x; z) ^ Subsidiary motion (x0))
: Applicable to it (x0; x)

- Moved to take from the table (y; x; z; s) ^ 9x+ Accepted (x; s+))
: Reconsiderable (x)
- Moved to take from the table (y; x; z; s) ^ 9x+ Rejected (x; s+))
Reconsiderable (x)

41

———————————————————————————————

Rescind (25)

When an assembly wishes to annul some previous action and no other procedural re-
source is available, it can still rescind the action.

Type:Motion to rescind (x; z)
Superclass:Principal motion

———————————————————————————————

Reconsider (26,27)

This motion can be used to ask for a new vote on a previously decided motion.

Type:Motion to reconsider (x; z)
Superclass:Principal motion

Attributes:
- Debatable (x)? See rules (when reconsidered motion is debatable)
- In order when another has floor (x; s)
- Applicable to it (z; x)? See rules (all except amendment)
- : Reconsiderable (x)
- To be entered on the record when made (x)? See rules

Rules:
- Motion to reconsider (x; z) ^ Debatable (z)) Debatable (x)
- Motion to reconsider (x; z) ^ : Debatable (z)) : Debatable (x)

The following is aninterpretation problem: if the reconsideration concerns a debat-
able motion to which the previous question applied at the moment of vote, and the
previous question is not yet exhausted so the motion is not debatable (p. 60 RRO), is
then the motion to reconsider also not debatable?

- Motion to reconsider (x; z) ^ Amendment(x0; x)) : Applicable to
it (x0; x)
- Motion to reconsider (x; z)^Subsidiary motion (x0)^ :Amendment(x0; x)
) Applicable to it (x0; x)

Anotherinterpretation problemis that RRO does not explicitly comment on whether
postpone indefinetely/to certain day and commit apply to this motion. (This is a special
case of the interpretation problem for all principal motions.)

The following rules say that a motion to reconsider all motions other than inciden-
tal or subsidiary motions is to be entered on the record; and a motion to reconsider an

42

incidental or a subsidiary motion is to be entered unless the vote on that motion had
the effect of removing the entire subject from before the assembly (RRO 27, pp. 77–8).
(This latter predicate has to be defined by further rules.)

- Motion to reconsider (x; z)^ (Incidental motion (z)_Subsidiary
motion (z)) ^ : Removes subject from before assembly (z)) : To
be
entered on the record when made (x)
- Motion to reconsider (x; z)^ (Incidental motion (z)_Subsidiary
motion (z)) ^ Removes subject from before assembly (z)) To be
entered on the record when made (x)
- Motion to reconsider (x; z)^: Incidental motion (z)^:Subsidiary
motion (z)) To be entered on the record when made (x)

———————————————————————————————

Extending the limits of debate (34)

Type:Motion to extend the limits of debate (x; z)
Superclass:Principal motion

Attributes:
- : Debatable (x)
- Required majority (x; 2=3)

———————————————————————————————

Leave to continue speaking after indecorum (36)

When the chair has ruled that a speaker has violated decorum in debate, then, if any
member objects, the speaker can only continue after obtaining leave from the assembly.

Type:Leave to continue speaking after indecorum (x)
Superclass:Principal motion

Attributes:
- : Debatable (x)
- Applicable to it (z; x)? See rules (all except amendment)

Rules:
- Leave to continue speaking after indecorum (x)^Amendment(x0; x)
) : Applicable to it (x0; x)
- Leave to continue speaking after indecorum (x) ^ Subsidiary
motion (x0) ^ : Amendment(x0; x)) Applicable to it (x0; x)

43

———————————————————————————————

Limiting debate (37)

Type:Motion to limit debate (x; z)
Superclass:Principal motion

Attributes:
- : Debatable (x)
- Required majority (x; 2=3)

———————————————————————————————

Closing debate at certain time (37)

Type:Motion to close debate at certain time (x; z)
Superclass:Principal motion

Attributes:
- : Debatable (x)
- Required majority (x; 2=3)

———————————————————————————————

To take up a question out of its proper order (39)

Type:Motion to take up a question out of its proper order (x; z)
Superclass:Principal motion

Attributes:
- Required majority (x; 2=3)

———————————————————————————————

Make a special order (13)

A special order makes a question part of the orders of the day in such a way that it can
be taken up disregarding any rule that might interfere with its consideration at the time
specified.

Type:Motion to make a special order (x)
Superclass:Principal motion

Attributes:
- Required majority (x; 2=3)

———————————————————————————————

44

Make a general order (13)

A special order also makes a question part of the orders of the day, but it does not sus-
pend rules that might interfere with its consideration at the time specified.

Type:Motion to make a general order (x)
Superclass:Principal motion

———————————————————————————————

Ordering of ballot (38)

This motion orders for voting by ballot.

Type:Ordering of ballot (x; x0)
Superclass:Principal motion

———————————————————————————————

Ordering of roll call (38)

This motion orders for voting by roll call.

Type:Ordering of roll call (x; x0)
Superclass:Principal motion

———————————————————————————————

45

Chapter 7

The formalization: general
conditions for when speech acts
are in order

This chapter formalizes the two conditions for when a procedural act has been correctly
made (viz. when in order and proper) and then formalizes the three order conditions
that hold for all acts, and the two additional order conditions that hold for all motions.

7.1 On when an act is correctly made

One of the main tasks of the chair of any meeting is to determine whether an act of any
member (including the chair!) violates any rule of order. To capture this, the present
section introduces the notion of an act that isCorrectly made . An act is correctly
made if it isIn order (made at the right moment) andProper (has the right prop-
erties).

- Act (x) ^ Made(y; x; s) ^ In order (x; s) ^ Proper (x; s)) Correctly
made(y; x; s)
- Act (x)^Made(y; x; s)^ (: In order (x; s)_:Proper (x; s))):Correctly
made(y; x; s)

RRO is not clear on what it means by ‘being out of order’, and it does not even have the
notion of an ‘improper’ action. In the present formalization these terms are interpreted
as follows. When an act has the right characteristics of its kind, but is performed at the
wrong moment, we say that it is out of order (for example, making a principal motion
without having the floor), and when and act does not have the right properties, so when
it can never be made in that way, we say that it is improper (for instance, amending an
unamendable motion).

The conditions on properness are specific to any type of motion, and will therefore

46

(in a later phase) be included in the motion hierarchy, as are the motion specific order
conditions. However, there are also general order conditions, applying to any type of
act. This general theory of order conditions is presented in the rest of this chapter, and
in the appendix it is graphically displayed as an AND/OR graph.

7.2 On when an act is in order

In the present section the general rules for theIn order predicate are given. First
the top level rules for acts other than motions are given, and then the more specific top
level rules for motions. In the rest of the section the conditions for these top level rules
are defined. Some of these definitions are shared by motions and other acts, and some
are specific to motions.

7.2.1 Acts other than motions: top level structure

For acts that are not motions, RRO’s top level structure for being in order is as follows.

- Act (x)^ :Motion (x)^Made(y; x; s)^ Floor condition fulfilled (x; y; s)
^ Mode condition fulfilled (x; s) ^ Special order conditions
fulfilled (x; s)) In order (x; s)
- Moved(y; x; s)^ (:Floor condition fulfilled (x; y; s)_:Mode condition
fulfilled (x; s) _ : Special order conditions fulfilled (x; s)))
: In order (x; s)

The informal meaning of the conditions is explained in the following subsection.

7.2.2 Motions: top level structure

As for determining when making a motion is in order, the top level structure of RRO is
as follows.

- Moved(y; x; s)^ Floor condition fulfilled (x; y; s)^Precedence condition
fulfilled (x; s)^Renewal condition fulfilled (x; s)^Mode condition
fulfilled (x; s) ^ Special order conditions fulfilled (x; s)) In
order (x; s)
- Moved(y; x; s)^ (:Floor condition fulfilled (x; y; s)_:Precedence
condition fulfilled (x; s) _ : Renewal condition fulfilled (x; s)
:Mode condition fulfilled (x; s):Special order conditions
fulfilled (x; s))) : In order (x; s)

The conditions of these rules have the following meaning.

- Floor condition fulfilled (x; y; s) (2) means that the rules concerning hav-
ing the floor do not prevent making the act (either one has the floor, or having the floor
is not required).

47

- Precedence condition fulfilled (x; s) (p. 12) means that no pending ques-
tion prevents making the motion (either there is no pending question, or the pending
question yields to the moved motion).
- Renewal condition fulfilled (x; s) (26, pp. 178/9) means that the rules on
renewing motions do not prevent making the motion (either it can be renewed, or it is
moved for the first time).
- Mode condition fulfilled (x; s) says that the rules requiring special acts at
certain moments (e.g. seconding when a motion that requires second has been made)
do not prevent making the act.
- Special order conditions fulfilled (x; s) means that any special con-
ditions for the relevant type of act are fulfilled. For motions these special conditions
will in a later phase of the project be added to the motion hierarchy.

The rest of this chapter gives the top level rules for when these conditions are fulfilled.

7.2.3 Floor condition

The rules for the floor condition are shared by motions and other acts.

- Act (x)^Made(y; x; s)^: In order when another has the floor (x; s)
^ Has floor (y; s)) Floor condition fulfilled (x; y; s)
- Act (x)^Made(y; x; s)^ In order when another has the floor (x; s)
) Floor condition fulfilled (x; y; s)

- Act (x)^Made(y; x; s)^: In order when another has the floor (x; s)
^ : Has floor (y; s)) : Floor condition fulfilled (x; y; s)

These rules (2, p. 11) say that an act fulfills the floor condition iff it is made while
having the floor or can be made without having the floor.

7.2.4 Precedence condition

The rules for the precedence condition are special to motions.

- Moved(y; x; s)^ : 9zPending (z; s))Precedence condition fulfilled (x; s)
- Moved(y; x; s) ^ Pending (z; s) ^ x � z) Precedence condition
fulfilled (x; z)
- Moved(y; x; s) ^ Pending (z; s) ^ : x � z) : Precedence condition
fulfilled (x; z)

This says that making a motion satisfies the precedence condition iff (p. 12) either
no question is pending or the pending question yields to the motion. The notion of a
pending question is defined in Section 8.3.

Note that the predicate�, which inx � y stands for ‘y yields tox’, is not asym-
metric: two motions can yield to each other, which means that the one can be made
while the other is pending.

48

7.2.5 Renewal condition

The rules for the renewal condition are also special to motions. Making a motion meets
its renewal condition iff either it is made for the first time, or it is renewable (26 RRO).
In formalizing this, we want to say that if a motionm1 with a certain content has been
made ats1 and another motionm2 with the same content has been made at a later state
s2, thenm2 meets its renewal condition ats2 iff m1 is renewable ats2. This can be
expressed with with a predicateOf same content (x; x0), defined above in Sec-
tion 6.1.

- Moved(y; x; s) ^ : 9x0; y0; s�(Moved(y0; x0; s�) ^ Of same content (x; x0))
) Renewal condition fulfilled (x; s)
- Moved(y; x; s1)^Moved(y0; x0; s2)^ Later (s2; s1)^Of same content (x; x0)
^ Renewable (x; s2)) Renewal condition fulfilled (x0; s2)
- Moved(y; x; s1)^Moved(y0; x0; s2)^ Later (s2; s1)^Of same content (x; x0)
^ : Renewable (x; s2)) : Renewal condition fulfilled (x0; s2)

7.2.6 Mode condition

The following rules deal with all cases in which at a certain state only acts of a special
type are allowed to be made. For example, after a secondable motion has been cor-
rectly moved, no other act may be made than a seconding of this motion (unless that
act is of some special type, further specified by RRO). These situations will be for-
malized with the predicateOpen for making , or with specialized versionsOpen
for X-ing , like Open for seconding .1 The intuitive meaning of this predi-
cate is that if an act of a certain type is open for making, all acts that are not of this
type are not in order (with exceptions). In this subsection this is formalized, via the
intermediate conditionMode condition fulfilled .

Note that an act that is open for making does not have to be obligatory: for in-
stance, a motion does not have to be seconded. The situation that a certain act must be
performed at a certain moment is formalized as a special case of openness for making,
with an Obliged to make predicate. (See Chapter 9 for more comments on the
representation of deontic concepts.)

* Note on implementation:
If a chaining-like inference mechanism is chosen, then any rule of the form

. . .) Open for X-ing (y; x; s)

is decomposed into

. . .^ Of type X (z)) Open for making (y; z; s)

Moreover, of the definitions of theOpen for X-ing predicates in Chapter 5 only

1The advantage of using the general predicate in addition to the special ones is that several rules need be
stated just once; see in more detail below.

49

the if-parts will be formulated. Together, these two policies should avoid loops.
* End note on implementation:

As just said, there are certain types of acts that can also be made when another act
is open for making. These are the acts that can be made without having the floor: they
always satisfy the mode condition.

Note, finally, that when an act of a certain type is not open for making, this does
not mean that making it does not satisfy the mode condition; it just means that it is not
the case that any next act must be of this type. Only if at the same time another act is
open for making, the first act does not satisfy the mode condition.

The first three subsections make use of the left-hand sides of the definitions in
Chapter 5.

Top level structure

- Act (x) ^ Open for making (y; x; s) ^ Made(y; x; s)) Mode condition
fulfilled (x; s)
- Act (x)^Made(y; x; s)^Mode condition exception (x; s))Mode condition
fulfilled (x; s)
- Act (x)^ :Open for making (y; x; s)^Open for making (y0; z; s)^Made(y; x; s)
^:Mode condition exception (x; s)):Mode condition fulfilled (x; s)

- In order when another has the floor (x; s), Mode condition
exception (x; s)

The first two rules say that an act satisfies the mode condition if it is made while open
for making (structure of RRO, common-sense), or if it is an exceptional case. The third
rule says that if an act is not open for making, but another act is open for making, then
making it violates the mode condition, unless an exception exists for the act (structure
of RRO). The final rule then says that the only such exceptions are acts that can be
made without having the floor. (interpretation of RRO)

- Act (x)^Made(y; x; s)^: 9 y0; x0Open for making (y0; x0; s))Mode condition
fulfilled (x; s)

This rule expresses (based on system of RRO) that if none of the special situations
concerning the mode condition obtains, i.e. if no act of a special type is required, then
the mode condition is (trivially) satisified.

Finally, we formalize the special case of obligatory acts. Acts that are obliged are
also open for making.

- Obliged to make (y; x; s)) Open for making (y; x; s)

The reason why acts that ought to be made (such as the chair’s obligation to state a mo-
tion after it has been seconded) are not formalized with rules with a: In order (y; x; s)
consequent, is that when violated, the obligation should stay in effect at the next mo-

50

ment. This is easier to formalize with theObliged to make predicate, as will be
defined below.

How an act ceases being open for making

Next we must regulate when an act ceases being open for making. The simplest case is
when the act is made.

* Making the act

- Act (x) ^ Open for making (y; x; s) ^ Made(y; x; s)) : Open for
making (y0; x; s0)

This rule says that an act ceases being open for making when it is actually made.
However, when an act that is open for making is not made, several situations must

be distinguished. We must first deal with two cases in which the act was not performed
because something else came in between.

* Prevented acts

The first of these two cases is that ats some other act is ‘illegally’ made, which pre-
vents the making of the ‘open’ act, and so ‘prolonges’ the opennes for making (e.g. an
act that is out of order is made ats) (structure of RRO, common sense). The definition
of being prevented is as follows.

- Act (x)^Open for making (y; x; s)^Act (z)^Made(y0; z; s)^:Correctly
made(y0; z; s)) Prevented (x; s)
- Act (x) ^Open for making (y; x; s) ^ :9y0; z (Made(y0z; s) ^ : Correctly
made(y0; z; s))) : Prevented (x; s)

This rule says that an act that is open for making is prevented when another act oc-
curs that is not open for making and that is not correctly made (not in order or not
proper).

We now say that an act that was not made because it was prevented stays open for
making.

- Act (x) ^ Open for making (y; x; s) ^ : Made(y; x; s) ^ Prevented (x; s)
) Open for making (y; x; s0)

* Surpressed acts

The second case with an interfering act is when that act interferes ‘legally’. This is
the case when that act can be made without the floor. For example, ifx is open for
making ats, but somebody rises to a point of order ats, then ats0 the chair must decide
the point of order. In such a case I say thatx is surpressed:x temporarily ceases being
open for making, until the other business has been dealt with. (all based on common-

51

sense and on interpretation of the structure of RRO).

- Act (x) ^ Open for making (y; x; s) ^ Act (z) ^ Correctly made (y0; z; s)
^ : Of same type (x; z)) Surpressed (x; z; s)
- Act (x)^Open for making (y; x; s)^:9y0; z (z 6= x^Correctly made (y0; z; s))
) : Surpressed (x; z; s)
- Surpressed (x; z; s)) : Open for making (y; x; s)

Unfortunately, the first of these rules needs an ad hoc device. This rule must cover
the case where the act that was open for making for a person (say, a seconding) was
not made because somebody else instead correctly performed that act (somebody else
seconded the motion). In that case the act ceases being open for making by the first
person (as regulated by the earlier-given rules). This is captured by the predicateOf
same type . This is ad hoc for two reasons: the meaning of this predicate is not
captured by the logic of the representation, as it should, and it is not certain whether
this solution really covers all the cases: it is conceivable that a certain act is open for
making by a person, and that the fact that another person correctly makes the same act
still surpresses it. But RRO does not seem to contain such cases.

The following rules formalize that a surpressed act remains surpressed until the
surpressing act has been dealt with, after which the surpressed act again becomes open
for making.

- Surpressed (x; z; s) ^ Business (z; s0)) Surpressed (x; z; s0)
- Surpressed (x; z; s) ^ : Business (z; s0)) : Surpressed (x; z; s0)

- Surpressed (x; z; s)^:Surpressed (x; z; s0))Open for making (y; x; s0)

The following rule says that something is business iff it is in the question stack. For
more on the latter notion, see Section 8.3. The idea is that the stack contains those
motions that at any state are before the assembly (debated or decided), in the process
of being brought before the assembly (the phase from being correctly moved to being
stated), or temporarily set aside by another motion with higher precedence.

- x 2 question stack (s), Business (x; s)

In the following chapter, which is on introducing and dealing with business, it is for
several acts defined how they become open for making.

* Failing to make when not surpressed and not prevented

Finally, we must formalize the case of not-performed acts that were not prevented or
surpressed. An act that was not made and not prevented ceases being open for making,
unless the act was also obliged. The rationale of the latter exception is that when an
obligatory act is not performed, it must still be performed at the next possible moment.
For instance, when the chair forgets to state a seconded motion, or does something else
instead, then at the next state s/he must still state the motion. The exceptional rule

52

for obligatory acts in turn also has an exception, viz. when the obligatory act was sur-
pressed: in that case the above rules for surpression apply, so that the act temporarily
ceases open for making.

- Act (x) ^ Open for making (y; x; s) ^ : Made(y; x; s) ^ : 9x� Obliged
to make (y; x; s�) ^ : Prevented (x; s)) : Open for making (y; x; s0)
- Act (x) ^ Open for making (y; x; s) ^ : Made(y; x; s) ^ 9x� Obliged to
make(y; x; s�) ^ : Surpressed (x; z; s)) Open for making (y; x; s0)

Note that the first rule includes the case that there is silence ats (e.g. no one appeals
or seconds). The last rule regulates the special case that an obligatory act was not per-
formed. In order to make the formalization not too complicated, it is not the formula
with Obliged to make that is prolonged froms to s0; only the implied formula
with Open for making is prolonged, otherwise many of the rules forOpen for
making would have to be repeated forObliged to make . Instead, the rule’s con-
dition says that the act was once obligatory in the past. But, of course, this is an ad hoc
solution.

What if somebody (for instance, the chair) who is obliged to perform a certain
act, keeps failing to perform it? In that case the openness for making keeps being
prolonged, which seems to fit nicely with actual meetings. A procedural resource for
members in such cases with reluctant chairs is to rise to a point of order (14).

53

Chapter 8

The formalization: introducing
and dealing with business

This chapter formalizes how business can be brought before the assembly (Section 8.1),
and how successfully introduced business can be decided (Section 8.2). The rules for
debate have not yet been formalized, but the notion of a pending question is precisely
defined, in Section 8.3.

8.1 On bringing a question before the assembly

There are two basic ways to bring business before the assembly (1 RRO): making a
communication, and making a motion. This section formalizes the second way. The
general procedure for bringing a question before the assembly is to first obtain the floor
(with some exceptions) (2 RRO), and then (3 RRO) to make a motion, which has to be
seconded by another member (with some exceptions), and has to be stated by the chair
(except when the chair must decide the motion). (For debatable motions the mover
must first be given the floor, 2 RRO, note at close, and 19 RRO, p. 56). The question
is then open for decision, which can take place in three ways: decision by the chair
(in a few designated cases), debate followed by vote (otherwise, when the motion is
debatable), and immediate vote (otherwise, when the motion is not debatable).

Acts that should be performed by the chair are formalized using theObliged
to make predicate defined in Subsection 7.2.6. This formalization method makes
it possible to represent that the chair has violated his or her obligations (as required
in Chapter 3), and it makes it possible to deal with situations where the chair is tem-
porarily unable to perform the required act, because of an interrupting act of a member
(whether legal or illegal). In the latter case, the rules of Section 7.2.6 prolonge the
obligatoriness of the act for being made.

54

Negative conditions forOpen for ... predicates

In the rest of this report theOpen for ... predicates are implicitly assumed to be
completed. The completion of a predicate is a material implication with the negated
predicate in the consequent, and with as antecedent the disjunction of the negations of
antecedents of all positive rules for the predicate. (The only reason why these comple-
tion rules are left implicit is by way of notational convention; no negation-as-failure
constructs are intended.)

We also implicitly include rules that say that if an act of a certain type is open for
making, all acts that are not of this type are not open for making. To make one of these
rules explicit by way of example, consider the implicit rule for a seconding.

- Open for seconding (y; x; s)^:Seconding (z; x)):Open for making (y0; z; s)

Obtaining the floor

So far just one rule has been formalized, dealing with the case where the chair invites
any speaker.

- Invites speaker (chair; s)) Open for obtaining floor (y; s0)
- Open for obtaining floor (y; s) ^ : Act to obtain floor (x)) :
Open for making (y; x; s)

These rules (common sense) say that when the chair has just asked who wants to speak
next, any next act must be an act to obtain the floor (unless, of course, it satisfies the
mode exception).

Making a motion

Recall from Section 7.1 that any act, so also a motion, isCorrectly made if and
only if it is In order (made at the right moment) andProper (has the right prop-
erties).

Seconding a motion

- Correctly moved (y; x; s) ^ Requires second (x) ^ y0 6= y) Open for
seconding (y0; x; s0)
- Open for seconding (y; x; s)^Seconded (y; x; s))Second condition
fulfilled (y; x; s)
- Correctly moved (y; x; s)^:Requires second (x))Second condition
fulfilled (y; x; s)

These rules say that a motionx that was correctly made ats by y, is open for sec-
onding ats0 if it requires a second (2, note at close, p. 56). The rules also define an
intermediate predicateSecond condition fulfilled , which predicate is con-

55

ventient for reducing the number of rules needed below for regulating what happend
afterwards (similar intermediate predicates will be used at various occasions.)

These rules have an implicit way of dealing with the case that the chair mistakenly
thinks that a just-moved motion does not require a second: if s/he immediately states
the motion, this violates the mode condition, since stating was not open for making and
is not a mode condition exception.

Mover’s right to speak before motion is stated

- Second condition fulfilled (y; x; s)^Debatable (x)) Floor open
to mover (y; x; s0)
- Floor open to mover (y; x; s)) Open for obtaining floor by
mover (y; x; s) ^ Open for yielding floor by mover (y; x; s)

These rules say that when a motion has fulfilled its second condition, then (except
when the motion is to be entered on the record) the mover has the right to claim or
yield the floor, before the motion is stated by the chair (2, note at close, and 19, p. 56).
Floor open to mover is a convenient intermediate predicate.

- Second condition fulfilled (y; x; s)^ To be entered on the record
when made(x)) Obliged to enter on the record (chair; x; s0)
- Called up (y; x; s) ^ Debatable (x)) Floor open to mover (y; x; s0)
- Called up (y; x; s) ^ : Debatable (x)) Obliged to state (chair; x; s0)

These three rules regulate the special case for motions that are to be entered on the
record when made (i.e. motions to reconsider, see 27 RRO). The first rule says that it
must be entered on the record by the chair when seconded, and the second and third
rule say that if a motion that is on the record (as ‘to be called up’) is called up, the
situation is as for all other motions after their seconding condition is fulfilled.

An interpretation problemhere is that in cases where a motion must be entered
on the record (presently only a reconsideration, 27), RRO is not clear on the precise
moment at which the mover can claim the floor: is it before it is entered on the record,
or after it has been called up? The present formalization chooses for the latter option.
This is since it seems to make more sense to give the mover this opportunity just before
debate starts than just before entering the motion on the record.

- Open for yielding floor by mover (y; x; s) ^ Yielded floor (y; s)
) Mover condition fulfilled (x; s)
- Open for obtaining floor by mover (y; x; s)^Acted to obtain floor (y; s)
^Yielded floor (y; s+ ^Has floor between (x; s; s+))^:Has changed (y; x; s+)
^ : Withdrawn (y; x; s+))Mover condition fulfilled (y; x; s+)

- Second condition fulfilled (y; x; s)^ :Debatable (x))Mover condition
fulfilled (x; s)

These rules define an intermediate concept covering all situations concerning the right

56

of the mover to obtain the floor before his motion is stated. This concept includes the
situations where the mover has either abstained from or used the right to obtain the
floor, or does not have this right. The predicateHas floor between is used to
ensure that yielding the floor pertains to the motionx and not to some later motion,
much later on in a meeting.

The special actsOpen for yielding/obtaining floor by mover are
used in order to make sure that when such an act is made after being surpressed or
prevented, it follows that the mover condition is fulfilled (otherwise special surpres-
sion and prevention rules would have to be given for the predicateFloor open to
mover , in addition to the general rules on surpression and prevention given below).

The following rule deals with the case that the mover has changed the motion after
it was seconded. In that case the second may be withdrawn, and the motion is again
open for seconding.

- Open for obtaining floor by mover (y; x; s)^Acted to obtain floor (y; s)
^Yielded floor (y; s+)^Has floor between (x; s; s+)^Has changed (y; x; s+)
^ Seconding (z; x) ^ Made(y0; z; s�)) Open for withdrawal (y0; z; s+

0

)

- Motion (x)^Seconding (z; x)^Open for withdrawal (y; z; s)^Withdrawn (z; s)
) Open for seconding (x; s0)

Note that these two rules leave room for a ‘procedural loop’, where a mover keeps
modifying a motion after it has been seconded. It is a matter of interpretation whether
RRO also leaves room for this loop.

Stating a motion

- Mover condition fulfilled (x; s)^Decision mode (x; vote))Obliged
to state (chair; x; s0)

This rule says that once the mover has been dealt with, a motion that requires a vote
becomes open for stating (3,54).

Starting to consider a motion

Considering a motion comes in three forms: decision by the chair, vote, and debate
followed by vote. Let us first consider decisions by the chair (14,15,61e). Here a com-
plication is that the chair may at once submit the question to the assembly, by stating it
(14). In fact, this means that the chair has an obligation to a disjunctive action: decide
or state. Since the present formalization does not use deontic logic, an ad hoc solution
is necessary, by defining a disjunctive actDecision or stating .

- Decision (x; z) _ Stating (x; z)) Decision or stating (x; z)

- Mover condition fulfilled (x; s)^Decision mode (x; chair))Obliged
to decide or state (chair; x; s0)

57

This rule says that when the chair must decide a motion, s/he has the choice to de-
cide it (after which appeal is open: see motion hierarchy), or to submit it at once to the
assembly by stating it (14).

- Open for decision or stating (chair; x; s)) x = top (question stack (s0))
- Open for decision or stating (chair; x; s)^Stated (chair; x; s))Open
to vote (x; s0)
- Open for stating (chair; x; s)^Stated (chair; x; s)^Decision mode (x; vote)
^Debatable (x))Open to debate (x; s0)^ x = top (question stack (s0))
- Open for stating (chair; x; s)^Stated (chair; x; s)^Decision mode (x; vote)
^:Debatable (x))Open to vote (x; s0) ^ x = top (question stack (s0))

After being stated, a motion is open for debate followed by vote (if debatable, 5,38,54),
or for immediate vote (if not debatable, 38,54). The above rules on starting to con-
sider a motion rule trigger a change of the record, concerning the values ofOpen to
debate andOpen to vote . Note that when a motionm is the top of the question
stack, later events can pushm down the question stack or even removem from it, ei-
ther temporarily (for instance, by laying it on the table) or definetely (for instance, by
postponing it indefinetely).

The rules for how debate is conducted have not yet been formalized.

8.2 On dispensing with a question

This section should ultimately formalize all ways in which successfully introduced
business becomes finished: either it is decided, or it is dispensed with in some other
way, viz. by a withdrawal, or by a successful objection to its consideration or motion
to postpone it indefinetely. The appendix contains a picture (finished business) that
graphically represents all ways in which business can be dispensed with. At present,
only voting has been (partly) formalized.

8.2.1 Voting

We now formalize the normal case, where debate is closed by putting the motion to vote
(94 RRO). When the chair thinks debate has ended, s/he asks the assembly whether it
is ready to vote. If nobody rises, the chair puts (in the normal case) the affirmative,
and after the affirmative votes have been cast and nobody wants to re-open the debate
(to which every member has the right, 38, p. 105), the chair puts the negative. At that
point debate is closed, i.e. nobody can re-open debate. After the negative votes have
also been cast, the chair announces the result. At that point the motion ceases to be
pending, i.e. it is removed from the question stack.

Exceptions to the normal case are when the assembly has ordered vote by ballot or
roll call.

- Open to debate (x; s)^ ‘Ready for the question?’ (chair; x; s)^:9y

58

Acted to obtain floor (y; s0)) Open to vote (x; s00)

The last condition of this rule captures the fact that any one can re-open debate be-
fore the negative has been put (38, p. 105). How does this deal with the case were
somebody acts to obtain the floor after the affirmative has been put, but then makes a
motion that is not in order? This is covered by the same rules as that apply at any other
time during debate!

- Open to vote (x; s)^:Ballot ordered (x; s)^:Roll call ordered (x; s)
) Obliged to put affirmative (chair; x; s)
- Affirmative put (chair; x; s))Open for affirmative voting (y; x; s0)
- Open for affirmative voting (y; x; s)^Affirmative votes cast (x; s; n)
) ayes(x; s) = n ^ : Open for affirmative voting (y; x; s0)

The reason why this special rule is needed in addition to the general rule in Sec-
tion 7.2.6 is that, unlike all other acts that can be open for making, here not one but
many acts of the required type are needed to cease the act from being open for making
(I assume that all affirmative votes are being cast at the same state).

- Affirmative votes cast (x; s)^:9x; y Acted to obtain floor (y; x; s0)
) Obliged to put negative (chair; x; s00)
- Negative put (chair; x; s)):Open to debate (x; s0)^Open for negative
voting (x; s0)
- Negative votes cast (x; s; n)) noes(x; s) = n^Voting completed (x; s)

Next we define which other acts fulfil the mode condition when they are made when
affirmative or negative votes are open for making.

- Open for affirmative voting (y; x; s) ^ : Affirmative vote (x0))
: Open for making (y; x0; s)

Note that these rules capture in an implicit way that when somebody re-opens the dis-
cussion, the affirmative votes must be ignored (38, p. 105). This is assured by making
the number of ayes and noes recorded by the record. Any later derivation of a new
number causes an update on the record.

- Ordering of Ballot (x; x0) ^ Accepted (x; s), Ballot ordered (x0; s)
- Ordering of Roll call (x; x0)^Accepted (x; s),Roll call ordered (x0; s)

The following rules leave the precise nature of voting by ballot or roll call implicit.

- Voted by ballot (x; s)) Voting completed (x; s)
- Voted by roll call (x; s)) Voting completed (x; s)
- Voting completed (x; s)^Required majority (x; n)^ ayes(x; s) / ayes(x; s)+
noes(x; s) � n) Accepted (x; s)
- Voting completed (x; s)^Required majority (x; n)^ ayes(x; s) / ayes(x; s)+

59

noes(x; s) 6� n) Rejected (x; s)

Accepted (x; s) _ Rejected (x; s), Decided (x; s)
Decided (x; s)) x 62 question stack (s)

These rules use some new act types.

- Affirmative vote (x)) Vote (x)
- Negative vote (x)) Vote (x)
- Vote (x)) Act (x)

This formalization of the voting procedure is not yet complete. The following items
must still be formalized.

� The chair is obliged to announce the result (p. 104).

� When the result is announced, any member can ask for a ‘division’ (pp. 104/5).

� Before the result has finally and conclusively been announced, any member can
change their vote (unless the vote was by ballot) (p. 105).

� No one can vote on a question affecting only him/herself.

� What happens with a tie vote (p. 106).

� Voting rights of the chair (pp. 106, 112–114).

� Voting on nominations (p. 106).

� Mover may close debate (?).

8.3 The pending question

I now turn to the notion of a pending question.1 RRO is not completely clear on when a
notion is pending. Clearly, a notion that is open to debate, decision or vote is pending,
but what about a motion that is open for seconding or stating? Let us consider an
example. Suppose debate is open on a principal motionm1, then a member moves to
adjourn (m2), which motion has precedence overm1, som2 is open for seconding.
Then immediately afterwards somebody rises to a point of order (m3); nowm3 has
precedence overm1 but yields tom2. Suppose now thatPending is defined such
thatm1 is still pending: thenm3 is also in order, and bothm2 andm3 are open for
seconding. This is clearly not in line with the structure of RRO, which assumes that at
any time at most one question can be before the assembly.

This undesired situation can be avoided as follows. The idea is to define a question
stack of motions that at any state are before the assembly (debated or decided), in the

1The appendix contains a picture (‘unfinished business’) with all modes that unfinished business can
have.

60

process of being brought before the assembly (the phase from being correctly moved to
being stated), or temporarily set aside by another motion with higher precedence. The
following rule says how a motion is added on top of the question stack.

- Correctly moved (y; x; s)) x = top (question stack (s0))

Note that ats0 the motionx is also open for seconding (unless it needs no second).
Note also that the procedural way of updating the record makesx stay in the question
stack (albeit perhaps sometimes pushed down) until it is explicitly removed from the
stack. Let us now look at which occasions the latter happens. This is when a motion is
decided (dealt with above in Subsection 8.2.1), when another motion is adopted which
removesx from before the assembly (to be added to Section 8.2), when the motion is
not seconded, or when it is withdrawn by the mover before it is stated. The latter two
cases are formalized as follows.

- Open for seconding (y; x; s)^:9y0 Seconded (y0x; s)^ :Prevented (x; s)
^ : Surpressed (x; s)) x 62 question stack (s0)
- Moved(y; x; s) ^ Withdrawn (y; x; s+)) x 62 question stack (s+

0

).

The idea is that whenever a new motion is added on top of the question stack, the
other motions are pushed downwards. This will be captured by the way the record is
maintained, not by logical reasoning.

The notion of a pending question is now simply defined as the top of the question
stack.

- x = top (question stack (s)), Pending (x; s)

Note, however, that it is not completely obvious whether this precisely captures RRO’s
notion of a pending question. Although it does with respect to the parts of RRO that
have been formalized in this report, in the remaining parts it might also occur with a
more narrow meaning, as ‘open to debate, vote or decision’. I leave this for future
inspection, and for the time being definePending as above.

61

Chapter 9

Evaluating the formalization of
normative concepts

Although RRO expresses norms for what is obligatory, forbidden or permitted in meet-
ings, the above formalization does not use deontic logic. Instead, the normative char-
acter of RRO is captured by three special ‘quasi-deontic’ predicates,Proper , In
order , Correctly moved and two surrogate deontic predicates,Obliged to
make and Obliged to decide or state . This method is mainly used for
pragmatic reasons (viz. the time constraints). In a later phase of the project this choice
might very well be changed. Let us therefore try to make a first comparison between the
first-order method and a formalization using deontic logic (leaving a full investigation
for future research).1

The first-order translation of deontic notions gives up some advantages of deontic
logic, such as the generality of its consistency conditions. Let us restrict ourselves to
standard deontic logic (SDL), a modal logic of type KD. In SDL no two incompatible
acts can be obligatory at the same time: DL validates

: (O' ^ O:')

(whereO stands for ‘it is obligatory that’). Moreover, if SDL is extended with a stan-
dard necessity operator2, then it also validates the following formula:

2 : (' ^)) : (O' ^ O)

Clearly, theObliged to make operator does not satisfy the first-order counterparts
of these axioms. Moreover, the following two first-order formulas are consistent.

- Made(p;m; s)) : In order (p;m; s)
- : Made(p;m; s)): In order (p;m; s)

1See for more elaborate discussions on the usefulness of deontic logic for representing normative knowl-
edge Jones & Sergot [1993] and Bench-Capon [1994].

62

Yet it might be said that if RRO makes it impossible to be in order, it violates a basic
principle of rational legislation, a principle which is nicely captured by SDL.

The language of SDL is also more expressive than our use of first-order deontic
predicates. For instance, in SDL any compound formula can occur within the scope of
a deontic operator. In the present formalization SDL’s additional expressiveness was
not needed, with one exception: at the end of Section 8.1 a disjunctive obligation was
formalized, viz. the chair’s obligation to either decide or put to vote motions which have
chair as decision mode. Clearly, the predicateObliged to decide or state
used in this formalization is ad hoc.

Another advantage of SDL is its most general way of making a syntactic distinc-
tion between actual and required behaviour, which makes a most general definition
possible of a violation: a behaviour' is a violation of a set of norms if that set im-
pliesO:'. By contrast, in this report’s formalization three kinds of violation are pos-
sible (for certainp, a ands): the derivation of: Correctly made (p; a; s), the
derivation ofObliged to make (p; a; s) ^ : Made(p; a; s) and the derivation of
Obliged to decide or state (p; a; s) ^ : Decided or stated (p; a; s).
And as more special purpose deontic predicates are introduced, more types of viola-
tions become possible as well. However, it remains to be seen whether this is more
than just a theoretical advantage, since the task of actually computing consistency of
a deontic formalization might be as hard as computing for this report’s formalization
whether it is possible not to violate it.

Let us next briefly examine some possible ways of using deontic logic for represent-
ing RRO. The simplest way is by replacing the quasi-deontic predicates by expressions
of a deontic logic. It turns out that if we want to retain the intermediate conditions for
being in order, such a formalization can be very similar to the above one. The top level
structure becomes as follows (whereP stands for ‘it is permitted that’; note that SDL
validatesP' � :O:').

- Act (y; x) ^ In order (x; s) ^ Proper (x; s)) PMade(y; x; s)
- Act (y; x; s) ^ : In order (x; s)) : PMade(y; x; s)
- Act (y; x; s) ^ : Proper (x; s)) : PMade(y; x; s)

Clearly this deontic formalization does not add much to the above one in Chapter 7: the
only real change is a change of the predicateCorrectly made into the construct
PMade. A more elaborate use of deontic predicates is, of course, possible. We could,
for instance, formalize all cases where an act is not in order or proper as prohibitions.
For example:

- Made before (y; x; s) ^ : Renewable (x)): PMade(y; x; s)

- : In order when another has the floor (x; s) ^ : Has floor (y; s)
)
: PMade(y; x; s)

However, a complication arises, since we also need positive rules for PMade(y; x; s),
since some rules have this formula in their antecedent, for instance, in

63

- Motion (x)^Made(y; x; s)^PMade(y; x; s)^Requires second (x)^ y0 6= y
) PSeconded (y0; x; s0)

Now the problem is that at least one positive rule for PMade(y; x; s) has a very large
antecedent, which conjoins the negations of the antecedents of all negative rules for
PMade(y; x; s). Here the reason why above the five conditions for being in order were
used becomes apparent: these conditionsstructurethe relevant information concerning
being in order. Note also that deontic operators do not prevent the need for theOpen
for ... predicates. This is since we must be able to say under which conditions a
permission to make a certain act (e.g. a seconding) ceases or is prolonged when it is
not used, and the most general and structured way to do so is by way of the rules given
in Subsection 7.2.6.

In sum, it is not immediately clear what the advantages are of a more elaborate
use of (standard) deontic logic. SDL’s general consistency conditions might be hard to
compute, its added expressiveness is only useful on a few occasions, and the lack of
more special deontic notions might be a disadvantage. After all, the law also often uses
more specific, quasi-deontic concepts (such as criminal offence, tort, negligence and
many other ones), and maybe the law has good reason to to do so. Perhaps the notions
of a permitted, obligatory and forbidden act are sometimes too general in the sense
that they do not express whatkindof permission, obligation or prohibition is involved.
In the present formalization, it seems that the five order conditions are very useful for
structuring the normative aspects of RRO.

64

Bibliography

[Alexy, 1978] Alexy, R. Theorie der juristischen Argumentation. Die Theorie des rationalen
Diskurses als eine Theorie der juristischen Begr¨undung. Frankfurt am Main: Suhrkamp
Verlag. (in german)

[Brewka & Gordon, 1994] Brewka, G. & Gordon, T.F. 1994. How to buy a Porsche, and ap-
proach to defeasible decision making. InWorking Notes of the AAAI-94 Workshop on
Computational Dialectics, 28–38. Seattle, Washington.

[Bench-Capon, 1994] Bench-Capon, T.J.M. Deontic logic: who needs it? In J.A. Breuker (ed.),
Proceedings of the ECAI-94 Workshop on Artificial Normative Reasoning, 69–78.

[van Eemeren & Grootendorst, 1992] Eemeren, F.H. van & Grootendorst, R.Argumenta-
tion, Communication, and Fallacies. A Pragma-dialectical Perspective. Hillsdale, NJ:
Lawrence Erlbaum Associates.

[Gordon, 1994a] Gordon, T.F. The Pleadings Game: an exercise in computational dialectics.
Artificial Intelligence and Law2: 239–292.

[Gordon, 1994b] Gordon, T.F. Computational Dialectics. In:Workshop Kooperative Juristische
Informationssysteme, GMD StudienNr. 241, 25–36

[Gordon, 1995] Gordon, T.F.The Pleadings Game. An Artificial Intelligence Model of Procedu-
ral Justice. Dordrecht: Kluwer Academic Publishers.

[Gordon & Karacapilidis, 1997] Gordon, T.F., & Karacapilidis, N. The Zeno argumentation
framework. InProceedings of the Sixth International Conference on Artificial Intelligence
and Law, 10–18. New York: ACM Press.

[Jones & Sergot, 1993] Jones, A.J.I. & Sergot, M.J. On the characterisation of law and computer
systems: the normative systems perspective. In J.-J.Ch. Meyer & R.J. Wieringa (eds.),
Deontic Logic in Computer Science: Normative System Specification. Chicester: John
Wiley and Sons, 275–307.

[Karacapilidis et al., 1997] Karacapilidis, N.I., Papadias, D., Gordon, T. & Voss, H. Collabora-
tive Environmental Planning with GeoMed.European Journal of Operational Research,
Special Issue on Environmental Planning, Vol. 102, No. 2, 335–346.

[Loui, 1998] Loui, R.P. Process and policy: resource-bounded non-demonstrative reasoning. To
appear inComputational Intelligence14: 1.

65

[Page, 1991] Page, C.V. Principles for democratic control of bounded-rational, distributed,
knowledge agents.Proceedings of the European Simulation Conference, ed. E. Mosek-
ilde, pp. 359–361.

[Prakken, 1995] Prakken, H. From logic to dialectics in legal argument.Proceedings of the Fifth
International Conference on Artificial Intelligence and Law, 165–174. New York: ACM
Press.

[Prakken, 1997] Prakken, H.Logical Tools for Modelling Legal Argument. A Study of Defeasible
Reasoning in Law.Dordrecht etc.: Kluwer Law and Philosophy Library.

[Rescher, 1977] Rescher, N.Dialectics: a Controversy-oriented Approach to the Theory of
Knowledge. Albany, N.Y.: State University of New York Press.

[Robert, 1986] Robert, H.M.Robert’s Rules of Order. The Standard Guide to Parliamentary
Procedure. New York etc. Bantam Books.

[Shanahan, 1997] Shanahan, M.P.Solving the Frame Problem. Cambridge, MA: MIT Press.

[Stary, 1991] Stary, C. Modelling decision support for rational agents.Proceedings of the Euro-
pean Simulation Conference, ed. E. Mosekilde, pp. 351–356.

[Suber, 1990] Suber, P.The Paradox of Self-amendment: a Study of Logic, Law, Omnipotence,
and Change.New York: Peter Lang.

[Toulmin, 1958] Toulmin, S.E.The Uses of Argument. Cambridge: Cambridge University Press.

[Vreeswijk, 1995] Vreeswijk, G.A.W. Formalizing Nomic: working on a theory of communi-
cation with modifiable rules of procedure.Technical report CS 95-02, Dept. of Computer
Science, University of Limburg, Maastricht, The Netherlands.Presented at the4th Int.
Colloquium on Cognitive Science (ICCS-95), Donostia, San Sebastian, Spain.

[Vreeswijk, 1996] Vreeswijk, G.A.W. Representation of formal dispute with a standing order.
Research Report MATRIX, University of Limburg, Maastricht.

Some WEB sites devoted to Robert’s Rules of Order are:

http://www.csufresno.edu/speechcomm/cagle-p3.htm
http://www.connix.com/ aip/index.htm
http://www.psychiatry.ubc.ca/dept/rulesord/preface.htm

66

Appendix A

Some Pictures

This appendix contains graphical representations of some of the important notions of
RRO:

� The figureAct hierarchycontains an (incomplete) conceptual hierarchy of types
of speech acts occuring in RRO (see Chapter 6).

� TheAnd/Or graph for when a motion is in orderhelps to understand Chapter 7.

� The figurefinished businessdisplays all ways in which introduced business can
be dispensed with (see Section 8.2).

� Finally, the figureunfinished businessdepicts all modes that unfinished business
can have (see Section 8.3).

67

Act

Motion

privileged
motion

incidental
motion

subsidiary
motion

principal
motion

fix time
of adjourn

adjourn orders of
the day

appeal reading
papers

suspension
of rules

lay on the
table

previous
question

commit or
refer

Act to
obtain floor

privilege

question of
order

objection
to consider

withdrawal
of motion

postpone to
certain day

amendment postpone
indefinetely

question of

Act hierarchy

blanks
filling nomination

68

In order

Special
conditionsconditioncondition condition condition

PrecedenceFloor Mode Renewal

Made while no
pending question

Precedence over
pending question

No special act
required

Is of required
type

Can be made
without floor

Cannot be made
without floor

Has floor

and

and

or

or or

and

or

Made earlier Renewable

Not made
earlier

And/Or graph for when a motion is in order

6
9

Finished business

DecidedPostponed
indefinetely

Successfully objected
to consideration

Withdrawn

By chair Voted

Rescinded Not rescinded Rescinded Not rescinded

Fig: finished business

7
0

Unfinished business

Fig: unfinished business

On table On order of
business

Special
orders

General
orders

In committee On question stack

SurpressedIntroduced

of stack)
(first

Open for
seconding

Floor open
to mover

Open for
stating

Debated
(first
of stack) of stack)

(not first

7
1

